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Abstract.We study a generalization of the Oberbeck–Boussinesq system,
which consists in a buoyancy term where the density depends also on the
pressure. A new pressure equation is introduced, which is deduced from
the divergence-free condition on the velocity; such an equation cannot
be decoupled from the system and is studied under Robin’s boundary
conditions. Then, the existence of regular periodic solutions is proved
for the full system. In Bénard’s problem, the two-dimensional linear
instability of the solution depends on a dimensionless parameter that is
proportional to the compressibility factor: the related critical Rayleigh
number decreases as it increases.
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1. Introduction

The mathematical modeling of some fluids as incompressible has been at-
tracting the interest of researchers since a long time. The notion of incom-
pressibility is just an idealization of several materials which can be deformed
with almost no volume change during the isothermal processes. Nevertheless,
in comparison with the modeling of the compressible fluids, the incompress-
ible material theory has the advantage of being not only “simpler” but even
more consistent with the macroscopic model of the continuous media. The
incompressibility condition ∇ · v = 0, where v denotes the velocity, implies
that the equations are less singular than those of the compressible flows [4].

In fact, a sort of in-between approach is put into practice, which consists
in studying particular observable flows in which the motion of compressible
fluids is isochoric: so that again ∇ · v = 0. When this condition is used to
model the non-isothermal flows, it is suitable to choose the pressure p (instead
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of the density ρ) and the temperature T as thermodynamical independent
variables [9,10]; the other quantities, such as the specific volume V = 1/ρ
and the internal energy ε, are identified by constitutive equations of the form

V ≡ V (p, T ) , ε ≡ ε(p, T ). (1.1)

Two dimensionless parameters are important for the description of the fluid
motion: the thermal expansion coefficient α and the compressibility factor β,
which are defined by

α =
VT

V
, β = −Vp

V
. (1.2)

The subscripts T , p denote partial derivatives with respect to the variables
T , p, respectively.

The simplest model of the non-isothermal isochoric flow follows from
the experimental evidence that for some fluids which are usually handled as
incompressible—such as water—the volume changes a little with the tem-
perature; while in practice, it remains unchanged by varying the pressure.
Therefore, one can simplify (1.1) by assuming

V ≡ V (T ). (1.3)

For these fluids, the natural convection is modeled by the well-knownOberbeck–
Boussinesq approximation [1,13,14], shortened as O–B in the following. The
O–B approximation, in addition to the assumptions of isochoric motion ∇ ·
v = 0 and negligible self-dissipation D : D ≈ 0 (where as usual D is the
symmetric part of ∇v) postulates that in the balance equations, we have

ρ = ρ0 (1 − α0(T − T0)) in the weight force, ρ = ρ0 in all the other terms.
(1.4)

Since condition (1.3) proves to be too strong in the light of the so-called
Müller’s paradox [9,10], it was recently proposed to assume at least α0 =
α(T0, p0), see [11].

As we mentioned above, such an approximation is suited for fluids which
can be assumed thermally compressible but mechanically incompressible; a
theoretical justification can be found in [2,11]. More precisely, the papers
[11] aim at identifying the most suitable range, as far as the dimensionless
parameters are concerned, for the O–B approximation to hold. In particular,
these papers show how the O–B approximation can be derived from the
balance equations of a slightly compressible fluid with a buoyancy term in
the momentum balance which does not depend on the pressure.

On the other hand, in many applications [3,7], the O–B approximation
is also used for modeling air and other gases, see, for instance, [19], and
though there is no theoretical explanation for this, it is reasonable to expect
more realistic numerical outcomes by generalizing the model.

The O–B approximation has some drawbacks, as we discuss now. First,
if all the thermodynamical functions are assumed to be independent of p,
then the Gibbs equation

TdS = dε + pdV (1.5)
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holds if and only if V is constant. As a consequence, one is led to assume
again (1.3) but allowing the internal energy to depend also on the pressure,
i.e., ε ≡ ε(p, T ) [9].

Second, assumption (1.3) implies instability in the wave propagation
[12]; for thermodynamical stability, the compressibility factor must satisfy
the inequality [10]

β > βcr, βcr :=
α2TV

Cp
> 0, (1.6)

where Cp > 0 denotes the specific heat at constant pressure.
To circumvent these difficulties, one can replace (1.3) with the full linear

expansion of ρ at a reference state (T0 , p0) [10], namely,

ρ = ρ0 {1 − α0 (T − T0) + β0 (p − p0)} . (1.7)

Here, β0 = β(T0, p0). Expression (1.7) was used in [15] as constitutive equa-
tion in the weight force and tested on the simplest physical setting for the
convection: Bénard’s problem. In the 2D Bénard convection, a fluid is mov-
ing between two horizontal planes which are kept at two constant different
temperatures. In the classical Bénard problem, i.e., under (1.4), there is a
parabolic profile of the pressure which corresponds to the rest state: it does
not fit with many experimental results and an alternative profile is given in
[15] by exploiting (1.7). Moreover, the rest state with stratified linear tem-
perature analytically shows a saddle structure—as a bifurcation—for all β0,
both under (1.4) and under (1.7). To be more precise, for any value of the
characteristic non-dimensional parameters, there exists a set of initial condi-
tions whose corresponding solutions decay exponentially to the basic solution.
Further, still in [15], the linear instability of the thermal conductive solution
is studied by analyzing the exponential time decay of the perturbations. Such
a decay coincides with the classical one [5,6] in the limit β0 → 0. The inves-
tigation was performed by neglecting from the very beginning the terms of
order β3

0 (this simplifies the solution of the pressure equation).
If β0 > 0, the convective motions still arise if the Rayleigh number is

sufficiently large as a function of β0. Again, as in the classic case, the first
non-decreasing normal mode is a stationary state. Moreover, for small β0, it
is proved that the critical Rayleigh number—which is the one corresponding
to zero rate of decay—decreases as β0 increases. Therefore, the system of
equations inferred by (1.7) admits a basic solution that is less stable than the
one following (1.4).

In the present paper, we study the linear system of equations deduced
by (1.7) to confirm the results in [15] by providing existence theorems. More
precisely, in Sect. 2, we introduce the equations and the Boussinesq approx-
imation we deal with in the following. We provide there a new equation for
the pressure, which does not decouple from the full system, and we justify
Robin’s boundary conditions for it by following [17]. In Sect. 3, we find the
optimal smallness conditions on β0 for the existence and uniqueness of solu-
tions to a reduced problem for the pressure. In Sect. 4, we first study the full
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time-dependent Stokes-like system and provide a result of existence, unique-
ness and regularity of solutions using classical tools [16]. At last, we prove a
stability result, which was firstly achieved only by numerical methods [15].

2. The Modified Boussinesq Approximation

If we assume that the body forces are only due to the gravity and no heat is
supplied, then the balance equations of mass, momentum and energy are






∂ρ
∂t + ∇ · (ρv) = 0,
∂ρv
∂t + ∇ · (ρv ⊗ v − T) = ρg,

∂(ρε+ 1
2ρv2)

∂t + ∇ ·
((

ρε + 1
2ρv2

)
v − T(v) + q

)
= ρg · v,

(2.1)

where v, T and q are the velocity, the stress tensor and the heat flux, re-
spectively; t represents the time and x is the space variable. In the following,
we only focus on smooth solutions of (2.6). In this case, system (2.1) can be
rewritten as 





dρ
dt + ρ∇ · v = 0,

ρdv
dt = ∇ · T+ ρg,

ρdε
dt = D : T − ∇ · q,

(2.2)

where d
dt =

∂
∂t+v·∇ denotes the material derivative. Taking into account that

T = −pI+ S, where S is the viscous stress tensor, we assume as constitutive
equations the classical Fourier law q = −k∇T, where k is the coefficient of
thermal conductivity, and the definition of Navier–Stokes fluid

S = λ∇ · v I+ 2µD = ν∇ · v I+ 2µDD.

Here ν = λ+2µ/3, where λ and µ are the bulk and shear viscosity coefficients,
respectively; the symbol DD = D − 1

3∇ · v is the deviatoric part of D. From
the integrability conditions due to the Gibbs equation (1.5) we have

(
∂ε

∂ρ

)

T

=
1
ρ2

{
p − T

(
∂p

∂T

)

ρ

}
,

where, with a slight abuse of notation, on the left-hand side, we mean the
partial derivative of ε with respect to p at T fixed, and so on. Moreover, by
taking into account the conservation of mass (2.2)1, we find the identity

ρ
dε

dt
= ρ

(
∂ε

∂T

)

ρ

dT
dt

−
{
p − T

(
∂p

∂T

)

ρ

}
∇ · v.

By denoting CV = (∂ε/∂T )ρ the specific heat at constant volume, system
(2.2) becomes





dρ
dt + ρ∇ · v = 0,
ρdv

dt = −∇p+ (λ + µ)∇(∇ · v) + µ∆v + ρg,

ρCV
dT
dt = −p∇ · v + λ(∇ · v)2 + 2µD : D+ k∆T +

{
p − T

(
∂p
∂T

)

ρ

}
∇ · v.

(2.3)
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We assume both
∇ · v = 0 and D : D ≈ 0, (2.4)

as in the classical O–B approximation, but we replace (1.4) with

ρ = ρ0 (1 − α(T − T0) + β(p − p0)) in the weight force,
ρ = ρ0 in the other terms.

(2.5)

For simplicity of notations, with respect to (1.7), we wrote α and β for the
constants α0, β0, respectively; the same notation is used in the following. As
a consequence, system (2.3) can be written as





∇ · v = 0,
ρ0
(

∂v
∂t + v · ∇v

)
=−∇p+ µ∆v+ρ0 (1 − α(T − T0) + β(p − p0))g,

ρ0CV

(
∂T
∂t + v · ∇T

)
= k∆T.

(2.6)

Now, we introduce the domain where we consider system (2.6). We denote the
spatial variables by (x, y, z) and consider the region between the horizontal
planes z = 0 and z = h > 0. We assume that the planes are thermostatically
heated to

T|z=0 = Td > Tu = T|z=h
,

where Td and Tu are constant, and denote δT := Td−Tu > 0. A mathematical
2D setting for the study of the Bénard problem is physically meaningful, since
the convection rolls of Bénard’s convection are experimentally observed in the
layer 0 ≤ z ≤ h and their invariant axes are normal to the random direction
of the horizontal perturbation generating them [8]. We can assume that the
direction of such horizontal perturbation coincides with the x axis and then
look for solutions that are periodic in x with period l > 0; for simplicity, we
assume

l = h. (2.7)

Then, the dependence on y is dropped.
By taking as reference state (Td, pd), for some pd > 0, the basic steady

solution for (2.6) corresponding to v = 0 is [15]

T̄ (z) = Td − δT

h
z, (2.8)

p̄(z) = pd +
1
β2

αδT

ρ0gh

(
1 − e−ρ0gβz

)
− 1

β

(
1 − e−ρ0gβz +

αδT

h
z

)
. (2.9)

If we define the fields

τ(x, z) = T (x, z) − T̄ (z), (2.10)
P (x, z) = p(x, z) − p̄(z), (2.11)

which describe the perturbation with respect to the basic steady solution,
then system (2.6) is fulfilled by (τ, P,v) = 0. At last, we introduce the di-
mensionless variables

t′ =
k

h2
t, x′ =

x

h
, z′ =

z

h
, T ′ =

T

δT
, P ′ =

P h2ρ0
kµ

. (2.12)
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Then, by exploiting (2.5) and (2.10), (2.11), (2.12), we end up with the system





∇ · v = 0,
1
Pr

(
∂v
∂t + v · ∇v

)
= −∇P − β̂Pk+ ∆v +Ra τk,

∂τ
∂t + v · ∇τ = ∆τ + v · k,

(2.13)

where k = (0, 0, 1). For simplicity, we dropped all ′s; we keep this notation
from here on. Prandtl and Rayleigh dimensionless parameters and the inde-
pendent parameter β̂ are defined by

Pr :=
µ

ρ0k
, Ra :=

αρ0h3gδT

µk
, β̂ := ρ0gβh.

Because of the domain considered above and the periodicity in x, system
(2.13) can be studied either for (x, z) in Ω := R × (0, 1), under periodicity
conditions in x, or in Ω0 := (0, 1) × (0, 1). Moreover, t ∈ (0,∞). We also
denoted ∆ = ∂2

x + ∂2
z .

Before dealing with P , we consider the boundary conditions on z = 0
and z = 1 for both v and τ . To compare our results with the existing exact
results on linear instability [8], we impose to v the same boundary conditions
of [8], namely v · k = 0 and (v · i)z = 0, where i = (1, 0, 0); this means

vz(x, 0, t) = vz(x, 1, t) = 0 and vxz (x, 0, t) = vxz (x, 1, t) = 0. (2.14)

Here, vx is the first component of v and so on. Concerning the temperature,
we require

τ(x, 0, t) = τ(x, 1, t) = 0. (2.15)

Remark 2.1. The null function v = 0, τ = P = 0, satisfies system (2.13)
and the boundary conditions (2.14)–(2.15). Indeed, the space S0 of smooth
solutions of (2.13) with vx = 0, τx = 0 and Px = 0 is shown to be a stable
subspace in [15]. In this case, we have v ≡ 0 and solutions can be explicitly
written. By Galilean invariance, the same holds for v = (C, 0), τ = P = 0,
for every costant C.

For general initial conditions, system (2.13) cannot be solved separately
for τ and v by simply writing the second equation in a weak form with
divergence-free test functions because of the term β̂Pk. Although the pro-
jection of (2.13)2 still depends on P , an equation for P is obtained by taking
the divergence of (2.13)2; we have

∆P + β̂Pz = − 1
Pr

∇ · (v · ∇v) + Ra τz. (2.16)

By assumption (2.4), we deduce ∇ · (v · ∇v) = (∇v) : (∇v)T . As a conse-
quence, the first summand in the left-hand side of (2.16) cannot be neglected,
unless linearizing the equations.

By following the arguments in [17] and, in particular, by inserting the
pressure-depending buoyancy force at the right-hand side of equation (2.13)2
in equation (40) of that paper, then the natural boundary condition for
Eq. (2.16) is Robin’s condition

Pz + β̂P = 0 on z = 0 and z = 1. (2.17)
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Robin’s condition is natural for the pressure in the present system as Neu-
mann’s condition is for the Navier–Stokes system. To be more precise, with
the word natural, we mean that if the solutions are regular enough, then sys-
tem (2.13) is equivalent to the one obtained by replacing (2.13)1 with (2.16),
and condition (2.17) is automatically verified by the solutions of the new
system. Of course, if no external force is given, as in the present case, the
regularity properties can be directly derived by the regularity of the bound-
ary of Ω which is, in the present case, the largest possible. We are then led
to the system






∆P + β̂Pz = − 1
Pr∇ · (v · ∇v) + Ra τz,

1
Pr

(
∂v
∂t + v · ∇v

)
= −∇P − β̂Pk+ ∆v +Ra τk,

∂τ
∂t + v · ∇τ = ∆τ + v · k.

(2.18)

If we define Π = eβ̂zP , condition (2.17) turns into the simpler Neumann
condition

Πz = 0 on z = 0 and z = 1, (2.19)

and Eq. (2.16) into

∆Π − β̂Πz = − 1
Pr

eβ̂z∇ · (v · ∇v) + Ra eβ̂zτz. (2.20)

Notice that if β̂ = 0, then Eq. (2.20) with the Neumann condition on the
boundary would reduce to the classical problem for the pressure. Using Π,
system (2.18) becomes






∆Π − β̂Πz = − 1
2Pre

β̂z(∇v) : (∇v)T +Ra eβ̂zτz,
1
Pr (vt + v · ∇v) − ∆v = −e−β̂z∇Π +Ra τk,
τt + v · ∇τ − ∆τ = v · k.

(2.21)

As in the classic O–B framework, we first linearize (2.21) around zero to
study instability. Then, we rearrange the pressure term to have a gradient
and a buoyancy term. We obtain






∆Π − β̂Πz = Ra eβ̂zτz,
1
Prvt − ∆v = −∇(e−β̂zΠ) − β̂e−β̂zΠk+Ra τk,
τt − ∆τ = v · k.

(2.22)

Second, since Eq. (2.13)1 anyway holds true (again by the arguments in
[17]), we introduce the stream function Φ, which is implicitly defined up to
an additive constant by

Φx = vz, Φz = −vx. (2.23)

Now, we apply the operator ∇× to (2.22)3; by (2.23) and the identity
∇ × ∇ = 0 we get






∆Π − β̂Πz = Ra eβ̂zτz,
1
PrΨt − ∆Ψ = Ra τx − β̂e−β̂zΠx,
τt − ∆τ = Φx,

(2.24)
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for β̂ > 0, where Ψ = ∆Φ. The initial conditions are
{

Ψ(x, z, 0) = Ψ0(x, z),
τ(x, z, 0) = τ0(x, z),

for (x, z) ∈ Ω, (2.25)

for given functions Ψ0 and τ0. About boundary conditions, the free-surface
condition for the velocity v we assumed above leads to impose Ψ = ∆Φ = 0
at z = 0 and z = 1. Actually, by (2.23), condition (2.14) implies

Φx(x, 0, t) = Φx(x, 1, t) = 0,
Φxx(x, 0, t) = Φxx(x, 1, t) = 0,
Φzz(x, 0, t) = Φzz(x, 1, t) = 0,

(2.26)

for (x, t) ∈ R× (0,∞). As a consequence, the full set of boundary conditions
associated to (2.24) is






Πz(x, 0, t) = Πz(x, 1, t) = 0,
Ψ(x, 0, t) = Ψ(x, 1, t) = 0,
τ(x, 0, t) = τ(x, 1, t) = 0,

for (x, t) ∈ R × (0,∞). (2.27)

The solutions of the nonlinear system (2.13) mentioned in Remark 2.1 and
belonging to the space S0, also solve the linear system (2.24) and the bound-
ary condition (2.27). The aim of the present paper is to complete the results
given in [15] by studying solutions to (2.24) in some complement of S0.

3. The Reduced Problem

We begin the study of system (2.24) by the pressure Eq. (2.24)1 and more
precisely with the reduced problem

{
∆Π − β̂Πz = eβ̂zf, in Ω,
Πz(x, 0) = Πz(x, 1) = 0, for x ∈ R, (3.1)

for f = f(x, z) periodic in x. The most important result of this section is an
existence theorem for solutions to problem (3.1).

For given functions F = F (x, z, t) and G = G(x, z, t), we denote

〈F 〉 =
∫

Ω0

F (x, z, t) dxdz, (F,G) =
∫

Ω0

F (x, z, t)G(x, z, t) dxdz.

Clearly the same definitions apply, if F and G do not depend on t.
We shall assume that 〈f〉 = 0; indeed, Eq. (3.1)1 plays the role of

Eq. (2.24)1 and we have

〈τz〉 =
∫ 1

0
(τ(x, 1, t) − τ(x, 0, t)) dx = 0,

by (2.27)3. Notice that 〈τz〉 = 0 perfectly matches with 〈∆P + β̂Pz〉 = 0,
which follows from (2.17) by taking into account the periodicity. In other
words, if we multiply the left-hand side of (3.1)1 by e−β̂z and integrate, we
see that the condition 〈f〉 = 0 is necessary to have a solution. First, we notice
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that solutions of (3.1) are not unique: if Π is a solution, then also Π + C is
a solution for every constant C. Then we denote

Π′ = Π − 〈Π〉. (3.2)

Of course 〈Π′〉 = 0; in the following, we simply write Π for Π′.
We consider the space of functions u in C∞ ([0, 1]) satisfying uz(0) =

uz(1) = 0 and consider its closure in the W k,2(0, 1)-norm, for k = 0, 1, 2.
An orthogonal basis for such spaces is provided by {cos(nπz)}n∈N0

, where
N0 = N ∪ {0} and N = {1, 2, . . .}. Then, for i = ±1, we introduce the
functions

φi
mn(x, z) =

{
cos(2πmx) cos(πnz) if i = 1,
sin(2πmx) cos(πnz) if i = −1, m, n ∈ N0. (3.3)

To deal with functions with zero mean value on the cell Ω0, we need to exclude
the functions φi

0n; then, we consider the reduced basis

B̃ =
{
φi
mn : (m,n) ∈ N × N0 for i = ±1

}
.

The spaces W̃ k,2(Ω0), k = 0, 1, 2, are defined as the closures with respect to
the W k,2(Ω0)-norm of finite combinations of elements of the basis B̃; we
denote L̃2(Ω0) = W̃ 0,2(Ω0). By Sobolev’s embedding theorem, it follows
that W̃ 2,2(Ω0) ⊂ C0(Ω0); moreover, functions in W̃ 2,2(Ω0) have traces in
W 3/2,2(∂Ω0). Functions in W̃ k,2(Ω0) satisfy

〈u〉 = 0 for k = 0, 1, 2, (3.4)
uz(x, 0) = uz(x, 1) = 0, for k = 2, x ∈ [0, 1]. (3.5)

We notice that the choice m /= 0 in B̃ excludes the functions only depending
on z from these spaces; then, W̃ k,2(Ω0) ∩ S0 = {0}. Moreover, since any
u in W̃ 1,2(Ω0) has zero mean value, it follows that it fulfills the Poincaré
inequality [4, II, Theorem 4.3]

‖u‖ ≤ kP ‖∇u‖, (3.6)

where kP is the Poincaré constant. Here and in the following, we denote by
‖ · ‖ the norm in L2(Ω0).

Remark 3.1. The functions φi
mn are eigenfunctions of the Laplace operator

with the eigenvalues:

∆φi
mn = −αmnφi

mn, for αmn := 4π2m2 + π2n2. (3.7)

After integration by parts, we obtain (∇φi
mn,∇φi

mn) = αmn(φi
mn,φ

i
mn). As

a consequence, the optimal constant in the Poincaré inequality (3.6) is kP =
(2π)−1.

Theorem 3.1. Consider f ∈ L̃2(Ω0) and assume 0 ≤ β̂ < 2π. Then, problem
(3.1) has a unique solution Π ∈ W̃ 2,2(Ω0); moreover, Π satisfies the estimate

‖∇Π‖ ≤ 1
2π − β̂

‖eβ̂zf‖. (3.8)
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Proof. First, we prove (3.8). Assume that Π ∈ W̃ 1,2(Ω0) solves (3.1) and
notice that it is immediate to see that eβ̂zf ∈ L̃2(Ω0). We multiply (3.1)1 by
Π and integrate with respect to x and z to find

∫

Ω0

∆Π · Πdxdz − β̂

∫

Ω0

ΠzΠdxdz =
∫

Ω0

eβ̂zfΠdxdz.

We integrate by parts the first summand and exploit (3.4), (3.5) and the
periodicity; we deduce

∫

Ω0

|∇Π|2 dxdz = −β̂

∫

Ω0

ΠzΠdxdz −
∫

Ω0

eβ̂zfΠdxdz.

Then, we use Cauchy–Schwarz inequality for both summands on the right-
hand side and find

‖∇Π‖2 ≤ kP
(
β̂‖Πz‖ + ‖eβ̂zf‖

)
‖∇Π‖ ≤ 1

2π

(
β̂‖∇Π‖ + ‖eβ̂zf‖

)
‖∇Π‖,

whence (3.8) follows.
Now, we prove the existence and uniqueness of the solution. Since

bmn := (φi
mn,φ

i
mn) =

{
1
4 if n /= 0,
1
2 otherwise, (3.9)

we use the normalization ψi
mn = φi

mn/γmn, for γmn =
√

αmnbmn. The family
{ψi

mn} still is a basis for W̃ 1,2(Ω0) and (3.7) holds with ψi
mn replacing φi

mn.
By integration by parts, we obtain

(
∇ψi

mn,∇ψi
mn

)
= 1. (3.10)

We use the multi-index notation µ = (i,m, n) for i = ±1 and (m,n) ∈ N×N0;
then, we order the elements ψi

mn of the basis according to the lexicographic
order. As a consequence, the previous basis for W̃ 1,2(Ω0) can be written as
{ψµ}µ∈M, where we discarded the elements corresponding to multi-indices µ
that do not appear in the definition of B̃. We use the same notation for the
other functions. We write

ΠN =
∑

|µ|≤N

Bµψµ, FN =
∑

|µ|≤N

Fµψµ

with Fµ := (eβ̂zf,ψµ) and the Bµ’s are to be found by imposing that equation
(3.1)1 with right-hand side FN is satisfied. This means

∑

|µ|≤N

Bµ∆ψµ = β̂
∑

|µ|≤N

Bµψµ,z +
∑

|µ|≤N

Fµψµ. (3.11)

By (3.7) we notice that

∆ΠN = −
∑

|µ|≤N

αµBµψµ,

where we denoted αµ = αi,m,n := αm,n with a slight abuse of notation. If we
multiply Eq. (3.11) by ψν and integrate, we deduce by (3.10)

− Bν = β̂
∑

|µ|≤N

Bµ (ψµ,z,ψν) +
Fν

αν
. (3.12)



MJOM The Bénard Problem for Slightly Compressible Materials Page 11 of 24 18

The coefficients Bν depend in general also on N ; for brevity, this dependence
is omitted.

We now show that the algebraic system for the coefficients Bµ is solvable
by a Leray’s argument. Consider an algebraic system P(B) = 0, where P :
RN → RN is a continuous function; if there is R such that the scalar product
P(B) ·B has a defined sign for |B| > R, then there exists at least one solution
of the system in B(0, R), the ball of radius R and center 0. Therefore, we
consider the quadratic form

P(B) ·B = −
∑

|ν|≤N

B2
ν − β̂

∑

|µ|,|ν|≤N

BµBν (ψµ,z,ψν) −
∑

|ν|≤N

Fν

αν
Bν . (3.13)

First, we compute (ψµ,z,ψν). We come back to the notation µ = (i,m, n)
and ν = (j, r, s); by integration with respect to x and then to z we deduce

(ψµ,z,ψν) =
(
ψi
mn,z,ψ

j
rs

)
= −πn

2
δijδmr

γmnγrs
(sin(πnz), cos(πsz)) ,

where δij , δmr are Kronecker’s deltas. Moreover

(sin(πnz), cos(πsz)) =

{
1
π

(
1

n+s + 1
n−s

)
if n+ s ≥ 1 is odd,

0 otherwise.

Consider the second term in the right-hand side of (3.13). We deduce
∑

|µ|≤N

BµBν (ψµ,z,ψν) = −1
2

∑

i,m,n,s

Bi
mnB

i
ms

γmnγms

(
n

n+ s
+

n

n − s

)
=: I + II,

(3.14)
where the sum on the right-hand side is done for |µ| ≤ N , n+s ≥ 1 odd, and
as usual we agree to discard the summands corresponding to indices that do
not appear in the definition of B̃.

Fix i and m and consider the summation with respect to n and s in the
right-hand side of (3.14). About I, if we denote B̃i

mn = Bi
mn/γmm, we have

∑

n,s
n+s≥1 odd

B̃i
mnB̃

i
ms

n

n+ s
=
( ∑

n even
s odd

+
∑

n odd
s even

)
B̃i

mnB̃
i
ms

n

n+ s

=
∑

n even
s odd

B̃i
mnB̃

i
ms

n

n+ s

+
∑

s odd
n even

B̃i
mnB̃

i
ms

s

n+ s
=
∑

n even
s odd

B̃i
mnB̃

i
ms.

The analogous term in II gives exactly the same result. Then, by (3.14), we
obtain ∑

|µ|,|ν|≤N

BµBν (ψµ,z,ψν) = −
∑

|µ|,|ν|≤N
n even,s odd

B̃i
mnB̃

i
ms. (3.15)

Then, the expression in (3.13) can be written as

P(B) ·B = −
∑

|ν|≤N

B2
ν + β̂

∑

|µ|,|ν|≤N
n even,s odd

B̃i
mnB̃

i
ms −

∑

|ν|≤N

Fν

αν
Bν . (3.16)
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For fixed i, n and s, by Cauchy–Schwarz and Young inequalities we have
∑

m

B̃i
mnB̃

i
ms ≤ |B̃i

·n| |B̃i
·s| ≤ 1

2

(
|B̃i

·n|2 + |B̃i
·s|2
)
,

for |B̃i
·n| the euclidean norm of the vector {B̃i

mn}m. By summing over i, n
and s, we obtain

∑

|µ|,|ν|≤N
n even,s odd

B̃i
mnB̃

i
ms ≤ 1

2

∑

|ν|≤N

B̃2
ν =

1
2

∑

|ν|≤N

B2
ν

γ2
mn

≤ 1
4π2

∑

|ν|≤N

B2
ν ,

since γ2
mn = αmnbmn ≥ min{αmnbmn} = 2π2. Then, by (3.12) we deduce,

because of β̂ < 2π,

P(B) ·B ≤ −
(
1 − β̂2

4π2

)
∑

|ν|≤N

B2
ν −

∑

|ν|≤N

Fν

αν
Bν ≤ 0, (3.17)

for |B| > R with R sufficiently large.
Since for all N the solutions ΠN corresponding to fN are uniformly

bounded in the norm of the gradient because of (3.8), then there exists a
subsequence that weakly converges in that norm [4, Th. 1.2, §II]; this limit is
a weak solution to problem (3.1). To prove that Π ∈ W̃ 2,2(Ω0), we test (3.1)1
with ∆Π. By Cauchy–Schwarz inequality, one gets

‖∆Π‖ ≤ β̂‖∇Π‖ + ‖eβ̂zf‖,

and then, by orthogonality,

‖Πxz‖2 =
1
4

∑

i,m≥1,n≥1

(
(2πm)(πn)Bi

mn

)2

≤ 1
4

∑

i,m≥1,n≥1

(
1
2
αmnB

i
mn

)2

≤ 1
16

‖∆Π‖.

At last, uniqueness directly follows by (3.8). !

4. Existence Results for the Full Linear System

In this section, we study the existence and the stability of periodic solutions
in Ω × (0,∞) to (2.21) under the initial conditions

(v(x, 0), τ(x, 0)) = (v0(x), τ0(x)) (4.1)

and boundary conditions (2.14), (2.15) and (2.19). As we shown at the end
of Sect. 2, this problem is equivalent to (2.24) under the initial-boundary
conditions (2.25) and (2.27). Recalling Sect. 3, we look for Π in the space
W̃ 2,2(Ω0) and then expressed through the basis {φi

mn}(m,n)∈N×N0 . On the
other hand, a natural basis for τ , Ψ is

ζimn(x, z) =
{
cos(2πmx) sin(πnz) if i = 1,
sin(2πmx) sin(πnz) if i = −1, (4.2)
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for (m,n) ∈ N×N. We denote by Ŵ k,2(Ω0) the space generated by (4.2) with
the W k,2(Ω0)-norm, for k = 0, 1, 2. Analogously, we denote by Ĥ(Ω0) the
space of two-component vector functions generated by (4.2), and having null
divergence, with respect to the L2(Ω0)-norm; the space Ŵk,2(Ω0), k = 1, 2,
is defined accordingly using the W k,2(Ω0)-norm.

If v ∈ L2
(
(0, T ), Ŵ1,2(Ω0)

)
and vz vanishes on z = 0 and z = 1, as

required by (2.14), then it is easy to see that

‖v‖ ≤ ‖∇v‖. (4.3)

Further, the Poincaré inequality for τ ∈ L2
(
(0, T ), Ŵ 1,2(Ω0)

)
is

‖τ‖ ≤ 1√
5π

‖∇τ‖, (4.4)

where the constant 1/(
√
5π) is optimal because the indices (m,n) in the basis

{ζimn} run in N × N.
At last, we introduce the energy

E(t) :=
1
2

(
1
Pr

‖v(t)‖2 +Ra ‖τ(t)‖2
)
.

Theorem 4.1. Assume 0 ≤ β̂ < 2π. Then, for all Ra > 0, T > 0 and
(v0, τ0) ∈ Ĥ(Ω0) × L̂2(Ω0), system (2.22) with initial-boundary conditions
(4.1), (2.14), (2.15) and (2.19) has a unique solution (Π,v, τ) with

Π ∈ L2
(
(0, T ), W̃ 1,2(Ω0)

)
,

v ∈ L∞
(
(0, T ), Ĥ(Ω0)

)
∩ L2

(
(0, T ), Ŵ1,2(Ω0)

)
,

τ ∈ L∞
(
(0, T ), L̂2(Ω0)

)
∩ L2

(
(0, T ), Ŵ 1,2(Ω0)

)
.

Moreover, for t ∈ [0, T ], the solution satisfies

E(t) ≤ ec0tE(0), (4.5)

where c0 > 0 depends on Pr, Ra, β̂; if Ra is sufficiently small, then E(t)
decays exponentially.

If the initial data satisfy the additional regularity (v0, τ0) ∈ Ŵ1,2(Ω0)×
Ŵ 1,2(Ω0), then

Π ∈ L2
(
(0, T ), W̃ 2,2(Ω0)

)
,

v ∈ L∞
(
(0, T ), Ŵ1,2(Ω0)

)
∩ L2

(
(0, T ), Ŵ2,2(Ω0)

)
,

τ ∈ L∞
(
(0, T ), Ŵ 1,2(Ω0)

)
∩ L2

(
(0, T ), Ŵ 2,2(Ω0)

)
.

Proof. We split the proof into some steps.
An a priori inequality for system (2.22).We first prove an a priori energy

estimate for solutions of (2.22). To this aim, we make the scalar product of



18 Page 14 of 24 A. Corli and A. Passerini MJOM

(2.22)2 with v and multiply (2.22)3 by τ . We deduce
1

2Pr
d
dt

‖v‖2 + ‖∇v‖2 = −β̂(e−β̂zΠ, vz) + Ra (τ, vz), (4.6)

1
2
d
dt

‖τ‖2 + ‖∇τ‖2 = (τ, vz), (4.7)

where we denoted with d
dt the usual time derivative. We multiply (4.7) by

Ra and then sum the two equations. To estimate the term containing β̂, we
proceed as follows:

β̂|(e−β̂zΠ, vz)| ≤ β̂|(Π, vz)| ≤ β̂‖Π‖‖v‖ ≤ β̂eβ̂ Ra
2π(2π − β̂)

‖∇τ‖‖v‖

≤ Ra
2M

‖∇τ‖2 + c(β̂,Ra,M)‖v‖2,

where M is precised later on and c(β̂,Ra,M) = RaM β̂eβ̂

2π(2π−β̂)
. Here we used, in

turn, Poincaré inequality for Π (see Remark 3.1), estimate (3.8) with f =
Ra τz, Schwarz and Poincaré inequality (4.4) for τ . Moreover, by (4.4) we
deduce

2Ra |(τ, vz)| ≤ 2Ra ‖τ‖‖vz‖ ≤ 2Ra√
5π

‖∇τ‖‖v‖ ≤ Ra
5π2

‖∇τ‖2 +Ra ‖v‖2.

Now, we choose M = 5π2

5π2−2 and we conclude that, for c0 = 2Pr(c(β̂,Ra,M)
+ Ra),

dE
dt

(t) + ‖∇v(t)‖2 + Ra
2

‖∇τ(t)‖2 ≤ c0E(t). (4.8)

Gronwall inequality shows that E(t) ≤ E(0)ec0t; this proves (4.5).
An a priori inequality for system (2.24). Assume that By (4.6) and

(2.23) we deduce
1
Pr

1
2
d
dt

∫∫

Ω0

|∇Φ|2 dxdz +
∫∫

Ω0

(∆Φ)2 dxdz = −β̂(e−β̂zΠ, vz) + Ra (τ, vz).

(4.9)
For clarity, we briefly show how (4.9) can be deduced by system (2.24). By
multiplying (2.24)2 by Φ and integrating over Ω0 we obtain

1
Pr

∫∫

Ω0

ΨtΦdxdz −
∫∫

Ω0

∆ΨΦdxdz = Ra
∫∫

Ω0

τxΦdxdz

−β̂

∫∫

Ω0

e−β̂zΠxΦdxdz. (4.10)

About the first term on the left-hand side of (4.10), we have
∫∫

Ω0

ΨtΦdxdz =
∫∫

Ω0

div (Φ∇Φt) dxdz −
∫∫

Ω0

∇Φ · ∇Φt dxdz

=
∫∫

∂Ω0

Φ∇Φt · ndS − 1
2
d

dt

∫∫

Ω0

|∇Φ|2 dxdz

= −1
2
d
dt

∫∫

Ω0

|∇Φ|2 dxdz. (4.11)
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Above, we applied the divergence theorem, we denoted by n the exterior unit
normal to Ω0 and exploited the fact that, in the line integral, integrations
along z = 0 and z = 1 give no contribution because of (4.15), while integra-
tions along x = 0 and x = 1 have opposite signs because of periodicity and
of n. For the second summand on the left-hand side of (4.10), we have

∫∫

Ω0

∆ΨΦdxdz =
∫∫

Ω0
(∂4

x + 2∂2
x∂2

z + ∂2
z )ΦΦdxdz.

By integrating by parts, (2.26) and (4.15) we conclude
∫∫

Ω0

∆ΨΦdxdz =
∫∫

Ω0
(∆Φ)2 dxdz. (4.12)

By (4.10)–(4.12) we deduce (4.9).
Equivalent norms. We claim that the norms ‖∇v‖ and ‖∆Φ‖ = ‖Ψ‖

are equivalent. Indeed,

vx =
∑

i,m,n

πn
Ci

mn

αmn
φi
mn, vz =

∑

i,m,n

2πm
−iC−i

mn

αmn
ζimn.

We have, by orthogonality,

Φzx = vzz =
∑

i,m,n

(2πm)(πn)
−iC−i

mn

αmn
φi
mn,

‖Φzx‖2 =
1
4

∑

i,m,n

(
Ci

mn(2πm)(πn)
αmn

)2

.

By Young’s inequality, we deduce ‖Φzx‖2 ≤ 1
16

(
‖Φxx‖2 + ‖Φzz‖2

)
; then, the

norms ‖∇v‖2 = ‖Φxx‖2+‖Φzz‖2+2‖Φxz‖2 and ‖∆Φ‖2 = ‖Φxx‖2+‖Φzz‖2+
2‖Φxx‖‖Φzz‖ are equivalent because they are both equivalent to ‖Φxx‖2 +
‖Φzz‖2. This proves the claim.

The ansatz. Now, we begin the proof of the existence of the solutions
for system (2.24). We make the ansatz

τ =
∑

i,m,n

Ai
mnζimn, Π =

∑

i,m,n

Bi
mnφi

mn, Ψ =
∑

i,m,n

Ci
mnζimn, (4.13)

where the coefficients Ai
mn = Ai

mn(t), Bi
mn = Bi

mn(t) and Ci
mn = Ci

mn(t)
are to be found. Here, as in the following, we drop the dependence of the
coefficients on both t and β̂; moreover, we do not specify anymore the range
of the indices (m,n).

To recover Φ from Ψ, we notice that by (4.13)3 it follows

Φ(x, z, t) = −
∑

i,m,n

Ci
mn(t)
αmn

ζimn(x, z) + u(x, z, t), (4.14)

where ∆u = 0. Since τ and Φ must satisfy (2.24)3, we look for u under the
form

u(x, z, t) =
∑

i,m,n

ηi
mn(t)ζ

i
mn(x, z).
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Then, ηi
mn = 0 for all (m,n) ∈ N×N0 because ∆u = 0 and αmn /= 0 for such

(m,n). Then u ≡ 0.
As a consequence, in addition to the boundary values (2.26), the stream

function Φ also satisfies

Φ(x, 0, t) = Φ(x, 1, t) = 0, for x ∈ [0, 1], t ≥ 0. (4.15)

Approximate solutions. We proceed as in the proof of Theorem 3.1: we
assume that we are given initial data

τN
0 (x, z) =

∑

|µ|≤N

AiN
mn,0ζ

i
mn(x, z), ΨN

0 (x, z) =
∑

|µ|≤N

CiN
mn,0ζ

i
mn(x, z),

(4.16)
where µ = (i,m, n), and look for τ , Π and Ψ as in (4.13), where, however,
the sums are only made for |µ| ≤ N . For simplicity, we drop everywhere the
index N .

By plugging (4.13)1 and (4.13)2 into (2.24)1, one finds Bi
m0(t) = 0 for

n = 0, so that from now on the indices (m, k) run in N × N. Then,
∑

m,k

(
B1

mk cos 2πmx+B2
mk sin 2πmx

) [
−αmk cosπkz + β̂πk sinπkz

]

= Ra
∑

m,k

(
F 1
mk cos 2πmx+ F 2

mk sin 2πmx
)
cosπkz. (4.17)

The coefficients F i
mn are defined as

F i
mk =

∫ 1

0

∫ 1

0
eβ̂zτz(x, z)φi

mk(x, z)dxdz

=
∑

j,l,n

πn

∫ 1

0

∫ 1

0
eβ̂zAj

lnφj
ln(x, z)φ

i
mk(x, z)dxdz.

By taking in Ω0 the scalar product of (4.17) with cos(πkz) one deduces

Bi
mk − 2β̂

αmk

∑

n
n+k odd

(
1

n+ k
+

1
n − k

)
nBi

mn

= − β̂πRa
αmk

∑

n

Ai
mnn

(
(−1)k+neβ̂ − 1

)

×
(

1
π2(n+ k)2 + β̂2

+
1

π2(n − k)2 + β̂2

)
. (4.18)

Notice that the right-hand side of (4.18) becomes singular at β̂ = 0 when
n = k; however, in this case, we also have (−1)k+neβ̂ − 1 ∼ β̂. This means
that the right-hand side of (4.18) has a continuous extension to β̂ = 0 and,
in this case, Bi

mk(β̂ = 0) = Ra πk
αmk

Ai
mk. This corresponds to the simpler and

well-known classical case; hence, from now on, we focus on the case β̂ > 0.
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If for i = 1, 2, m ≥ 1, n ≥ 1 and k ≥ 1 we denote

Dm
nk = δnk + β̂

{
− 2

αmk

(
1

n+k + 1
n−k

)
n, if n+ k odd,

0 if n+ k even,
(4.19)

Mnk = πn
(
(−1)k+neβ̂ − 1

)( 1
π2(n+ k)2 + β̂2

+
1

π2(n − k)2 + β̂2

)
,

(4.20)

then formula (4.18) can be written as
∑

n

Bi
mnD

m
nk = −Ra β̂

αmk

∑
n A

i
mnMnk. (4.21)

Notice that the N × N matrix Dm has the form Dm(β̂) = I + β̂X for some
matrix X and it is diagonal dominant for small β̂. Then, Dm is invertible for
small β̂ [18, Cor. 5.4] and (Dm)−1(β̂) = I + β̂Y(β̂), for some Y(β̂). Indeed,
Eq. (4.21) is completely analogous to (3.12); by the part of the proof of
Theorem 3.1 that follows (3.12) we deduce that the coefficients Bi

mn can be
determined for any N if β̂ < 2π. Then we have, for m ≥ 1, l ≥ 1 and β̂ < 2π,

Bi
mj = −Ra β̂

αmj

∑

n,k

Ai
mnMnk(Dm)−1

kj . (4.22)

By (2.243) and (4.13) we deduce

Ci
mk =

αmk

2πm

(
Ȧ−i

mk + αmkA
−i
mk

)
. (4.23)

We replace the coefficients (4.22) and (4.23) in (2.24)2. Then, we exploit the
linear independence of the functions of x by varying m, multiply by sinπjz
and integrate for z ∈ [0, 1]. Since

−β̂e−β̂zΠx = Ra β̂2e−β̂z
∑

i,m,j

2πm
αmj

∑

l,k

Mlk(Dm)−1
kj

(
−iAi

mlφ
−i
mj

)

and moreover
∫ 1

0
e−β̂z cosπkz sinπjz dz =

1
2

(
1 − e−β̂(−1)k+j

)

×
(

π(k + j)
π2(k + j)2 + β̂2

− π(k − j)
π2(k − j)2 + β̂2

)
,

then Eq. (2.24)2 reduces to the second-order differential system

Äi
mj + (1 + Pr)αmjȦ

i
mj + Pr

(
α2
mj − (2πm)2

Ra
αmj

)
Ai

mj

= PrRa β̂2
∑

n

Fn
mjA

i
mn, (4.24)
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where

Nkj =
(
1 − e−β̂(−1)k+j

)( π(j + k)
π2(j + k)2 + β̂2

+
π(j − k)

π2(j − k)2 + β̂2

)
,

Fn
mj =

(2πm)2

αmj

∑

k,l

1
αml

Mnk(Dm)−1
kl Nlj .

The initial data for system (4.24) are provided byAi
mn,0 and Ci

mn,0 by exploit-
ing (4.23) as an algebraic equation for Ai

mn,1 = Ȧi
mn(0). Then, the initial-

value problem for (4.24) has a unique solution; in turn, we determine the
coefficients Bi

mn and Ci
mn by (4.22), (4.23). Thus, we have shown the exis-

tence of a unique solution (τN ,ΠN ,ΨN ) to (2.24) corresponding to the initial
data (4.16).

The weak solution. To deduce the convergence of the sequence {(τN ,ΠN ,
ΨN )} to a weak solution, we need a uniform bound. We consider the estimate
(4.8), corresponding to the sequence above, where v is deduced by (4.14) with
u = 0; then we integrate with respect to t. The right-hand side is uniformly
bounded with respect to N because of (4.5) and of the assumptions on the
initial data. As a consequence, ‖ΨN‖ is uniformly bounded; the same holds
for ‖∇τN‖ and, by (4.4), also for ‖τN‖. A bound for ‖ΠN‖ follows by (3.8) by
means of inequality (3.6). By following a standard procedure [16, Theorem
3.2], the weak convergence of (a subsequence of) the approximate solutions to
a weak solution follows and, in turn, the estimates stated in the theorem. At
last, the time-continuity of the solution can be proved by parabolic embedding
[16, Remark 3.3], so that the initial data are attained in a pointwise sense.

The exponential decay. At last, we prove the exponential decay of the
L2-norm of E(t). We apply inequalities (4.3) and (4.4) to estimate (4.8) to
deduce

dE
dt

≤ (c0 − c1)E,

where c1 = min
{
2Pr, 5π2

}
. If Ra is sufficiently small, then c0 − c1 < 0. This

completes the proof of the theorem. !

We can now recover the instability result in [15], which is related to
normal mode solutions. We consider initial data τ0 and Ψ0 that only involve
one element of the basis, namely,

τ0(x, z) = Ai
mj,0ζ

i
mj(x, z), Ψ0(x, z) = C−i

mj,0ζ
i
mj(x, z), (4.25)

for some i ∈ {1, 2}, (m, j) ∈ N × N, Ai
mj0, C

−i
mj0 ∈ R. Clearly, for all Ra > 0

and 0 ≤ β̂ < 2π, Theorem 4.1 assures the existence and uniqueness of solu-
tions to the initial-boundary value problem (2.24), (4.25), (2.27), in the class
of solutions specified there. Because of (4.23), the linearity of the equations
of system (2.24) and in particular of (4.24), the τ and Ψ components of the
solution assume the form

τ(x, z, t) = Ai
mj(t)ζ

i
mj(x, z), Ψ(x, z, t) = C−i

mj(t)ζ
i
mj(x, z), (4.26)
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for some functions Ai
mj and C−i

mj . We shall see in the proof of Theorem 4.2
that Π has not such a simple expression; nevertheless it can be written as in
(4.13)2 with Bi

mn = B̄i
mnA

i
mj(t), for some B̄i

mn which does not depend on t.
By (4.23), this shows that the time behavior of the solution is analogous for
all components.

Before stating our last result, we make more precise what we mean by
instability. Roughly speaking, this means that the time coefficients above
(Ai

mj , for instance) do not decay. However, notice that in (2.7), we assumed
l = h for simplicity. A quick inspection to the normalization procedure (2.12)
shows that, still keeping notation as in (2.12), in the general case, we have
Ω0 = (0,ω) × (0, 1), for ω = l/h. Clearly, all previous results still hold
by replacing the terms cos(2πmx), sin(2πmx) in (3.3) with cos(2πωmx),
sin(2πωmx) and so on. While h is thought to be fixed, instability is referred
here to the existence of some l, and then ω, for which the corresponding co-
efficient Ai

mj does not decay. In this sense, we recall [8] in the classical case
β̂ = 0 instability occurs if Ra ≥ Racl, for

Ra cl
.=
27
4

π4. (4.27)

Theorem 4.2. For every sufficiently small β̂, there exists Ra∗(β̂) < Racl such
that problem (2.24), (4.25), (2.27) is unstable for Ra ≥ Ra∗(β̂).

Proof. As in the proof of Theorem 4.1 we fix N ∈ N; now, however, we study
the solutions (τN ,ΠN ,ΨN ) to system (2.24) corresponding to the initial data
given by (4.25). For simplicity, we drop once more the dependence on N .

By uniqueness of solutions, system (4.24) decouples; we denote by Ai
mj(t)

the only nonvanishing coefficient, which satisfies the differential equation

Äi
mj + (Pr+1)αmjȦ

i
mj + Pr

(
α2
mj − Ra

4π2m2

αmj

)
Ai

mj = PrRa β̂2Fj
mjA

i
mj ,

(4.28)

together with the initial conditions Ai
mn,0 and Ai

mn,1, where the latter is
deduced by the algebraic Eqs. (4.23) and (4.25), namely,

Ai
mj,1 = (−1)i

2πm
αmj

Ci
mj,0 − αmjA

i
mj,0.

In turn, Π is written as in (4.13)2 with

Bi
ml(t) = −Ra β̂

αml
Ai

mj(t)
∑

k≥1

Mjk(Dm)−1
kl , l ∈ N, (4.29)

and Bi
nl = 0 if n /= m. Notice that in (4.29), the time behavior does not

depend on l but only on j, so that Π and τ show the same dependence on t.
This also accounts for the name given to these solutions. Notice that τ0 does
not depend on N but the coefficient Ai

mj(t) does, because

Fj
mj = FjN

mj =
(2πm)2

αmj

N∑

k,l=1

1
αml

Mjk(Dm)−1
kl Nlj .
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Notice that the limit limN→∞ FjN
mj(β̂) is a real number for β̂ ≥ 0 because

of Theorem 4.1. Clearly, instability is equivalent to the existence of positive
roots of the characteristic polynomial of Eq. (4.28), because they give rise to
solutions Ai

mj(t) that grow exponentially in time. To proceed further, we need
some information on the term Fj

mj . We claim that (emphasizing dependence
on N)

(i) for every N , the function β̂ → FjN
mj(β̂) has a continuous extension to

β̂ = 0;
(ii) if β̂ ≥ 0 is sufficiently small, then F1N

m1(β̂) > 0 for every m and N ;
(iii) if β̂ is sufficiently small, then F1∞

m1 (β̂) := limN→∞ F1N
m1(β̂) > 0.

To prove these claims, we recall, as we pointed out in the proof of
Theorem 4.1, that (Dm)−1(β̂) = (I+β̂X)−1 = I+β̂Y(β̂) for β < 2π, where Y is
determined as a Neumann series and, hence, is nonsingular; as a consequence,
we have

Fj
mj(β̂) = F̃j

mj(β̂) +O(β̂), (4.30)

where

F̃j
mj =

(2πm)2

αmj

N∑

k=1

1
αmk

MjkNkj .

Then, we first prove the analogous claims for F̃j
mj ; let us call them (j)–(jjj).

First, we observe that the sequences {Mjk}k, {Nkj}k, {αmk}k behave as k−2,
k−1, k2, respectively, as k → ∞; as a consequence, the limit limN→∞ F̃jN

mj(β̂)
is a real number for β̂ > 0. Next, we notice that

Mjk(β̂)Nkj(β̂) = −πjgj+k(β̂)

×
(

1
π2(j + k)2 + β̂2

+
1

π2(j − k)2 + β̂2

)

×
(

π(j + k)
π2(j + k)2 + β̂2

+
π(j − k)

π2(j − k)2 + β̂2

)
, (4.31)

where

gj+k(β̂) =
(
1 − (−1)j+keβ̂

)(
1 − (−1)j+ke−β̂

)

=
{
4 + β̂2 +O(β̂4) if k + j is odd,
−β̂2 +O(β̂4) if k + j is even.

(4.32)

Above, the O(β̂) terms do not depend on j, k. If k /= j, then for β̂ → 0, we
have

Mjk(β̂)Nkj(β̂) ∼ −πjgj+k(0)
(

1
π2(j + k)2

+
1

π2(j − k)2

)

×
(

π(j + k)
π2(j + k)2

+
π(j − k)

π2(j − k)2

)
,
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while, if k = j, then

Mjj(β̂)Njj(β̂) ∼ 1
2
β̂2

(
1

4π2j2
+

1
β̂2

)
∼ 1

2
+O(β̂2).

An analogous argument was exploited in the proof of Theorem 4.1. Then, the
function β̂ → Mjk(β̂)Nkj(β̂) has a continuous extension to β̂ = 0 for any j, k
and this proves claim (j).

To prove claim (jj), we write
∑

k

1
αmk

M1k(β̂)Nk1(β̂)

= 2π2
∑

k

1
αmk

g1+k(β̂)

(
1

π2(1 + k)2 + β̂2
+

1
π2(1 − k)2 + β̂2

)
×

×



 π2(k2 − 1) − β̂2

(
π2(1 + k)2 + β̂2

)(
π2(1 − k)2 + β̂2

)



 . (4.33)

We write

ak(β̂) =
1

αmk
g1+k(β̂)bk(β̂)ck(β̂)

for the summand in the series on the right-hand side of (4.33), with obvious
notation. Then

ck(β̂) =
{
< 0 if k = 1, β̂ > 0,
> 0 if k ≥ 2, β̂ ∈ (0,

√
3π).

(4.34)

By (4.32) and (4.34) we see that the sign of ak is determined by the product
g1+kck: we have a1 = 1

αm1
g2b1c1 > 0 and a2k > 0, a2k+1 < 0 if k ≥ 1. We

claim that

g2k+1c2k + g2k+2c2k+1 > 0, k = 1, 2, . . . , for β̂ sufficiently small. (4.35)

Since the sequences {1/αmk} and {bk} are decreasing, by (4.35) we deduce
ak > 0 and then (jj). To prove (4.35) we can argue by exploiting (4.32);
otherwise, we show that

{ck(β̂)}k decreases if β̂ < 2.6970, (4.36)

which gives an explicit and uniform (on both m and N) threshold for β̂.
To prove (4.36) we denote γ = β̂2/π2 and consider the function f(s) =

s2−1−γ
((s+1)2+γ)((s−1)2+γ) . The function f decreases if 3γ2 + 2(s2 + 1)γ − (s2 −
1)2 < 0, i.e., if γ < h(s) = 1

3 (
√

(s2 + 1)2 + 3(s2 − 1)2 − (s2 + 1)). Since
mins∈[2,∞) h(s) = h(2) ∼ 0.7370, claim (4.36) follows; of course, more precise
bounds can be be given.

Claim (jjj) follows by (4.35) and a1 > 0.
Now we deduce claims (i)–(iii). Claim (i) follows by (4.30), claim (ii)

by Fj
mj(0) = F̃j

mj(0), claim (iii) by (jjj) since a1 > 0. This completely proves
the claims.
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We now observe that
(
Pr+1

2
αmj

)2

+ Pr
(
Ra

4π2m2

αmj
− α2

mj

)

= α2
mj

(
Pr−1

2

)2

+ PrRa
4π2m2

αmj
> 0,

because m ≥ 1. As a consequence, if β̂ is sufficiently small (this is required
by the fact that the terms Fj

mj have not a fixed sign for j ≥ 2), then the
roots of the characteristic polynomial of Eq. (4.28) are real and provided by
the formula

λ±
mj(β̂) = −Pr+1

2
αmj

±

√(
Pr+1

2
αmj

)2

+ Pr
(
Ra

4π2m2

αmj
− α2

mj +Ra β̂2Fj
mj(β̂)

)
.

(4.37)

We remark that the root λ+
mj(0) is (strictly) positive if and only if Ra 4π2m2−

α3
mj > 0, i.e., Ra > α3

mj/(4π2m2). Since the inequality is strict, then λ+
mj(β̂) >

0 for β̂ > 0 sufficiently small. Recall that we are looking for the smallest Ra
that leads to instability. Since (m, j) ∈ N × N, then

α3
mj

4π2m2
≥ α3

m1

4π2m2
= π4 (4m2 + 1)3

4m2
.

Here m runs in N; however, because of the remark on instability we made
just before the statement of Theorem 4.2, we can understand it as mω and,
as a consequence, as varying in (0,∞). Then, we have the sharp inequality
(writing again m for mω with a slight abuse of notation)

π4 (4m2 + 1)3

4m2
≥ min

s>0
π4 (4s2 + 1)3

4s2
=

27
4

π4,

and we have found the classical result that instability occurs if Ra > Ra cl.
A sharper instability inequality, whose threshold depends on β̂, follows

by exploiting claim (iii) above. Indeed, emphasizing again the dependence on
N , we have λN+

m1 (β̂) ≥ 0 if and only if

Ra 4π2m2 − α3
m1 +Ra β̂2αm1F

1N
m1(β̂) ≥ 0,

i.e., if and only if

Ra ≥ π4 (4m2 + 1)3

4m2 + β̂2(4m2 + 1)F1N
m1(β̂)

.

We can now pass to the limit for N → ∞ because of Theorem 4.1 and deduce
that instability surely occurs if

Ra > Ra 1
∗m(β̂) .= π4 (4m2 + 1)3

4m2 + β̂2(4m2 + 1)F1∞
m1 (β̂)

.

Since Ra 1
∗m(β̂) < Racl for any m, any of these Ra 1

∗m(β̂) provides a threshold
for instability that is sharper than the classical Racl. More precisely, however,
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we can define analogously Ra j
∗m for j = 1, 2, . . .; then the threshold of the

statement is simply

Ra ∗(β̂) = inf
m∈(0,∞)
j=1,2,...

Ra j
∗m(β̂).

!
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[13] Oberbeck, A.: Über die Wärmeleitung der Flus̈sigkeiten bei der
Beruc̈ksichtigung der Strömungen infolge von Temperaturdifferenzen.
Ann. Phys. Chem. 243, 271–292 (1879)



18 Page 24 of 24 A. Corli and A. Passerini MJOM
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