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Abstract: Some measurements have shown that the second-order exchange interaction is
non-negligible in ferromagnetic compounds whose microscopic interactions are described by means
of half-odd integer quantum spins. In these spin systems the ground state is either ferromagnetic
or antiferromagnetic when the bilinear exchange interaction is dominant. Instead, in ferromagnetic
systems characterized by bilinear and biquadratic exchange interactions of comparable magnitude,
the energy minimum occurs when spins are in a canting ground-state. To this aim, a one-dimensional
(1D) quantum spin chain and a two-dimensional (2D) lattice of quantum spins subjected to periodic
boundary conditions are modeled via the generalized quantum Heisenberg Hamiltonian containing,
in addition to the isotropic and short-range bilinear exchange interaction of the Heisenberg type,
a second-order interaction, the isotropic and short-range biquadratic exchange interaction between
nearest-neighbors quantum spins. For these 1D and 2D quantum systems a generalization of the
Mermin–Wagner–Hohenberg theorem (also known as Mermin–Wagner–Berezinksii or Coleman
theorem) is given. It is demonstrated, by means of quantum statistical arguments, based on
Bogoliubov’s inequality, that, at any finite temperature, (1) there is absence of long-range order and
that (2) the law governing the vanishing of the order parameter is the same as in the bilinear case
for both 1D and 2D quantum ferromagnetic systems. The physical implications of the absence of a
spontaneous spin symmetry breaking in 1D spin chains and 2D spin lattices modeled via a generalized
quantum Heisenberg Hamiltonian are discussed.

Keywords: ferromagnetic chain; 2D ferromagnetic lattice; spin Hamiltonian; double commutator;
Bogoliubov inequality; Hohenberg–Mermin–Wagner theorem; biquadratic exchange interaction;
continuous spin symmetry; canting ground-state

1. Introduction

The concept of long-range order is crucial to characterize phase transitions taking place in physical
systems as a function of temperature and described by means of an order parameter [1]. This aspect
acquires great importance for phase transitions undergoing in magnetic systems that represent the
majority of phase transitions in condensed matter physics. Importantly, the appearance of long-range
order is the manifestation of the occurrence of a phase transition and is related to a continuous or a
discrete broken symmetry in magnetic systems depending on the model (either quantum or classical)
used to describe the underlying physics of the phase transition (e.g., Ising model, Potts model, XY model,
Heisenberg model, etc.) [1]. Undoubtedly, the isotropic Heisenberg model, both in its original quantum
version and in its classical counterpart, represents one of the most powerful physical models applied
to magnetic systems undergoing phase transitions where short-range interactions prevail. Its isotropic
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Hamiltonian allows to easily catching the physics of the magnetic system under study. In this respect,
the Hohenberg–Mermin—Wagner theorem [2–4] (also known as Mermin–Wagner–Berezinskii or
Coleman theorem [5]) represents a hallmark in the field of condensed matter physics. Hohenberg [2]
used the Bogoliubov inequality [6] to show that, at finite temperature, there is no long-range order
in 1D and 2D Bose and Fermi systems. At the same time, Mermin and Wagner [3] considered the
case of spontaneous magnetization in the isotropic exchange Heisenberg model showing that there
cannot be a spontaneous symmetry breaking at finite temperature T for 1D and 2D ferromagnets with
either a ferromagnetic (F) or an antiferromagnetic (AF) ground-state. Mermin extended the results to
ferromagnets modeled via the classical Heisenberg model showing that a classical Bogoliubov-type
inequality holds using the Poisson brackets ruling out phase transitions for the ‘classical’ limit of
the Heisenberg model, i.e., in the infinite-spin limit [7]. A proof of the Hohenberg–Mermin–Wagner
theorem for systems with film geometries has been given two decades ago for the Heisenberg, Hubbard,
s–f and Kondo-lattice models by Gelfert and Nolting [8]. In particular, in this work Gelfert and
Nolting have proposed an extension of the validity of the Mermin–Wagner system to the periodic
Anderson model with film geometry and to a superconducting pairing mechanism in Hubbard
films [8] and later have reviewed different cases of absence of finite-temperature phase transitions
in low-dimensional many-body models [9]. The extension to an excitonic insulating state was made
by Walker who used the Bogoliubov inequality to rule out the possibility of a phase transition in 1D
and 2D systems [10]. More recently, a generalization of the Hohenberg–Mermin–Wagner theorem to
1D and 2D quantum ferromagnetic systems in the presence of long-range dipolar interactions was
made [11], while Loss et al. [12] proved the absence of spontaneous magnetic order in a system of
lattice spins coupled to itinerant and interacting charge carriers.

On the other hand, in the 1960s, Harris and Owen showed that it was necessary to add a biquadratic
exchange interaction to explain the energy level spectrum of Mn pairs in MgO compounds [13,14].
On this basis, Huang and Orbach investigated the biquadratic superexchange arising from a balancing
mechanism between elastic and exchange forces in Mn pairs [15]. In the 1970s, high temperature
series expansions for dipole and quadrupole susceptibilities for arbitrary lattices modeled by means of
isotropic bilinear and biquadratic pair interaction for spin-1 ferromagnetic systems were derived [16].
A theoretical model dealing with a unified exchange picture was developed for classical ferromagnets
in [17] showing that it is natural, for a complete phenomenological description of exchange interactions
between ferromagnetic films separated by a paramagnetic spacer layer, to include higher-order
contributions in addition to the usual first-order Heisenberg term. More recently, it has been shown
that the biquadratic interaction must be included phenomenologically to explain the phase diagram of
Fe ferromagnetic bilayers with easy axis anisotropy antiferromagnetically coupled via different spacers
(e.g., Cr, Al, . . . ) [18]. It has been proved, both experimentally and theoretically, that magnetizations
of the two Fe ferromagnets can be either in a canted ground-state due to the balancing between the
bilinear and the biquadratic exchange coupling or in a π/2 ground-state when the biquadratic exchange
interaction between ferromagnetic layers prevails over the bilinear one in systems with four-fold
anisotropy [18]. Later, the study of the excitation spectra of Mn2 dimers in CsMn0.28Mg0.72Br3 by
using the inelastic neutron scattering technique has confirmed that the biquadratic exchange stems
from a local exchange striction mechanism observed taking into account a magnetoelastic effect [19].
These recent findings and observations have stimulated several theoretical studies about the role
played by the biquadratic contribution on the dynamical properties of ferromagnetic films coupled via
antiferromagnetic Heisenberg exchange coupling.

On this basis, it is interesting to extend the Hohenberg–Mermin–Wagner theorem to quantum
systems modeled via a generalized quantum Heisenberg Hamiltonian including both isotropic bilinear
and biquadratic exchange short-range interactions. This is done for the case of a 1D chain of half-odd
integer spins and for a 2D square lattice system of half-odd integer spins with periodic boundary
conditions. First, it is rigorously proved that the generalized Hamiltonian modeling these systems is
invariant under the spin rotation generator showing that it commutes with the spin rotation generator.
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Then, it is rigorously shown, according to thermodynamics arguments, that there is absence of
long-range order at finite T (spontaneous magnetization in ferromagnets and sublattice magnetization
in antiferromagnets) in 1D and 2D magnetic systems with both bilinear and biquadratic exchange terms.
For 1D quantum spin chains and 2D quantum spin lattices it is proved that the order parameter vanishes
as the external magnetic field goes to zero following the same law of the Hohenberg–Mermin–Wagner
theorem where only the bilinear exchange term was included in the quantum Heisenberg Hamiltonian.
Hence, there is no spontaneous spin symmetry breaking at any T in quantum spin systems modeled
by means of a generalized quantum Heisenberg Hamiltonian including the biquadratic exchange
interaction. This result is not in conflict with the occurrence of phase transitions at finite T proposed by
Stanley and Kaplan for 2D lattices with nearest-neighbor ferromagnetic Heisenberg interactions [20]
and marked by a divergence of the susceptibility [21]. The proof of the existence of such a phase
transition was given by Frölich and Spencer [22] who discussed the Berezinski–Kosterlitz–Thouless
transition in a class of 2D models including the plane rotator and the Coulomb gas. This proof was
based on the general method for demonstrating the existence of phase transitions in anisotropic lattice
spin systems developed by Frölich and Lieb [23]. It is shown that the vanishing of the order parameter
at any T not only rules out either the F or the AF ground-state but also the canting (C) ground-state
occurring when the biquadratic exchange interaction is comparable to the bilinear one. The canting
angle is the angle forming between adjacent spins that reduces its amplitude with increasing the
amplitude of the external magnetic field. This is an important result because a novel ground-state
giving no long-range order is added to the phase diagram of a quantum ferromagnet.

Note that, in this respect, there is a proof given by Thorpe in the 70s who demonstrated the
absence of long-range order at finite T in 1D and 2D ferromagnetic lattices modeled by a generalized
quantum Heisenberg Hamiltonian containing isotropic spin-spin exchange interactions to all orders [24].
This proof was obtained by using the Bogoliubov’s inequality and developing a mathematical approach
based on writing terms of the spin equivalent of the spherical harmonics. A few years later, Krzemiński
used the same mathematical method and came to similar conclusions demonstrating the absence of
long-range order also in multi-sublattice systems [25]. The absence of off-diagonal long-range order
and of long-range order was demonstrated in 2D ferromagnetic lattices described via the Heisenberg
model by Suzuki [26] who also showed that, in systems with higher spins leading to a different
definition of order parameter, off-diagonal long-range order can exist and the order parameter can
remain finite. Finally, the absence of spontaneous breaking of continuous and internal symmetries,
of crystalline ordering in 2D systems and uniqueness of equilibrium states was proved by Frölich
and Pfister [27] according to a unified approach based on Araki’s relative entropy concept. However,
for the systems studied in [24–27], the analysis was mainly mathematical and the physical effects of the
biquadratic exchange interaction were not investigated.

2. Generalized Quantum Heisenberg Hamiltonian

In this Section, the absence of long-range order in a 1D quantum chain of integer spins and in a
2D lattice of N quantum spins modeled via the generalized Heisenberg model that includes both the
isotropic bilinear and biquadratic short-range exchange interactions is rigorously proved. The proof
of the generalization of the Hohenberg–Mermin–Wagner theorem, valid for quantum ferromagnetic
systems with either ferro- or antiferromagnetic coupling in 1D and 2D [2,3], to the case of a generalized
quantum Heisenberg Hamiltonian is given by using the Bogoliubov’s inequality. The generalization of
the Hohenberg–Mermin–Wagner theorem is preceded by the proof of the rotational invariance of the
generalized quantum exchange Hamiltonian under the spin rotation operator.

2.1. Generalized Quantum Heisenberg Hamiltonian: Bilinear and Biquadratic Exchange Interactions

In this subsection, the key physical quantities that can be applied to both 1D and 2D quantum
ferromagnetic systems of spins modeled via a generalized quantum Heisenberg Hamiltonian are



Symmetry 2020, 12, 2061 4 of 15

defined. First, let us define a spin-density wave, a complex quantity characterized by a wave vector q
propagating along the z-direction by means of the operator [28]:

Sz
q =

N−1∑
i=0

ei q·RiSz
i (1)

with Ri the ith position vector with the index i = 0,1, . . . N − 1 ranging over the N spins and Sz
i the

z-component of the spin quantum operator Si. The generalized quantum Heisenberg Hamiltonian for
half-odd integer spin chains takes the form:

H =
1
2

∑
<i, j>

J(1)i j Si·S j +
1
2

∑
<i, j>

J(2)i j

(
Si·S j

)2
− Bext Sz

q (2)

where, on the second member, the first term is the isotropic bilinear exchange term, the second term
is the isotropic biquadratic exchange term and the last term is the contribution proportional to the
external magnetic field. Specifically, ∀ ij pair of nearest-neighbors Jij

(1) is the bilinear exchange constant
(in energy units) with Jij

(1) = Jji
(1) (Jij

(1) >0 (<0) corresponds to the AF (F) ground-state for the quantum
Heisenberg Hamiltonian) and Jij

(2), either > 0 or < 0, is the biquadratic exchange constant (in energy

units) with Jij
(2) = Jji

(2). Both Jij
(1) and Jij

(2) have the lattice translational symmetry,
∑
〈i, j〉

is the sum

over the nearest-neighbours j ∀ i with the factor 1
2 to not count twice the interaction, Si = (Si

x, Si
y,

Si
z) and Sj = (Sj

x, Sj
y, Sj

z) are the spin operators and Bext >0 the amplitude of the external magnetic
field (in energy units). Note that, unlike the usual convention, in the Hamiltonian of Equation (2)
the minus sign in front of both the bilinear and biquadratic exchange terms has been incorporated in
Jij

(1) and Jij
(2), respectively so that the signs of Jij

(1) and Jij
(2) must be taken as opposite to those of the

usual convention.
The condition for short-range interactions on the bilinear and biquadratic terms reads:

J
(1)

=
1

2N

∑
<i, j>

∣∣∣∣J(1)i j

∣∣∣∣ ∣∣∣Ri −R j
∣∣∣2 < ∞ J

(2)
=

1
2N

∑
<i, j>

∣∣∣∣J(2)i j

∣∣∣∣ ∣∣∣Ri −R j
∣∣∣2 < ∞ (3)

must be fulfilled. The corresponding spin-density wave along the x-direction characterized by a wave
vector k is:

Sx
k =

N−1∑
i=0

ei k·RiSx
i (4)

and the spin-density wave along the y-direction characterized by a wave vector k+ q takes the form:

Sy
k+q =

N−1∑
i=0

ei (k+q)·RiSy
i (5)

From the Schwartz inequality, it is possible to derive the Bogoliubov inequality. This inequality
represents the starting point to show the absence of long-range order at any finite T for any 1D and
2D quantum spins magnetic system modeled by a generalized quantum Heisenberg Hamiltonian.
The Bogoliubov inequality reads [28]:∣∣∣∣∣〈[Sx

−k, Sy
k+q

]
〉

∣∣∣∣∣2 ≤ N
kBT
〈Sy

k+qSy
−k−q〉 D(k) (6)

where kB is the Boltzmann constant, T is the temperature,
[
Sx
−k, Sy

k+q

]
is the commutator between

x-and y-spin density waves of wave vectors −k and k + q, respectively, 〈Sy
k+qSy

−k−q〉 is the equal-time
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correlation function of the y-component of the spin density wave operator with < . . . > denoting
the statistical (thermal) average, D(k) = 1

N <
[
Sx
−k,

[
H , Sx

k

]]
> is the double commutator defined

as a statistical average. The double commutator (in energy units) includes the Hamiltonian of the
generalized Heisenberg model and the spin-density wave operator giving thus information about the
dynamical properties of the quantum ferromagnetic system under study.

By means of Equation (1) the magnetization per site that plays the role of a complex order
parameter for the generalized 1D and 2D quantum Heisenberg Hamiltonian H = H (Bext) can be
defined as a statistical (thermal) average of the spin-density wave Sz

q along the z-direction divided by
the number N of quantum spins [28]:

mq =
1

N Z
Tr

[
e−H(Bext)/(kBT)Sz

q

]
(7)

where Tr is the trace and Z = Tr
[
e−H(Bext)/kBT

]
is the partition function. The order parameter defined in

Equation (7) is a key quantity to study phase transitions. It measures the degree of order of a physical
system undergoing a phase transition. It can be defined for both a classical and a quantum system
as in the present case. It is thus crucial to start from this fundamental physical quantity to prove the
absence of long-range order. Equation (7) expresses a statistical (thermal) average of the spin density
wave propagating along the z-direction that represents a low-energy ordered state of the quantum spin
system. It can be regarded as the average z-component of the spin operator expressing in this case
the net “magnetization” per site in a F state, AF state or C ground-state. For a ferromagnet the net
“magnetization” refers to the whole lattice, while for an antiferromagnet it refers to each sublattice.
The order parameter is in general associated with the ordered phase resulting from a symmetry
breaking phase transition but it can be defined also in phase transitions with no symmetry breaking.

The order parameter mq becomes a real quantity in quantum lattices that are symmetric under
reflection about the origin so that the operator Sz

q is Hermitian. Owing to the definition of Equation (7),
the commutator between the x and the y spin-density wave components defined by Equations (4) and (5),
respectively reads:

〈

[
Sx
−k, Sy

k+q

]
〉 = i 〈Sz

q〉 = i N mq (8)

Explicitly, the equal-time correlation function of the y-components of the spin density wave
operators reads:

〈Sy
k+q Sy

−k−q〉 = N Syy(k + q) (9)

with:
Syy(k + q) = lim

Bext→0+

[ 1
N Z

Tr
[
e−H(Bext)/(kBT)Sy

k+qSy
−k−q

]]
(10)

In the following, basing on Equations (1)–(6), it is first proved the absence of long-range order
for a 1D quantum Heisenberg chain of spins and then for a 2D quantum Heisenberg lattice of spins
(with either ferro-or antiferromagnetic bilinear exchange interaction) in the presence of a biquadratic
interaction (generalized quantum Heisenberg Hamiltonian).

2.2. Rotational Symmetry and Invariance of the Generalized Quantum Exchange Hamiltonian

In this subsection, the rotational symmetry and the invariance of the generalized quantum
exchange Hamiltonian under a continuous spin rotation operation is proved. This Hamiltonian
includes both the isotropic bilinear and biquadratic exchange interactions for vanishing external
magnetic field. First, we consider the case of the 1D quantum chain of spins.

Let us consider a chain of N integer spins (one-dimensional quantum system) on a 1D spin
lattice with each site characterized by a spin operator Si (i = 0,1,2, . . . , N − 1) and characterized by
nearest-neighbors interactions. The generalized quantum Heisenberg Hamiltonian for a 1D quantum
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chain of spins is written starting from the general Equation (2) by setting j = i + 1 with i + 1 the
nearest-neighbor of the ith spin and takes the form:

H
1D =

N−1∑
i=0

J(1)i i+1Si·Si+1 +
N−1∑
i=0

J(2)i i+1(Si·Si+1)
2
− Bext Sz

q (11)

The proof consists of demonstrating that the spin rotation generator commutes with the generalized
exchange Hamiltonian of the 1D quantum chain subjected to the boundary condition SN = S0:

H
1D
exch = H

(1) 1D
exch +H

(2) 1D
exch (12)

withH (1) 1D
exch =

N−1∑
i=0

J(1)i i+1Si·Si+1 andH (2) 1D
exch =

N−1∑
i=0

J(2)i i+1(Si·Si+1)
2, namely

[
Sα, H1D

exch

]
= 0 (13)

being the spin rotation generator defined, ∀α spin component, as:

Sα =
N−1∑
i=0

Sαi (14)

with α = x,y,z. The rotation operator in spin space or spin rotation operator UR(n̂,θ) expanded to the
first order for small angular rotations is defined via n̂ denoting the rotation axis given by the direction
of n̂ and by means of a rotation angle θ as:

UR(n̂,θ)≈ 1− i n̂·S, n̂ =
(
nx, ny, nz

)
, S = (Sx, Sy, Sz) (15)

The angle θ parametrizes the rotations in a unique way for the values θ < 2 π.
Let us prove that the generalized quantum Heisenberg Hamiltonian is invariant under a continuous

O(3) rotational symmetry in spin space. As already anticipated in Equation (13), it is enough to prove
the commutativity of the generalized exchange Hamiltonian with the spin rotation generator Sα (∀ α
spin component) appearing in the rotation operator UR(n̂,θ) of Equation (15) and the proof is general
(for more details about this point, see Section 3).

The commutator of Equation (13) can be decomposed into two commutators C1 and C2, namely[
Sα, H1D

exch

]
= C1 + C2. Here, C1 =

[
Sα,H (1) 1D

exch

]
and C2 =

[
Sα,H (2) 1D

exch

]
. Substituting Sα expressed by

Equation (14) in the commutator C1 we get: C1 =
N−1∑
i=0

N−1∑
j=0

{
J(1)j j+1

([
Sαi δi j, S j·S j+1

]
+

[
Sαi δi j+1, S j·S j+1

])}
.

From the property of the Kronecker delta, viz. δi j = 1 for i = j and δi j = 0 for i , j and δi j+1 = 1
for i = j + 1 and δi j+1 = 0 for i , j + 1:

C1 =
N−1∑
j=0

{
J(1)j j+1

([
Sαj , S j·S j+1

]
+

[
Sαj+1, S j·S j+1

])}
(16)

Taking into account that
[
Sαj+1, S j·S j+1

]
= −

[
Sαj , S j·S j+1

]
is fulfilled ∀ α, it is the commutator C1

= 0.

Analogously C2 =
N−1∑
i=0

N−1∑
j=0

{
J(2)j j+1

([
Sαi δi j,

(
S j·S j+1

)2
]
+

[
Sαi δi j+1,

(
S j·S j+1

)2
])}

can be written as:

C2 =
N−1∑
j=0

{
J(2)j j+1

([
Sαj ,

(
S j·S j+1

)2
]
+

[
Sαj+1,

(
S j·S j+1

)2
])}

(17)
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The two commutators inside the round parentheses on the right-hand side can be rewritten,
according to a commutator identity, as:[

Sαt ,
(
S j·S j+1

)2
]
=

[
Sαt , S j·S j+1

] (
S j·S j+1

)
+

(
S j·S j+1

)[
Sαt , S j·S j+1

]
(18)

with t = j, j + 1.

Taking into account that, according to Equation (18),
[
Sαj+1,

(
S j·S j+1

)2
]
= −

[
Sαj ,

(
S j·S j+1

)2
]
∀ α,

it is the commutator C2 = 0. Hence, it has been proved that
[
Sα, H1D

exch

]
= 0 ∀ α. This implies the

invariance of the generalized Heisenberg exchange Hamiltonian under the rotation operation in the
spin space:

H
′ 1D
exch = H 1D

exch (19)

being H ′1D
exch = UR H

1D
exch U−1

R . Therefore, it has been rigorously proved that, in a quantum chain
modeled by a generalized exchange Hamiltonian, the second-order biquadratic term does not break
the rotational invariance of the exchange Hamiltonian. Straightforwardly, it can be shown that the
inclusion of the energy term proportional to the external magnetic field or of an uniaxial anisotropy
term breaks the rotational symmetry. This occurs because these terms fix a preferential spatial direction
along which the spins of the 1D chain tend to align so that

[
Sα, H1D

]
, 0. Therefore, the external

field and the anisotropy fields are breaking symmetry terms of the generalized exchange Hamiltonian
acting as ordering fields.

Analogously to the 1D case, it can be proved the invariance of the 2D generalized exchange
Hamiltonian for a 2D quantum lattice of spins subjected to the periodic boundary conditions in the
presence of the isotropic biquadratic exchange interaction. The 2D generalized exchange Hamiltonian
for a quantum lattice can be written in the explicit form as:

H
2D
exch =

N−1∑
i=0

z/2∑
j=1

J(1)i j Si·S j +
N−1∑
i=0

z/2∑
j=1

J(2)i j

(
Si·S j

)2
(20)

where z is the number of nearest neighbors with z = 1,2, . . . depending on the lattice studied and the
sum is over z/2 to not count twice the interaction.

Starting from Equation (20) and following the same steps as for the 1D case it can be shown that:[
Sα, H2D

exch

]
= 0 (21)

that implies the invariance of the generalized exchange Hamiltonian for the 2D quantum lattice of N
spins under the rotation operation in the spin space:

H
′2D
exch = H2D

exch (22)

2.3. Absence of Long-Range Order for a 1D Chain of Spins Modeled via a Generalized Quantum
Heisenberg Hamiltonian

In this subsection, it is demonstrated the absence of long-range order for a 1D chain of spins
described by the quantum Heisenberg Hamiltonian including both bilinear and biquadratic nearest
neighbors exchange interactions extending the proof given by Mermin and Wagner for the bilinear [3].
The Bogoliubov inequality of Equation (6) takes the compact form:∣∣∣mq

∣∣∣2 ≤ 1
kBT

Syy(k + q) D1D(k) (23)
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with the double commutator D1D(k) given by:

D1D(k) =

1
N


<

N−1∑
i=0

e−i k·RiSx
i ,

N−1∑
j=0

J(1)j j+1S j·S j+1 +
N−1∑
j=0

J(2)j j+1

(
S j·S j+1

)2
,

N−1∑
l=0

ei k·RlSx
l δl j+1

−
Bext

[
N−1∑
i=0

e−i k·RiSx
i ,

[
Sz

q,
N−1∑
i=0

ei k·RiSx
i

]]
>


(24)

with δl j+1 = 1 for l = j + 1 and δl j+1 = 0 for l , j + 1. The double commutator can be decomposed

as D1D(k) = D(1)
1D (k) + D(2)

1D (k) + DBext
1D (k) with D(1)

1D (k) (D(2)
1D (k)) related to the bilinear (biquadratic)

exchange contribution and DBext
1D (k) related to the term proportional to the external magnetic field

contribution. In compact form:

D(1)
1D (k) =

1
N

N−1∑
i, j=0

ei k·(R j+1−Ri) J(1)j j+1〈
[
Sx

i ,
[
S j·S j+1, Sx

j+1

]]
> (25)

D(2)
1D (k) =

1
N

N−1∑
i, j=0

ei k·(R j+1−Ri) J(2)j j+1〈

[
Sx

i ,
[(

S j·S j+1
)2

, Sx
j+1

]]
> (26)

and:

DBext
1D (k) = −

1
N

Bext <

N−1∑
i=0

e−i k·RiSx
i ,

Sz
q,

N−1∑
i=0

ei k·RiSx
i


 > (27)

where the rule <A + B + . . . > = <A> + <B>+ . . . has been applied. After calculating the inner
commutator on the second member of Equation (25) we get:

D(1)
1D (k) = i

1
N

N−1∑
i, j=0

ei k·(R j+1−Ri)〈

[
Sx

i δi ( j, j+1),
(
Sz

jS
y
j+1 − Sy

j Sz
j+1

)]
〉 (28)

Applying a commutator identity similar to Equation (18) to the inner commutator on the second
member of Equation (26), after straightforward algebra the commutator takes the form:[(

S j·S j+1
)2

, Sx
j+1

]
=

((
Sz

j+1

)2
−

(
Sy

j+1

)2
)[

Sx
j ,

(
Sz

j

)2
]
−

((
Sz

j

)2
−

(
Sy

j

)2
)[

Sx
j+1,

(
Sz

j+1

)2
]
+

Sx
j S

x
j+1

[
S j·S j+1, Sx

j+1

]
+

[
S j·S j+1, Sx

j+1

]
Sx

j S
x
j+1

(29)

with
[
Sx

l ,
(
Sz

l

)2
]
= −i

(
Sy

l Sz
l + Sz

l Sy
l

)
l = j, j + 1. Hence:

D(2)
1D (k) = i

1
N

N−1∑
i, j=0

ei k·(R j+1−Ri)〈

[
Sx

i δi ( j, j+1), f
(
Sx

j , Sx
j+1, Sy

j , Sy
j+1, Sz

j , Sz
j+1

)]
> (30)

with:

f
(
Sx

j , Sx
j+1, Sy

j , Sy
j+1, Sz

j , Sz
j+1

)
= Sx

j S
x
j+1

(
Sz

jS
y
j+1 − Sy

j Sz
j+1

)
+

(
Sz

jS
y
j+1 − Sy

j Sz
j+1

)
Sx

j S
x
j+1−((

Sz
j+1

)2
−

(
Sy

j+1

)2
)(

Sy
j Sz

j + Sz
jS

y
j

)
+

((
Sz

j

)2
−

(
Sy

j

)2
)(

Sy
j+1Sz

j+1 + Sz
j+1Sy

j+1

) (31)
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After calculating the inner commutator on the right side of Equation (27) yields:

DBext
1D (k) = −

i
N

Bext <
N−1∑
i=0

ei q ·Ri
[
Sx

i , Sy
i

]
> (32)

We get, via the calculation of the commutator, DBext
1D (k) = 1

N Bext <
N−1∑
i=0

ei q ·RiSz
i >=

1
N Bext < Sz

q >=

Bext
∣∣∣mq

∣∣∣ where the order parameter has been taken in modulus to represent a real quantity (see also
the following arguments that justify this choice). As the commutator between two spin operators on
different sites (i , j,j + 1) is zero, we get from Equation (28) for i = j and i = j + 1:

D(1)
1D (k) =

1
N


N−1∑
j=0

J(1)j j+1

(
cos

[
k·

(
R j −R j+1

)]
− 1

)
〈Sy

j Sy
j+1 + Sz

jS
z
j+1〉

 (33)

where the complex exponential of Equation (28) has been replaced by the cosine function due to Ji i+1
(1) = Ji+1 i

(1). Analogously, from Equations (30) and (31) for i = j and i = j + 1, by applying some
commutator identities, we obtain:

D(2)
1D (k) =

1
N


N−1∑
j=0

J(2)j j+1


(
cos

[
k·

(
R j −R j+1

)]
− 1

)


(
〈Sx

j S
x
j+1

(
Sy

j Sy
j+1 + Sz

jS
z
j+1

)
+

(
Sy

j Sy
j+1 + Sz

jS
z
j+1

)
Sx

j S
x
j+1〉

)
〉+

2


〈

((
Sz

j

)2
−

(
Sy

j

)2
)((

Sz
j+1

)2
−

(
Sy

j+1

)2
)
〉+

〈

(
Sy

j Sz
j + Sz

jS
y
j

)(
Sy

j+1Sz
j+1 + Sz

j+1Sy
j+1

)
〉








(34)

where the rule <A ± B + . . . > = <A> ± <B> + . . . has been applied.
Hence, the double commutator D1D (k) can be bounded by the following real and positive quantity:

D1D(k) < Bext
∣∣∣mq

∣∣∣+ |k|2
2 N

N−1∑
j=0

∣∣∣∣J(1)j j+1

∣∣∣∣∣∣∣R j −R j+1
∣∣∣2∣∣∣〈S j·S j+1〉

∣∣∣+
|k|2
2 N

N−1∑
j=0

∣∣∣∣J(2)j j+1

∣∣∣∣∣∣∣R j −R j+1
∣∣∣2〈(S j·S j+1

)2
〉 ≤ Bext

∣∣∣mq
∣∣∣+ S (S + 1) J

(1)
|k|2 + S2 (S + 1) 2 J

(2)
|k|2

(35)

where |k|2 = k2, |Rj − Rj+1|2 = (Rj − Rj+1)2, |Rj − Rj+1| is the spin nearest-neighbors distance,

J
(1)

= 1
N

N−1∑
j=0

∣∣∣∣J(1)j j+1

∣∣∣∣ ∣∣∣R j −R j+1
∣∣∣2 < ∞ and J

(2)
= 1

N

N−1∑
j=0

∣∣∣∣J(2)j j+1

∣∣∣∣ ∣∣∣R j −R j+1
∣∣∣2 < ∞, two conditions for

short-range exchange interactions.
In the first inequality (35) a small and positive upper bound to the difference (cos[k·(Rj − Rj+1)]

− 1) (Equations (33) and (34)), that is at most equal to zero, proportional to |k|2/2|Rj − Rj+1|2

has been chosen within the framework of short-range exchange interactions. Hence, the upper
bound of the first inequality can be understood taking into account that, for the bilinear

term, it is D(1)
1D (k) < |k|2

2 N

N−1∑
j=0

∣∣∣∣J(1)j j+1

∣∣∣∣∣∣∣R j −R j+1
∣∣∣2∣∣∣〈S j·S j+1〉

∣∣∣, where the last factor comes from∣∣∣∣〈Sy
j Sy

j+1 + Sz
jS

z
j+1〉

∣∣∣∣ ≤ ∣∣∣〈S j·S j+1〉
∣∣∣ , while, following a similar argument, for the biquadratic term, it

is D(2)
1D (k) < |k|2

2 N

N−1∑
j=0

∣∣∣∣J(2)j j+1

∣∣∣∣∣∣∣R j −R j+1
∣∣∣2〈(S j·S j+1

)2
〉.

The upper bounds of the second inequality of Equation (35) are, for D(1)
1D (k), the maximum

eigenvalues of the operators (Sj + Sj+1)2 and Si
2 related to the bilinear interaction so that∣∣∣〈S j·S j+1〉

∣∣∣ ≤ S(S + 1), while, for D(2)
1D (k), the maximum eigenvalues of the operators (Sj + Sj+1)4
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and Si
4 related to the biquadratic contribution so that 〈

(
S j·S j+1

)2
〉 ≤ S2(S + 1)2. Taking into account

Equations (23) and (35), the following strict inequality in terms of the order parameter holds:∣∣∣mq

∣∣∣2 < 1
kBT

Syy(k + q)
{
Bext

∣∣∣mq
∣∣∣+ S (S + 1) J

(1)
|k|2 + S2 (S + 1) 2 J

(2)
|k|2

}
(36)

By summing over the wave vectors of the 1D Brillouin zone (sum of momenta) and by taking into

account that S(S + 1) ≥ 1
N

N−1∑
i=0
〈(Si

y)2
〉 = 1

N
∑
k

Syy(k + q), the inversion of the inequality yields:

S(S + 1) >
kBT

∣∣∣mq

∣∣∣2
N

∑
k

 1

Bext
∣∣∣mq

∣∣∣2 + S (S + 1) J
(1)
|k|2 + S2 (S + 1) 2 J

(2)
|k|2

 (37)

Converting, in the thermodynamic limit (N→∞), the sum of momenta into a 1D integral yields:

S(S + 1) >
kBT L

2π

∣∣∣mq

∣∣∣2 k∫
0

dk

Bext
∣∣∣mq

∣∣∣+ S (S + 1) J
(1)
|k|2 + S2 (S + 1) 2 J

(2)
|k|2

(38)

where L is the length of the 1D unit cell and k < k1BZ with k1BZ the edge wave vector of the first Brillouin
zone (1BZ). The Mermin and Wagner result [3,28] is easily obtained by setting J(2)j j+1 = 0 ∀ j implying

J
(2)

= 0.
We now consider the general case J(1)j j+1 , 0 and J(2)j j+1 , 0 with 2 J(2)i i+1 >

∣∣∣∣J(1)i i+1

∣∣∣∣ that can occur for
quantum chains characterized by a generalized exchange Hamiltonian. This case corresponds to a C
ground state where adjacent spins form any angles ϕi i+1 one over the other. By solving the integral of
Equation (38) and by inverting the inequality leads to:

∣∣∣mq
∣∣∣ 3

2 <
2π S(S + 1)

3
2

kBT L

((
J
(1)

+ S(S + 1)J
(2)

)
Bext

) 1
2

arctan

k
(
S(S + 1)

(
J
(1)

+ S(S + 1)J
(2)

)
/

(
Bext

∣∣∣mq
∣∣∣)) 1

2
 (39)

In the limit of small Bext arctan(x) with x = k
(
S(S + 1)

(
J
(1)

+ S(S + 1)J
(2)

)
/
(
Bext

∣∣∣mq
∣∣∣)) 1

2
is replaced

by π/2 yielding: ∣∣∣mq
∣∣∣ < f1D

(
J
(1)

, J
(2)

, T, S
)
(Bext)

1
3 (40)

where:

f1D

(
J
(1)

, J
(2)

, T, S
)
=

2
4
3 (S(S + 1))

(
J
(1)

+ S(S + 1)J
(2)

) 1
3

(kBT)
2
3 L

2
3

(41)

with J
(1)

= J
(1)

(N), J
(2)

= J
(2)

(N).
The power law for the order parameter of Equation (40) referred to the generalized quantum

Heisenberg Hamiltonian is the same as for the 1D Heisenberg Hamiltonian characterized solely by the
bilinear term and the coefficient f 1D includes in addition the dependence on the biquadratic term.

Starting from the double commutator of the 2D ferromagnetic lattice system:

D2D(k) =
1
N
<

N−1∑
i=0

e−i k·RiSx
i ,


N−1∑

j=0

z/2∑
l=1

J(1)j l S j·Sl +
N−1∑
j=0

z/2∑
l=1

J(2)j l

(
S j·Sl

)2
− Bext Sz

q

,
N−1∑
l=0

ei k·RlSx
l


 > (42)
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and following, for the 2D quantum ferromagnetic lattice, the same steps done for the 1D chain of
quantum spins, the inequality of Equation (38) is replaced by:

S(S + 1) >
kBT A

(2π)2

∣∣∣mq

∣∣∣2 k∫
0

k dk

Bext
∣∣∣mq

∣∣∣+ S (S + 1) J
(1)
|k|2 + S2 (S + 1) 2 J

(2)
|k|2

∫ 2π

0
dϕ (43)

where A is the area of the surface of the generic 2D spin lattice and the integration is over a circular
region (ϕ is the azimuthal angle) of the 2D reciprocal lattice of radius k with k < k1BZ. Here, k1BZ is the
edge wave vector of the 1BZ zone. The integration on the second member and the inversion of the
inequality yields: ∣∣∣mq

∣∣∣2 < 4π
S2(S + 1)2

(
J
(1)

+ S(S + 1)J
(2)

)
kBTA ln

1 + k
2 S(S+1)

(
J
(1)

+S(S+1)J
(2)

)
Bext|mq|


(44)

In the limit of small Bext, ln(1 + x), with x = C/Bext and C = k
2 S(S+1)

(
J
(1)

+S(S+1)J
(2)

)
|mq|

, is approximated

by ln x being x >> 1. For x→∞, ln (C/Bext)→∞ and can be replaced by |ln(C Bext)| having the same
behavior. By virtue of these approximations, relation of Equation (44) can be rewritten as:∣∣∣mq

∣∣∣ < f2D

(
J
(1)

, J
(2)

, T, S
) 1(∣∣∣ln(CBext)

∣∣∣) 1
2

(45)

where:

f2D

(
J
(1)

, J
(2)

, T, S
)
=

2(π)
1
2 S(S + 1)

(
J
(1)

+ S(S + 1)J
(2)

) 1
2

(kBT)
1
2 A

1
2

(46)

The law expressing the dependence on Bext given by Equation (45) is the same as for the 2D
quantum Heisenberg Hamiltonian characterized solely by the bilinear term and the only effect of the
biquadratic term is to change the coefficient C in front of Bext and the coefficient f 2D.

According to the inequalities of Equations (40) and (45) valid for 1D and 2D quantum ferromagnetic
systems, respectively, it is always, both for the 1D quantum chain and 2D spin lattice with N spins,
∀ T , 0:

lim
N→∞

[
lim

Bext→0+

[∣∣∣mq(Bext, N)
∣∣∣]] = 0 (47)

where the outer limit refers to the thermodynamic limit. The result of Equation (47) means that there is
no long-range order at any T , 0 for dimensionality d = 1,2 in quantum spin ferromagnetic systems
whose exchange Hamiltonian includes both the isotropic bilinear and biquadratic exchange terms.
According to the result of Equation (47), F ground-state, AF ground-state, and C ground-state arising
either from F or AF ground-state, appearing in quantum spin ferromagnetic systems modeled by a
generalized quantum Heisenberg Hamiltonian are ruled out at any finite T for d ≤ 2.

In this way, a generalization of the Hohenberg-Mermin-Wagner theorem has been obtained
showing that, for 1D and 2D ferromagnetic quantum spin systems modeled via a generalized quantum
Heisenberg Hamiltonian, the order parameter: (1) vanishes as the external magnetic field tends to zero
and (2) fulfils the same laws as for the quantum Heisenberg Hamiltonian characterized by only the
bilinear exchange term. Taking into account the underlying physics, it is demonstrated that there is
absence of long-range order at any T , 0 when the quantum spins are also in a C ground-state and,
also in this case, there is no spontaneous spin symmetry breaking. The absence of long-range order
in these systems does not exclude the occurrence of any kinds of phase transitions as found in [20]
at finite T characterized by the divergence of the susceptibility for vanishing external magnetic field
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analogously to what occurred for the Mermin and Wagner case. Finally, note that the continuous
rotational symmetry of the generalized quantum exchange Hamiltonian not only implies its spatial
invariance under the spin rotation operation for the 1D and 2D systems, respectively (Equations (19)
and (22)), but also the absence of spontaneous spin symmetry breaking.

3. Results and Discussion

In this Section, the main results obtained for the 1D and 2D systems are discussed in more detail.
These results are related to the biquadratic interaction that has been incorporated into the exchange
Hamiltonian leading to a generalized second-order exchange Hamiltonian. The necessity of invoking
a biquadratic exchange interaction, in addition to a bilinear exchange interaction, to explain the energy
level spectrum of Mn pairs in MgO [13] led to the investigation of the origin of this novel interaction in
terms of superexchange interaction [15,29,30]. From the exchange energy minimization, this would
ideally correspond to a canted state between the electron spins of Mn pairs for comparable magnitudes
of the bilinear and biquadratic interactions.

Later, the existence of this type of interaction was confirmed to interpret the experimental data
based on magneto optic Kerr effect microscopy, magnetization curves and domain observations
in Fe/Cr/Fe ferromagnetic bilayers [18,31] and several other ferromagnetic bilayer systems with
different paramagnetic spacers (e.g., Fe/Au/Fe, Fe/Al/Fe, Co/Cu/Co, ect.) [18]. In these systems
characterized also by a non-negligible crystallographic anisotropy the biquadratic exchange interaction
favors the 90◦ ground-state between two adjacent ferromagnetic layers. On the other hand, there
are also ferromagnetic bilayers such as FeNi/Ag/FeNi where, due to negligible crystallographic
anisotropy, the biquadratic interaction favors a canted phase between the two magnetization of coupled
ferromagnetic layers when 2

∣∣∣J(2)∣∣∣ > ∣∣∣J(1)∣∣∣ with J(1) and J(2) the bilinear and biquadratic exchange
constants, respectively. The biquadratic exchange interaction together with the higher-order exchange
interactions were theoretically interpreted as arising from the spin-asymmetry of the electron reflection
amplitudes at the ferromagnetic-paramagnetic interfaces. This modelization was used to describe
phenomenologically the interlayer exchange coupling between ferromagnetic layers separated by a
paramagnetic spacer [17,18].

The presence of the biquadratic interaction enriches the phase diagram of these quantum systems
adding new ground states besides the ferro-and anti-ferromagnetic ground states. This depends on the
relative sign and magnitude of the bilinear and biquadratic nearest-neighbors interactions. According

to the Hamiltonian expressed in Equation (2) in zero external magnetic field the case 2 J(2)i j >
∣∣∣∣J(1)i j

∣∣∣∣ is
analyzed. This is the most interesting case because this state corresponds to the so-called C ground-state
where adjacent spins form equilibrium angles 0 < ϕij < π. Minimizing the generalized quantum spin
exchange Hamiltonian for 1D and 2D systems yields ∀i, j:

ϕi j = arccos

− J(1)i j

2J(2)i j

 (48)

Figure 1 summarizes the ground states of a 1D chain of quantum fractional integer spins modeled
by means of a generalized quantum Heisenberg Hamiltonian that are attached to the ferromagnetic
atoms of the chain for Bext = 0. Figure 1a,b display the F and AF ground-state, obtained for J(1)i i+1 < 0

and J(2)i i+1 = 0 and J(1)i i+1 > 0 and J(2)i i+1 = 0, respectively. The AF ground-state forms considering
two spin sublattices. Figure 1c,d show the C ground-state forming from a F ground-state for
J(1)i i+1 < 0 and J(2)i i+1 > 0 (0 < ϕi i+1 < π/2) and from an AF ground-state for J(1)i i+1 > 0 and J(2)i i+1 > 0
(π/2 < ϕi i+1 < π), respectively. We call the former the C-F ground-state and the latter the C-AF ground
state. In each state the amplitudes of equilibrium angles ϕi i+1 are different depending on the couple of
spin operators considered.
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With increasing Bext with the external field along the z-axis, the angles φi i+1 progressively reduce 
their amplitude and, for high Bext, the Si spins become parallel one to each other aligning along the z-
direction (φi i+1 → 0 ∀ i). The same conclusions can be drawn to the 2D quantum spin ferromagnetic 
lattice of any type (square, rectangular, rhombic, hexagonal, ...) provided that i + 1 is replaced by the 
number z of first neighbors depending on the lattice considered. 
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Figure 1. Quantum chain ground states with the spin vector operators Si (i = 0, 2, . . . N−1) ideally
attached to the ferromagnetic atoms represented with brown circles subjected to periodic boundary
conditions. The lattice parameter of the chain is L and corresponds to the spin nearest-neighbors
distance. (a) F ground state (ϕi i+1 = 0 ∀ i). (b) AF ground-state (ϕi i+1 = π ∀ i). (c) C-F ground-state for

J(2)i i+1 > 0. (d) C-AF ground-state for J(2)i i+1 > 0.

For J(2)i i+1 >>
∣∣∣∣J(1)i i+1

∣∣∣∣ ϕi i+1 → π/2 so that the adjacent spins would ideally form a right angle one

with respect to the other independently of the relative sign of J(1)i i+1 and J(2)i i+1. With increasing the
external magnetic field amplitude with the magnetic field along + z, the equilibrium angles ϕi i+1

reduce their amplitudes ∀ i both for C-F and C-AF states.
With increasing Bext with the external field along the z-axis, the angles ϕi i+1 progressively reduce

their amplitude and, for high Bext, the Si spins become parallel one to each other aligning along the
z-direction (ϕi i+1→ 0 ∀ i). The same conclusions can be drawn to the 2D quantum spin ferromagnetic
lattice of any type (square, rectangular, rhombic, hexagonal, . . . ) provided that i + 1 is replaced by the
number z of first neighbors depending on the lattice considered.

Finally, it is interesting to discuss practically the approximation of the spin rotation operator
(Equation (15)) used to prove the invariance of the 1D generalized exchange HamiltonianH1D

exch under
a continuous spatial rotation in the spin space. Indeed, H1D

exch Hamiltonian models the chain spin
operators displayed in Figure 1 and their relative equilibrium configurations.

For spin systems, it can be defined, as is usual for quantum mechanical rotation operators [32],
a spin rotation operator UR(n̂,θ) = e−i θ n̂·S(the spin rotation generator S is dimensionless in our
representation) associated to a continuous spatial rotation R in the spin space. To prove that the
generalized exchange Hamiltonian of the 1D chain of spins, as the one shown in Figure 1, is rotationally
invariant, one should, in principle, demonstrate that UR(n̂,θ) commutes withH1D

exch. However, to prove
this invariance, it is enough to take into account only the first-order series expansion, UR(n̂,θ)≈ 1− i n̂·S
(Equation (15)). This would practically correspond to consider infinitesimal angles δθ in the rotation
operation. Indeed, if one includes the higher-order terms of the expansion of the spin rotation generator,
some commutator identities involving the product of operators can be applied. In this way, all terms
can be rewritten in terms of commutators between first-order spin generators that cancel out two by
two leading to

[
UR(n̂,θ), H1D

exch

]
= 0. The same arguments can be applied to the 2D ferromagnetic

lattices of quantum fractional integer spins modeled by the HamiltonianH2D
exch of Equation (20) leading

to
[
UR(n̂,θ), H2D

exch

]
= 0.
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4. Conclusions

In summary, in this paper the Hohenberg–Mermin–Wagner theorem was generalized for 1D and
2D quantum ferromagnetic systems modeled through a generalized quantum Heisenberg Hamiltonian
including isotropic bilinear and biquadratic interactions. This generalization was accomplished by
applying statistical arguments based on the use of the Bogoliubov inequality and of the double
commutator function. It has been shown that the generalized quantum Heisenberg Hamiltonian of
a 1D ferromagnetic quantum chain and of a 2D quantum ferromagnetic lattice of fractional integer
spins with nearest-neighbors interaction does not allow long-range order at any finite temperature T
and for any type of bilinear and biquadratic exchange coupling. The on-site magnetization vanishes
with the vanishing of the ordering field according to the same law as for the 1D and 2D quantum
Heisenberg Hamiltonian where only the bilinear interaction was taken into account. Hence, not only
ferromagnetism and antiferromagnetism are ruled out as occurs in the Mermin and Wagner case but
also a canting ground-state resulting from the balancing between the isotropic bilinear and biquadratic
interactions is ruled out. The canting ground-state can result either from the ferromagnetic or from
the antiferromagnetic ground-state depending on the sign of the bilinear exchange term. It has also
been shown that the rotational symmetry under the spin rotation generator proved for the generalized
exchange Hamiltonian in both 1D and 2D systems of quantum spins implies the absence of spontaneous
symmetry breaking at finite temperature. On the other hand, the 1D and 2D Hamiltonians are not
anymore rotationally invariant in the presence of an anisotropy contribution leading to a spontaneous
symmetry breaking for T , 0. These results could advance the understanding of continuous symmetries
in quantum magnetic systems.

Funding: This research received no external funding.

Acknowledgments: The support from the group of Mathematical Physics (INdAM) is gratefully acknowledged.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Chaikin, P.M.; Lubenski, T.C. Principles of Condensed Matter Physics, 1st ed.; Cambridge University Press:
Cambridge, UK, 2012.

2. Hohenberg, P.C. Existence of long-range order in one- and two-dimensions. Phys. Rev. 1967, 158, 383–386.
[CrossRef]

3. Mermin, N.D.; Wagner, H. Absence of ferromagnetism or anti-ferromagnetism in one- or two-dimensional
Heisenberg models. Phys. Rev. Lett. 1966, 17, 1133–1136. [CrossRef]

4. Halperin, B.E. On the Hohenberg–Mermin–Wagner Theorem and Its Limitations. J. Stat. Phys. 2018,
175, 521–529. [CrossRef]

5. Coleman, S. There are no Goldstone Bosons in Two Dimensions. Commun. Math. Phys. 1973, 31, 259–264.
[CrossRef]

6. Bogoliubov, N.N. Quasimittelwerte in Problemen der statistischen Mechanik (1. Fortsetzung). Phys. Abhandl.
Sowjetunion 1962, 6, 1.

7. Mermin, N.D. Absence of Ordering in Certain Classical Systems. J. Math. Phys. 1967, 8, 1061–1064. [CrossRef]
8. Gelfert, A.; Nolting, W. Absence of a Magnetic Phase Transition in Heisenberg, Hubbard, and Kondo-Lattice

(s–f) Films. Phys. Status Solidi 2000, 217, 805–818. [CrossRef]
9. Gelfert, A.; Nolting, W. The absence of finite-temperature phase transitions in low-dimensional many-body

models: A survey and new results. J. Phys. Cond. Matter 2001, 13, R505. [CrossRef]
10. Walker, M.B. Nonexistence of excitonic insulators in one and two dimensions. Can. J. Phys. 1968, 46, 817.

[CrossRef]
11. Bruno, P. Absence of Spontaneous Magnetic Order at Nonzero Temperature in One- and Two-Dimensional

Heisenberg and XY Systems with Long-Range Interactions. Phys. Rev. Lett. 2001, 87, 187203. [CrossRef]
[PubMed]

http://dx.doi.org/10.1103/PhysRev.158.383
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1007/s10955-018-2202-y
http://dx.doi.org/10.1007/BF01646487
http://dx.doi.org/10.1063/1.1705316
http://dx.doi.org/10.1002/(SICI)1521-3951(200002)217:2&lt;805::AID-PSSB805&gt;3.0.CO;2-P
http://dx.doi.org/10.1088/0953-8984/13/27/201
http://dx.doi.org/10.1139/p68-103
http://dx.doi.org/10.1103/PhysRevLett.87.137203
http://www.ncbi.nlm.nih.gov/pubmed/11580623


Symmetry 2020, 12, 2061 15 of 15

12. Loss, D.; Pedrocchi, F.L.; Leggett, A.J. Absence of Spontaneous Magnetic Order of Lattice Spins Coupled to
Itinerant Interacting Electrons in One and Two Dimensions. Phys. Rev. Lett. 2011, 107, 107201. [CrossRef]
[PubMed]

13. Harris, E.A.; Owen, J. Biquadratic Exchange Between Mn2+ Ions in MgO. Phys. Rev. Lett. 1963, 11, 9.
[CrossRef]

14. Rodbell, D.S.; Jacobs, I.S.; Owen, J.; Harris, E.A. Biquadratic Exchange and the Behavior of Some
Antiferromagnetic Substances. Phys. Rev. Lett. 1963, 11, 10. [CrossRef]

15. Huang, N.L.; Orbach, R. Biquadratic Superexchange. Phys. Rev. Lett. 1964, 12, 275. [CrossRef]
16. Chen, H.H.; Levy, P. High-Temperature Series Expansion for a spin-1 Model of Ferromagnetism. Phys. Rev. B

1973, 7, 4284. [CrossRef]
17. Bruno, P. Interlayer exchange coupling: A unified physical picture. J. Magn. Magn. Mater. 1993, 121, 248–252.

[CrossRef]
18. Demokritov, J. Biquadratic interlayer coupling in layered magnetic systems. J. Phys. D Appl. Phys. 1998,

31, 925–941. [CrossRef]
19. Strässle, T.; Juranyi, F.; Schneider, M.; Janssen, S.; Furrer, A.; Krämer, K.W.; Güdel, H.U. Origin of Higher

Order Magnetic Exchange: Evidence for Local Dimer Exchange Striction in CsMn0.28 Mg0.72 Br3 Probed by
Inelastic Neutron Scattering. Phys. Rev. Lett. 2004, 92, 257252. [CrossRef]

20. Stanley, H.E.; Kaplan, T.A. Possibility of a Phase Transition for the Two-Dimensional Heisenberg Model.
Phys. Rev. Lett. 1966, 17, 913. [CrossRef]

21. Mattis Daniel, C. The Theory of Magnetism II—Thermodynamics and Statistical Mechanics; Springer:
Berlin/Heidelberg, Germany, 1985.

22. Frölich, J.; Spencer, T. Kosterlitz-Thouless Transition in the Two-Dimensional Plane Rotator and Coulomb
Gas. Phys. Rev. Lett. 1966, 46, 1006. [CrossRef]

23. Frölich, J.; Lieb, E.H. Phase transitions in anisotropic lattice spin systems. Commun. Math. Phys. 1978, 60, 233–267.
Available online: https://projecteuclid.org:443/euclid.cmp/1103904129 (accessed on 18 November 2020).
[CrossRef]

24. Thorpe, M.F. Absence of Ordering in Certain Isotropic Systems. J. Appl. Phys 1971, 42, 1410–1411. [CrossRef]
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