
A

Accountable Protocols in Abductive Logic Programming

MARCO GAVANELLI, ENDIF, University of Ferrara
MARCO ALBERTI, DMI, University of Ferrara
EVELINA LAMMA, ENDIF, University of Ferrara

Finding the responsible of an unpleasant situation is often difficult, especially in artificial agent societies.
SCIFFis a formalization of agent societies, including a language to describe rules and protocols, and an

abductive proof-procedure for compliance checking. However, how to identify the responsible for a violation
is not always clear.

In this work, a definition of accountability for artificial societies is formalized in SCIFF. Two tools are
provided for the designer of interaction protocols: a guideline, in terms of syntactic features that ensure
accountability of the protocol, and an algorithm (implemented in a software tool) to investigate if, for a
given protocol, non-accountability issues could arise.

Additional Key Words and Phrases: SCIFF, Accountability, Abductive Logic Programming

1. INTRODUCTION
The current economic world is strongly based on large corporations, that have been
able to provide large economic benefits, such as cheaper prices for everyday goods and
better employment rates, but that also represented large problems in case of failure.
Every person can list problems in his/her own country in which a large firm misbe-
haved, e.g., polluting the environment, or by failing in a disastrous way causing huge
losses for small investors. In many cases, the firm itself cannot be punished for its mis-
behavior, because a company cannot be sent to jail, and because fines are not always
a good deterrent; consider, e.g., that fines cannot be too high, because the company
might be forced to fail and shutdown, causing unemployment, and if they are too low
they are not a deterrent [Bovens 1998]. One hopes that the culprit of the misbehavior
(e.g., the CEO) is punished, but in many cases the complex behavior of an organization
depends on the policies established by previous members (that might even be dead),
by common practices, or by the fact that many individuals contributed to the disaster
each in an inconceivably small amount. This was called “the problem of many hands”
by Bovens [1998], and the usual result is that nobody is punished.

In the literature of moral responsibility, there exist different notions of responsibil-
ity. Van de Poel et al. [2015] distinguish five moral meanings of responsibility: account-
ability, blameworthiness, liability, obligation and virtue.

The ascription of responsibility-as-accountability has the following impli-
cation: i is responsible-as-accountable for ϕ implies that i should account for
(the occurrence of) ϕ, in particular for i’s role in doing, or bringing about ϕ,
or for i’s role in failing to prevent ϕ from happening, where i is some agent,
and ϕ an action or a state-of-affairs.

and

Accountability implies blameworthiness unless the accountable agent can
show that a reasonable excuse applies that frees her from blameworthiness.
So holding an agent i accountable shifts the burden of proof for showing that
i is not blameworthy to the agent i: the agent is now to show – by giving an
account – that she is not blameworthy.

An agent i is accountable for ϕ if i has the capacity to act responsibly (has
moral agency), is somehow causally connected to the outcome ϕ (by an action
or omission) and there is a reasonable suspicion that agent i did somehow

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 M. Gavanelli et al.

do something wrong. Agent i may then provide an account that she is not
blameworthy.

Chopra and Singh [2014] point out that autonomy and accountability are fundamen-
tal concepts in socio-technical systems: agents are autonomous in that they can decide
how to behave, but they are also accountable to other agents, in that they need to be
able to explain their actions. The authors observe that current methods for require-
ment engineering lack tools to express that an agent in a socio-technical system is
accountable to another, and introduce the notion of accountability requirement for this
purpose. This has been later expanded in [Kafalı et al. 2016] where the authors adopt
a formal computational representation of accountable norms and requirements.

Baldoni et al. [2016], too, base their work on computational accountability on the
concept of accountability as one’s obligation to explain their action when requested to,
which does not hinder the agent’s autonomy.

Clearly, in a world populated not only by human beings, but also by artificial agents,
that can perform transactions of money or drive cars, the issues become even more
important. The problem has been the object of a multi-disciplinary effort [Boissier et al.
2013]. Several frameworks for specification of agent interaction [Castelfranchi 1995;
Singh 1998; Fornara and Colombetti 2003] are based on the notion of commitment,
which formalizes an obligation of an agent (the debtor) towards another agent (the
creditor), thus providing a built-in notion of responsibility: in case the obligation is not
fulfilled, the debtor is clearly responsible.

In this work, we focus on the SCIFF system [Alberti et al. 2008], a complete system
for defining and checking the compliance of agents to interaction protocols. It includes
a language to define agent interaction protocols and to relate a current state of affairs
with one or more expected behaviors of the agents, formalized as a set of expectations.
The language was designed to leave freedom to agents, not overconstraining them to
follow statically pre-defined paths, but, instead, to assert explicitly the obligatory ac-
tions and those that are forbidden, while leaving everything not explicitly stated as
a possible action that an agent can perform if it is convenient. An abductive proof-
procedure accepts asynchronous events and reasons about them through the protocol
definition, generates the expected behavior of the agents, and checks if the actual be-
havior matches with the expectations. Beside interaction protocols, SCIFF was later
used to model Business Processes [Chesani et al. 2011], medical protocols [Ciampolini
et al. 2005], careflows [Chesani et al. 2007] and legal reasoning [Alberti et al. 2006a].

Although the SCIFF language and features are sufficiently expressive to develop
these applications, SCIFF lacks a concept of responsibility, because expectations, un-
like commitments, are not characterized by a debtor, due to different language design
objectives (as is discussed briefly in Section 6 and more extensively in [Torroni et al.
2009]): while SCIFF is able to detect violations of the protocols, it is not always clear
which agent is responsible for the wrong state of affairs. In other words, the SCIFF
way to specify and verify interaction fully supports agent autonomy, but does not guar-
antee agent responsibility.

In this work, we address the problem by adopting the accountability version of re-
sponsibility. Accountability in the proposed setting stands for the possibility to account
for the wrong state of affairs of an agent that is the one that performed (or did not per-
form) the action in its expected behavior. The agent might then, by reasoning on the
protocol and the state of affairs (again, using the SCIFF proof procedure), be able to
account for its own behavior. The agent might be able to find an explanation in which
its expected behavior is fulfilled, and in such a case it cannot be held responsible for
the violation. In some cases, this might happen because another agent is actually re-

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Accountable Protocols in ALP A:3

sponsible for the violation, but in other cases it might be due to a wrong design of the
interaction protocol.

For this reason, we define formally a notion of accountability of the interaction proto-
col (Section 3). The idea is that a protocol is accountable if it allows to identify the agent
(or agents) responsible for each possible violation. If the interactions in an organiza-
tion or society are ruled by an accountable protocol, then, for each possible undesirable
state of affairs, one or more agents will be unambiguously held responsible.

The formal definition allows us to provide guidelines and tools for the developer
of interaction protocols. The guidelines are syntactic conditions that ensure a-priori
the accountability of a protocol. We identify a syntactic characterization of a fairly
large class of protocols and prove that protocols in such class are accountable. Various
protocols taken from the list of SCIFF applications belong to this class.

However, even protocols that do not belong to the identified class may be account-
able. For existing protocols, the user might not want to completely re-design the pro-
tocol, and in this case a tool that checks the protocol for accountability might be more
suitable. For this purpose, we propose (in Section 5) a tool to detect if a protocol has
non-accountability issues. If there exists such an issue, the tool also provides a coun-
terexample: a course of events with protocol violation, but for which no agent can be
held responsible. We tested, through such tool, protocols modeled in the past with
SCIFF, and we were able to identify non-accountability of two protocols that were
completely reasonable for the task for which they were designed. Thanks to the tool
and the provided counterexample, it was then easy for the designer to fix the protocol.

Thanks to the available automatic translations from popoular graphical notations,
such as ConDec [Pesic and van der Aalst 2006], to SCIFF [Montali 2010], even design-
ers not familiar with SCIFF can take advantage of the presented tools to assess the
accountability of their specifications.

2. PRELIMINARIES: THE SCIFF LANGUAGE
The SCIFF language was devised to formalize interaction protocols amongst agents.
The objective was to detect possible violations of the protocols, without over-
constraining the agents to follow predefined paths. SCIFF uses an abductive semantics
to compute, given the actual behavior of the agents, their expected behavior; in case
the two match, the current set of events (also called history) is compliant.

Like most logic languages, the SCIFF language is built upon a set of a set of function
symbols, a set of predicate symbols, and a set of variables. A term is a variable or a
function symbol applied to zero or more terms. An atom is a predicate symbol applied
to zero or more terms. A literal is an atom or the negation of an atom. A term or an
atom are ground if they contain no variables.

In SCIFF the set of events is provided in a (possibly, dynamically growing) set HAP
(the current history). Events are represented as atoms H(X,T), where X is a term that
describes the event and T is the time (numeric) in which the event happened. In the
SCIFF proof procedure, the H events are ground, as it is assumed that full knowledge
of the happened events is available.

For example, H(do(alice, bob, ask), 1) could mean that agent alice sent a request to
agent bob at time 1.

The expected behavior of the agents is described with formulae involving the atoms
E(X,T), meaning that it is expected that X happens at time T , EN(X,T), meaning
that X is expected not to happen at time T , and their explicit negations ¬E(X,T)
and ¬EN(X,T), meaning that such expectations cannot be formulated. Both X and T
can be variables, possibly subject to Constraint Logic Programming (CLP) constraints
[Jaffar and Maher 1994].

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 M. Gavanelli et al.

For example, E(do(bob, alice, reply), T), 2 ≤ T ≤ 5 could mean that bob is expected
to reply to alice at any time between 2 and 5. Variables in positive expectations
(E literals) are existentially quantified, while variables that occur only in EN liter-
als are universally quantified. These quantification rules give the natural reading to
EN(do(A, alice, reply), T), A 6= bob that no agent A (except bob) is expected to reply to
alice, at any time T .

To simplify the notation, we will omit the time parameter when not necessary.
An interaction protocol can be defined through an Abductive Logic Programming

(ALP) program [Kakas et al. 1993]. ALP extends logic programming for abductive rea-
soning, i.e. for reasoning from effects to (possible) causes. It is the inference typically
used in diagnosis: given a known effect and a set of implications effect ← causes it tries
to hypothesize the possible causes. For example, a physician might have a knowledge
base saying that sneezing can be caused by flu or hay fever:

sneeze ← flu.
sneeze ← hay fever .

If the doctor observes a patient sneezing, he might abduce that the patient has a flu,
or a hay fever. Formally, an ALP program is a triple 〈KB ,A, IC〉. The Knowledge Base
KB is a set of Horn clauses of the form H ← L1, . . . , Ln, whose intuitive meaning is
that the atom H (the head) is true if all the literals L1, . . . , Ln (the body) are true. The
set of Horn clauses with an atom H as head serve as its definition, because they list
all the possible circumstances that make it true. A literal in the body can be a special
atom, called an abducible, from the set A, which is not defined in the KB , but can
be assumed. In order to constrain the set of atoms that can be assumed, the user can
define a set IC of logic formulae called Integrity Constraints that must be satisfied.
In our example, A = {flu, hay fever}; the physician might have an integrity constraint
saying that one cannot have flu during the summer:

flu, summer → false

and the knowledge base contains the fact summer. In such a case, the hypothesis flu is
ruled out, and the only left hypothesis is hay fever .

In SCIFF, Integrity Constraints are in the form of implications body → head that
can contain all the types of literals hereby described (literals of predicates defined in
the KB , abducible literals, amongst which we find E and EN literals, and CLP con-
straints). Literals built on H atoms can occur only in the body (the precondition). The
body can be a conjunction of literals, while the head can be a disjunction of conjunc-
tions of literals (for details, and other syntactic restrictions, see [Alberti et al. 2008]).
For example, the Integrity Constraint (IC):

H(do(X,Y, ask), Ta)→ E(do(Y,X, yes), Tr) ∨E(do(Y,X, no), Tr) (1)

means that in case an agent X asks a question to agent Y , then agent Y is supposed
to reply either yes or no.

Given an ALP program and a goal, the task is usually to find a set of abducibles (an
abductive answer) that satisfy the integrity constraints and that, together with the
knowledge base, ensure the truth of the goal. More formally, we specialize the classical
definition [Kakas et al. 1993] for the SCIFF language as follows.

Definition 2.1 (Abductive answer, adapted from [Kakas et al. 1993]). Given a goal
G and a history HAP, a set ∆ ⊆ A is an Abductive Answer if it entails the goal to-
gether with KB, while entailing the integrity constraints together with KB and the

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Accountable Protocols in ALP A:5

history:

KB ∪∆ |= G (2)
KB ∪HAP ∪∆ |= IC. (3)

Unless it is stated otherwise, we will assume that the goal G is empty (the true goal).
We define a protocol as a pair P = 〈KB , IC〉. When we describe a protocol only by

IC, we will mean that KB is empty.
As already explained, in SCIFF there are abducibles with a special meaning, namely

expectations. The formal meaning of expectations is considered when dealing with
SCIFF answers.

Definition 2.2 (SCIFF answer, adapted from [Alberti et al. 2008]). An abductive
answer is a SCIFF answer if it also satisfies the conditions in the following equa-
tions (4-8).

The set of abduced expectations should be consistent with respect to explicit nega-
tion (i.e., an expectation and its explicit negation cannot belong to the same SCIFF
answer):

KB ∪HAP ∪∆ |= E(X) ∧ ¬E(X)→ false (4)
KB ∪HAP ∪∆ |= EN(X) ∧ ¬EN(X)→ false (5)

positive and negative expectations cannot be contradicting (i.e., the same event cannot
be expected to happen and not to happen in the same SCIFF answer):

KB ∪HAP ∪∆ |= E(X) ∧EN(X)→ false (6)

and the set of expectations should be fulfilled by the actual history (i.e., each expecta-
tion in the SCIFF answer should match with an event in the history):

KB ∪HAP ∪∆ |= E(X)→ H(X) (7)
KB ∪HAP ∪∆ |= EN(X) ∧H(X)→ false (8)

If there exists a set ∆ of expectations satisfying all conditions 2-8 we write

PHAP |= G (9)

(otherwise we write PHAP 6|= G to mean that such a set ∆ does not exist).

In this article, we also need to reason about sets of expectations that are not fulfilled,
so we introduce the concept of violation answer. Intuitively, a violation answer is a set
of expectations that respects all the conditions required for a SCIFF answer, except for
the fact that some of its elements (which we call the violated set) are not fulfilled by
the history.

Definition 2.3 (SCIFF Violation Answer).
A violation answer ∆ is an abductive answer that satisfies conditions (4), (5), (6),

and that does not satisfy at least one of (7) and (8). The violated set is

∆v = {e ∈ ∆|e does not respect at least one of (7) and (8)}.

In such a case, we write

P ∪HAP ∪∆ |=v G.

If there exists such set ∆ we write

PHAP |=v G. (10)

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 M. Gavanelli et al.

2.1. The SCIFF proof-procedure
The SCIFF proof-procedure computes the SCIFF answers for a SCIFF protocol. It
operates by building a proof tree, starting from an initial node (characterized by an
empty set of expectations) and applying a set of transitions; the set of expectations
in success leaf nodes are SCIFF answers [Alberti et al. 2008] for the given protocol.
The core transitions are inherited from SCIFF’s predecessor, the IFF proof-procedure
[Fung and Kowalski 1997]:

— unfolding: unfolds the clauses of a predicate defined in the KB
— propagation: given an implication (a(X) ∧ body) → head and an atom a(Y), produces

the new implication (X = Y ∧ body)→ head
— splitting: deals with disjunctions. Given a formula (a ∨ b) opens two branches: one in

which a is true and one in which b is true
— case analysis: Given an implication (X = Y ∧ body) → head (e.g., obtained through

transition propagation) opens two branches: one with X 6= Y and one in which X = Y
and body → head

— equivalence rewriting: deals with unification
— logical equivalence: rewrites various logical equivalences, e.g., false ∧ A is rewritten

as false etc.

SCIFF inherits from the CLP operational semantics [Jaffar and Maher 1994] the tran-
sitions that deal with constraint propagation. In particular, the dis-unification con-
straint (X 6= Y) is considered as a CLP constraint.

Other transitions deal with dynamically-growing histories:

— happening: accepts a new event
— closure: terminates the acquisition of new events: the history is declared closed
— non-happening: after the closure, propagates ICs containing ¬H literals

Finally, some transitions deal with the fulfillment of expectations. For example, if a
node contains an expectation E(X) and an event H(Y) is in the history, two children
nodes are generated:

— one in which the unification X = Y is imposed and the expectation E(X) is declared
fulfilled

— the other in which the dis-unification constraint X 6= Y is imposed.

When no such transitions can be applied to a node, if an E(X) expectation is not ful-
filled, it is marked as violated.

A detailed description of all the transitions, together with proofs of soundness, com-
pleteness and termination, can be found in [Alberti et al. 2008].

3. ACCOUNTABILITY IN SCIFF
Intuitively, an agent in an interaction is accountable for some undesirable state of
affairs if the state of affairs is a consequence of an action (or lack of one) by the agent.

In the context of SCIFF protocols, an undesirable state of affairs is a history HAP
that does not satisfy condition (9). If a violation answer (Def. 2.3) exists, this means
that the protocol would have been satisfied if the agents had satisfied the violated ex-
pectations regarding them; in this sense, those agents are accountable for the failure.

Definition 3.1 (Accountable agent). An agent A is Accountable if there exists no
SCIFF Answer, and there exists a Violation Answer ∆v such that1 E(do(A, ,)) ∈ ∆v

or EN(do(A, ,)) ∈ ∆v.

1We use here the underscore as an unnamed variable, as usual in Prolog.

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Accountable Protocols in ALP A:7

Example 3.2. Consider the protocol

H(do(alice, bob, a1)) → E(do(bob, alice, a2)) ∧EN(do(Z, bob, forbid))
∨ E(do(bob, alice, a3))

(11)

with the history

HAP = {H(do(alice, bob, a1)),H(do(john, bob, forbid))}.

Clearly, there is no SCIFF answer, because if we consider the first disjunct in the
head of IC (11), both expectations are violated (the expectation EN(do(Z, bob, forbid))
is violated because of the event H(do(john, bob, forbid)), while E(do(bob, alice, a2)) is
violated because bob did not send message a2 to alice), while if we consider the second
disjunct, the expectation E(do(bob, alice, a3)) has no matching event. We have, instead,
the following violation answers:

∆v
1 = {E(do(bob, alice, a2)),EN(do(john, bob, forbid))}

∆v
2 = {E(do(bob, alice, a3))}

In such a case, agents bob and john are both accountable. However, the positions
of the two agents with respect to the society enforcing the protocols are not the same.
Agent john is able to show that there exists a violation answer in which no expectation
on his own behavior is violated, namely ∆v

2: if bob had replied a3 (as he was supposed
to do), there would have been a SCIFF answer, i.e., no violation.

Agent bob, instead, cannot provide such an explanation, since in both violation an-
swers there are expectations on bob’s behavior that are violated.

One might object that bob could try to blame alice for sending message a1: had alice
avoided sending such message, there would have been no violation. This would be the
case if SCIFF did not have a concept of expected behavior, and the rules of the protocol
were given only in terms of the history. The concept of expected behavior has been very
important for legal reasoning applications [Alberti et al. 2006a] in which there exist
concepts of obligations, permissions, forbidden actions. The SCIFF language lets the
protocol designer define in fine grain such concepts, and relate the actual and expected
behavior of agents. If the designer wanted alice to be considered liable, (s)he would
have written the protocol differently, for example

true → EN(do(alice, bob, a1))
∨ E(do(bob, alice, a2)) ∧EN(do(Z, bob, forbid))
∨ E(do(bob, alice, a3))

The previous example hinted also how an agent can exculpate himself: by providing
as explanation a violation answer in which the accounted agent is not responsible for
any violated expectation.

Definition 3.3. If there exists no SCIFF answer for a given protocol, an accounted
agent A can account for its behavior if there exists a violation answer ∆v (called Reply
R to an account) such that @E(do(A, ,)) ∈ ∆v and @EN(do(A, ,)) ∈ ∆v.

If there exists no reply to an account, the accounted agent A is indicted.

Clearly, an agent A is indicted if in all violation answers there is a violated expecta-
tion about the behavior of A.

The previous example shows that the SCIFF semantics in general admits more than
one violation answer, which in general can contain violated expectations regarding
different agents; in this case, which agents are accountable would depend on which
violation answer is selected to explain the violation of the protocol. Thus, for an agent
to be indicted for a violation state, it is required that the agent be involved in at least

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 M. Gavanelli et al.

one violated expectation in each violation answer. This is the rationale behind the
following definition.

Definition 3.4 (Set of indicted agents).
Given a protocol P and a history HAP, if PHAP 6|= G, the set

S =
⋂

∆|(P∪HAP∪∆|=vG)

{X| E(do(X,Y,Action), T) ∈ ∆v

∨EN(do(X,Y,Action), T) ∈ ∆v }

is called the Set of indicted agents.

Example 3.5 (Example 3.2 continued). Consider again IC (11) with the following
history:

HAP = {H(do(alice, bob, a1)),H(do(john, bob, forbid)),H(do(bob, alice, a2))}.
In this case, there are two violation answers, with the following violation sets:

∆1 = {E(do(bob, alice, a2)),EN(do(john, bob, forbid))} ∆v
1 = {EN(do(john, bob, forbid))}

∆2 = {EN(do(john, bob, forbid))} ∆v
2 = {E(do(bob, alice, a3))}

In such a situation, john could provide as explanation for his behavior that he intended
as correct the answer ∆2, while bob would choose answer ∆1.

Each agent is able to provide a reasonable explanation of his behavior, while there is
a violation of the protocol. This situation clearly highlights a deficiency of the protocol,
that has not been designed in a reasonable way.

We can now provide a definition of accountable protocol: intuitively, a protocol can
be characterized as accountable if it is possible to find a set of accountable agents for
each possible history that violates the protocol.

Definition 3.6 (Accountable protocol).
A protocol P is accountable if for each history HAP such that PHAP 6|= G the set of

indicted agents is not empty.

When the sets of agents responsible for violations in different violation answers are
disjoint, it is not possible to identify a set of indicted agents: in this case, the protocol
is not accountable.

4. SYNTACTIC FEATURES THAT ENSURE ACCOUNTABILITY
The concept of accountability that was just formally defined can have various practical
uses. One is giving some guidelines on how to define a protocol in such a way that it
is known to be accountable. We will provide a syntactic condition that is sufficient to
prove accountability; it is interesting to note that the majority of the protocols devel-
oped in the past for SCIFF satisfy such syntactic condition.

Before introducing such condition, we show some examples of protocols that are
accountable and of some that are not.

Example 4.1 (Same answer).

H(do(alice, bob, ask)) → E(do(bob, alice, yes)) ∧ E(do(john, alice, yes))
∨ E(do(bob, alice, no)) ∧ E(do(john, alice, no))

(12)

In this protocol, two agents should give the same reply. The protocol is clearly not
accountable, because in case the replies are different, both bob and john will blame the
other agent for not giving the right reply.

One could think that the non-accountability derives from the disjunction in the head
of the integrity constraint (12): since there is an explicit choice, represented by the ∨

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Accountable Protocols in ALP A:9

symbol, each agent might choose a different branch. Note, however, that a similar
effect can be obtained rewriting the integrity constraint as

H(do(alice, bob, ask))→ E(do(bob, alice,Reply)) ∧E(do(john, alice,Reply)).

In this second version, the disjunction is not shown explicitly, but, in a history in which
the two agents give different replies, the SCIFF proof-procedure will correctly explore
two branches: one in which the variable Reply is unified with the actual reply of agent
bob (and in which the expectation on john is violated), and one in which it is unified
with the answer of john (and in which, symmetrically, it is the expectation on bob’s
behavior that is violated).

Also, one may think that the non-accountability depends on the fact that there are
two expectations in conjunction in the head; however the same protocol could be writ-
ten with two integrity constraints:

H(do(alice, bob, ask)) → E(do(bob, alice,Reply)).
E(do(bob, alice,Reply)) → E(do(john, alice,Reply)).

Example 4.2. Consider the protocol

H(do(alice, bob, a1))→ E(do(bob, , b1)) ∨E(do(bob, , b2)).

Such protocol is accountable.

PROOF. In the protocol, the only agent for which there are expectations is bob. If
he does one of the actions b1 or b2, then there exists a set of expectations of success.
Otherwise, in both branches he is the indicted, so S = {bob}.

Since such protocol is accountable, one wonders if a more complex protocol consisting
only of integrity constraints with the same structure is necessarily accountable.

Definition 4.3. A protocol is consequential if it consists of a set of integrity con-
straints of the form

[¬]H(do(Xb
1, Y

b
1 , A

b
1), T b

1) ∧
[¬]H(do(Xb

2, Y
b
2 , A

b
2), T b

2) ∧
...

[¬]H(do(Xb
n, Y

b
n , A

b
n), T b

n) ∧
cb1 ∧ cb2 ∧ . . . ∧ cbp → [¬]E/EN(do(C, Y h

1 , Ah
1), Th

1) ∧ /∨
[¬]E/EN(do(C, Y h

2 , Ah
2), Th

2) ∧ /∨
...

[¬]E/EN(do(C, Y h
m, Ah

m), Th
m)

ch1 ∧ ch2 ∧ . . . ∧ chq

where C occurs in at least one H atom in the body of the integrity constraint, and
where chi and cbi can be either CLP constraints or predicates that are defined in the
KB and that do not depend on abducible predicates. Moreover, we require that also
the goal G follows the same restrictions of the head of integrity constraints, and in
particular can contain only expectations on a single agent.

Intuitively, in a consequential protocol, the precondition of each integrity constraint
depends only on the current history. It can generate an arbitrary set of expectations
in which there is only one agent C that is responsible to bring about the expected
behavior. C occurs in an H atom, which is a positive literal and which can unify only
with H atoms in the history HAP, that contains ground atoms, meaning that when
the body of a such IC is true, C is always ground.

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 M. Gavanelli et al.

THEOREM 4.4. A consequential protocol is accountable.

Before the proof, we give the definition of subset-minimality, that will be used in the
proof.

Definition 4.5. Subset-minimality. Let ∆ be a Violation Answer; ∆ is subset-
minimal if there exists no other Violation Answer ∆′ such that ∆′ ⊂ ∆.

PROOF. of Theorem 4.4. Suppose that, with a given consequential protocol and a
history, there is no SCIFF answer. Consider a Violation Answer ∆; without loss of
generality, we can consider a subset-minimal set (if it is not subset-minimal, there
exists a set ∆′ ⊂ ∆; consider in this case the set ∆′). ∆ is clearly not empty and
contains a violated expectation (otherwise there would exist a SCIFF answer).

We prove now that there exists at least an IC whose body is true. Let e ∈ ∆ be a
violated expectation E(do(X,Y,A), T) (or EN(do(X,Y,A), T)). Clearly, e belongs to the
head of some IC whose body is true, indeed, if e is not in the head of any IC whose body
is true, then e could be removed from ∆, obtaining a smaller Violation Answer.

Consider an IC whose body is true. Since ∆ is an abductive answer, its head must
also be true. If all the disjuncts in the head contain a violated expectation, then, by
the definition of consequential protocol, all such expectations have the same indicted
agent, which means that the set S is not empty and the thesis is proven.

Otherwise, suppose that all ICs whose body is true have a true disjunct in the head
without violations; in such a case, we have to prove that, in all possible combinations
of disjuncts selected in the various ICs, there is always at least one indicted. In such
a case, one may select in each IC the disjunct without violations, and collect all the
expectations in the selected disjuncts in a set A. If A is consistent, then it is also a
SCIFF answer (contradicting a previous assumption). If it is inconsistent, then there
must be two expectations (possibly, taken from disjuncts of different ICs), that violate
one of the equations (4), (5), (6). Without loss of generality, let us assume that the
two clashing expectations are taken from the first disjunct of Integrity Constraint ICi

and the first disjunct of ICj (the extension to more than two ICs is straightforward).
In this case, the content of the two expectations must unify, meaning that the agent
that should perform the two violated actions is ground and is the same agent. By the
definition of consequential protocol, all the expectations in the heads of ICi and ICj

refer to actions in the expected behavior of the same agent, meaning that, whichever
disjuncts are selected in the heads of the two ICs, the set of indicted agents always
contains such agent.

It is worth noting that even if a protocol is not consequential, it can still be account-
able, as shown in the following Example 4.6.

Example 4.6. The protocol consisting only of IC (13) is not consequential, nor ac-
countable:

H(do(alice, bob, a1)) → E(do(bob, alice, b1))
∨ E(do(john, alice, b1))

(13)

It can be interpreted as alice being able to command to one agent amongst bob and
john to perform task b1. On the other hand, the actual agent performing b1 is not
specified; in a sense it is a choice of john and bob, that might not agree on whom
is going to perform task b1. The history HAP = {H(do(alice, bob, a1))}, in fact, does
not have SCIFF answers, and the two violation answers ∆v

1 = {E(do(bob, alice, b1))}
∆v

2 = {E(do(john, alice, b1))} do not have an indicted in common.

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Accountable Protocols in ALP A:11

The protocol can be made accountable, for example, by adding that one of the two
agents cannot do the task, as in

H(do(alice, bob, a1)) → EN(do(bob, alice, b1))

The amendment makes the protocol accountable, in fact now ∆v
1 is no longer a vio-

lation answer, since it does not satisfy rule (6), so the only indicted is john, as the
intuition suggests. Note that IC (13) has not been changed, so the new version is still
not consequential.

Table I. Consequentiality and accountablity of published protocols

Protocol name Reference Consequential Accountable
Comminunication primitive semantics (as-
sertives, commissives, directives, proposals)

[Alberti et al. 2003] Yes Yes

Negotiation (stages 1&2) [Sadri et al. 2003] [Alberti et al. 2004] Yes Yes
FIPA Query-Ref [Alberti et al. 2006a] Yes Yes
E-commerce choreography [Alberti et al. 2006a] Yes Yes
First-Price Sealed Bid Auction [Alberti et al. 2006b] No No
English Auction [Alberti et al. 2006b] No No
Needham-Schroeder [Alberti et al. 2006c] Yes Yes
NetBill [Alberti et al. 2006c] Yes Yes
Software license agreement [Alberti et al. 2006b] Yes Yes
E-commerce protocol [Alberti et al. 2006] Yes Yes
E-commerce protocol [Alberti et al. 2007] Yes Yes

Table I shows that many interaction protocols expressed in the SCIFF language
and published over the years are, in fact, consequential and thus accountable, al-
though they were not originally designed for consequentiality. An example of non-
consequential (and non-accountable) protocol, published in [Alberti et al. 2006b], is
discussed in Example 5.2.

5. CHECKING ACCOUNTABILITY
The class of consequential protocols is fairly large; widely known protocols, such as the
Needham-Schroeder [Needham and Schroeder 1978] and the NetBill [Cox et al. 1995]
were formalized in SCIFF [Alberti et al. 2006c], and both satisfy the conditions of a
consequential protocol.

On the other hand, some protocols do not satisfy Definition 4.3; in such a case the
accountability of the protocol is not guaranteed. Some protocols are accountable and
not consequential; one example was presented in Example 4.6, another is given in
Example 5.1:

Example 5.1. alice assigns a task to either bob or john, as in Example 4.6:

H(do(alice, bob, a1)) → E(do(bob, alice, b1))
∨ E(do(john, alice, b1))

Assume that bob is more important than john, and he is entitled to delegate the task
to john:

H(do(alice, bob, a1)) → E(do(bob, alice, b1)) (14)
∨ E(do(bob, john, delegate))

H(do(bob, john, delegate)) → E(do(john, alice, b1)) (15)

The protocol is clearly not consequential, because the first IC contains two alternative
expectations, one on the behavior of bob and the other on that of john. Nevertheless, it

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 M. Gavanelli et al.

is accountable: in case no action is done after alice’s request a1, bob is indicted, since he
did neither do b1 nor delegate it to john; if bob delegates but action b1 is not done, john
is indicted by IC (15).

Example 5.2. First-Price Sealed Bid Auction (adapted from [Alberti et al. 2006b])
In [Alberti et al. 2006b], two protocols are defined for detecting possible violations in
auctions; two types of auction are considered: a First-Price Sealed Bid (FPSB) auction,
and a classical English Auction.

The protocol for the First-Price Sealed Bid auction contains various Integrity Con-
straints that deal with the various phases of the auction (opening, bids, declaration
of the winner, payment, and delivery of the good). One of the Integrity Constraints,
simplified, can be stated as follows:

H(do(Auctioneer,Bidders, opauc(Item, Tdead, Tnotify, fpsb)), Topen),
H(do(Bidder1, Auctioneer, bid(Item,Q1)), T1), T1 < Tdead

→ E(do(Bidder2, Auctioneer, bid(Item,Q2)), T2),
Q2 > Q1, T2 < Tdead

∨ E(do(Auctioneer,Bidder1, answ(win, Item,Q1)), Twin),
Twin < Tdead + Tnotify

(16)

Intuitively, the IC (16) defines one of the rules the Auctioneer should follow to declare
a winning bid: if there exists at least a bid, for a price Q1, then either another agent
Bidder2 makes a bid for a higher price, or the auctioneer must declare Q1 as winning.

IC (16) shows that the FPSB protocol is not consequential. Whether the protocol is
accountable or not depends also on the other ICs (and KB) defining the protocol.

An automatic checking procedure can be devised by using the formal definition of
accountable protocol; in principle, one should check the protocol with all the possible
histories, compute all the indicted agents for each violation answer and, possibly, dis-
cover the non-accountability of the protocol as sketched in Algorithm 1. Clearly, as the
number of histories is infinite, such procedure can at most prove non-accountability,
but never prove that the protocol is accountable.

Even when considering finite histories, the SCIFF proof-procedure might not termi-
nate. This is not surprising, since the SCIFF language is a superset of Prolog (e.g.,
terms can be built on function symbols without restrictions) so it is Turing-complete.
Even in the propositional case without integrity constraints, the complexity of finding
if there exists an abductive explanation is ΣP

2 -complete [Eiter and Gottlob 1995].

ALGORITHM 1: Procedure to check if a protocol is accountable
Data: A protocol
Result: accountable
accountable← true;
while accountable do

generate a history HAP;
run SCIFF;
if not obtained SCIFF answer then

compute all SCIFF violation answers;
S ←

⋂
{indicted agents of violation answers};

if S = ∅ then
accountable← false;

end
end

end

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Accountable Protocols in ALP A:13

Fortunately, generating all histories is not necessary: a variation of the SCIFF proof-
procedure that considers H events as abducible atoms can handle also event sets that
are not ground. As already said, the SCIFF proof-procedure can handle abducibles that
contain variables, and which can, themselves, be subject to CLP constraints. In this
way, classes of histories can be generated intensionally. Also, many practical protocols
consider only finite histories, so the actual number of histories to be considered is, in
some interesting cases, finite.

Even when the history length is unbounded, it can still be of interest to prove, or
refute, accountability for histories of bounded maximal length, as in Bounded Model
Checking [Biere et al. 2003]: we follow this approach, considering histories of increas-
ing maximal length.

Unluckily, considering abducible the H events means that those transitions that rely
on the fact that the H atoms are ground can no longer be applied. Fortunately, only
one such transition exists, namely the not-happened transition [Alberti et al. 2008],
that is activated when a ¬H literal exists in an integrity constraint. In the rest of this
section, we will consider only protocols that do not contain integrity constraints with
negative H literals.

We name gSCIFF− the aforementioned variation of the SCIFF proof-procedure. We
recap the differences with SCIFF:

— in gSCIFF−, H literals are considered as abducibles; the possible variables occurring
in H literals are existentially quantified;

— in gSCIFF−, ¬H literals cannot occur in Integrity Constraints;
— in gSCIFF−, by default the intended semantics is that of violation answers (while,

by default, for SCIFF one is usually interested in SCIFF answers, i.e., violations are
not accepted).

The gSCIFF− proof procedure tries to match each event in the history with the body
of each integrity constraint. If the event contains variables, two derivation branches
are generated: one in which the event unifies with the H literal in the body of the IC,
and one in which a dis-unification constraint is imposed. This means that, if a H event
containing variables is abduced, the gSCIFF− proof-procedure will generate several
alternative branches: one for each H atom occurring in each integrity constraint.

Example 5.3. For instance, consider the protocol in Example 4.1, defined with the
integrity constraint in Eq. (12), in which we make explicit the time parameter of events
and expectations:

H(do(alice, bob, ask), T) → E(do(bob, alice, yes), Tb) ∧ E(do(john, alice, yes), Tj)
∨ E(do(bob, alice, no), Tb) ∧ E(do(john, alice, no), Tj)

(17)

By asking the SCIFF proof procedure to abduce one atom H(X1, T1) (where both X1

and T1 are variables), two alternative branches are generated

— in one H(X1, T1) is unified with H(do(alice, bob, ask), T), i.e., X1 = do(alice, bob, ask)
and T1 = T ;

— in the other, the previous unification is forbidden by imposing a dis-unification con-
straint, resulting in X1 6= do(alice, bob, ask) ∨ T1 6= T in this case.

In this way, two histories are generated, and they intensionally represent all the histo-
ries composed of exactly one event that are significant for the protocol in consideration:

HAP1 = {H(do(alice, bob, ask), T)}
HAP2 = {H(X1, T1)} such that X1 6= do(alice, bob, ask) ∨ T1 6= T.

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 M. Gavanelli et al.

Now, these two intensional histories (including the CLP constraints, such as the dis-
unification 6=) can be fed to the SCIFF proof procedure, that will generate the corre-
sponding sets of expectations.

For HAP1, there exist two possible sets of expectations, corresponding to the two
alternatives in the head of IC (17):

∆1,1 = {E(do(bob, alice, yes), Tb),E(do(john, alice, yes), Tj)}
∆1,2 = {E(do(bob, alice, no), Tb), E(do(john, alice, no), Tj)}.

Since no other events are in the history, all the generated expectations are violated,
and in both branches there are two indicted agents: S = {bob, john}.

For HAP2, no expectation is generated, since the only event does not match with
the body of any Integrity Constraint, so we obtain a SCIFF answer.

We can say that the protocol defined with Eq. (17) is accountable for all histories
consisting of exactly one event.

In a similar way, the gSCIFF− proof-procedure tries to match each expectation with
each event in the history, to prove fulfillment of positive expectations and violation of
negative ones.

Example 5.4 (Example 5.3 continued). Let us now suppose that gSCIFF− is asked
to abduce a history consisting of two generic events: H(X1, T1) and H(X2, T2). We have
already seen the histories generated for one event; let us suppose that H(X1, T1) =
H(do(alice, bob, ask), T): since the body of the only Integrity Constraint is true, one of
the disjuncts is chosen. If the first choice is taken, both bob and john should reply yes:

∆1,1 = {E(do(bob, alice, yes), Tb),E(do(john, alice, yes), Tj)}.

Now, the gSCIFF− proof-procedure tries to match each expectation with each event in
the history. No expectation matches with the first event H(do(alice, bob, ask), T). The
following options are explored for H(X2, T2)

— (X2, T2) unifies with (do(alice, bob, ask), T)
— (X2, T2) unifies with (do(bob, alice, yes), Tb)
— (X2, T2) unifies with (do(john, alice, yes), Tb)
— (X2, T2) does not unify with any of the previous.

the generated histories are
H(do(alice, bob, ask), T), H(do(alice, bob, ask), T)
H(do(alice, bob, ask), T), H(do(bob, alice, yes), Tb)
H(do(alice, bob, ask), T), H(do(john, alice, yes), Tb)
H(do(alice, bob, ask), T), H(X2, T2)

where, in the last one, H(X2, T2) must not unify with any of the other events
H(do(alice, bob, ask), T), H(do(bob, alice, yes), Tb), and H(do(john, alice, yes), Tb). These
four histories can then be submitted to the SCIFF proof-procedure to obtain the possi-
ble sets of expectations. Considering the second history, the sets of expectations are

∆1 = {E(do(bob, alice, yes), Tb), E(do(john, alice, yes), Tj)}
∆2 = {E(do(bob, alice, no), Tb), E(do(john, alice, no), Tj)}

None of them is a SCIFF answer, as in both there are violated expectations. The agents
responsible of the expected behavior are respectively {john} and {bob, john}, with a
non-empty intersection: in both cases, john is indicted.

No non-accountability was proven. By reasoning on the remaining cases, it can
be easily seen that in all histories consisting of exactly two events the issue of non-
accountability does not occur.

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Accountable Protocols in ALP A:15

In the same way, one can try all histories with three events: in such a case, one of
the generated histories is

H(do(alice, bob, ask), T),
H(do(bob, alice, yes), Tb)
H(do(john, alice,X3), T3) such that X3 6= yes

(18)

and represents all the histories in which john gives a reply that does not match with
the yes reply given by bob. When this history is fed to the SCIFF proof-procedure,
amongst the sets of expectations there are

∆y = {E(do(bob, alice, yes), Tb), E(do(john, alice, yes), Tj)}
∆n = {E(do(bob, alice, no), Tb), E(do(john, alice, no), Tj)}

where, as already noted, in ∆y the violated expectation is on agent john’s behavior,
while in ∆n the violated expectation is on bob’s behavior, meaning that the intersection
S = ∅. This not only proves that the protocol is not accountable, but also provides as
counterexample the history (18), for which no agent can be blamed for the violation.

Algorithm 2 details, in a Prolog-like pseudocode, how histories are generated. Pred-
icate generate goal provides as Goal an empty history; upon backtracking it provides
histories containing an increasing number of generic events. The gSCIFF− proof-
procedure executes the Goal, in this case abducing the set of generic events, special-
izing them for the protocol, as in Examples 5.3-5.4. Finally, a grounding phase takes
care of grounding the history such that each action has a ground agent that performs
it. In such a phase, it takes as input a set Agents of names of agents.

ALGORITHM 2: Generate a history HAP

Data: Agents: set of names of considered agents
Result: HAP: a history
generate history(Agents,HAP):-

generate goal(Goal),
gSCIFF−(Goal,HAP),
ground agents(Agents,HAP).

generate goal([]).
generate goal([H(X,T) | Goal]):-

generate goal(Goal).

The previous Examples 5.3 and 5.4 hinted how events are generated; we can now
provide an upper bound to the number of generated histories.

THEOREM 5.5. Suppose that all ICs contain only H atoms in the body and only E
atoms in the head.

Let NE be the number of E atoms occurring in the heads, NH the number of H atoms
occurring in the body and NA the number of agents.

The number of histories with size n generated by Algorithm 2 is O
(
Nn

A(2NH+nNE)n
)
.

PROOF. Each event in the history might trigger an IC, that can generate up to NE

expectations; thus the number of expectations raised for a history of n events is at
most nNE.

Each generic atom H(A, T) is checked against each body literal and each generated
expectation, generating a binary tree of maximum height NH + nNE; the number of
leafs are then 2NH+nNE at most.

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 M. Gavanelli et al.

Table II. Experimental results (X= accountable, 7= not accountable, TO = timeout, - = unnecessary; runtimes in
parentheses are in milliseconds)

History depth
Protocol 0 1 2 3 4 5

FPSB Auction (Original) X(2) X(33) 7(48) - - -
FPSB Auction (Revised) X(1) X(23) X(249) X(3727) X(335073) TO(1000000)

English Auction X(1) X(44) 7(103) - - -

The number of non-ground histories of n events cannot exceed (2NH+nNE)n. The
grounding phase tries each agent with each element in the history, so there are at
most Nn

A groundings for each non-ground history; in total the number of generated
histories is O

(
Nn

A(2NH+nNE)n
)
.

We ran the devised algorithm on a collection of protocols that were developed in
SCIFF in the past. The experimental results are reported in Table II. The code for
the experiments, with instructions for running them, is available at the repository
https://bitbucket.org/malbertife/bmc accountability.

The algorithm was able to detect in 0.048s (on an Intel core i5-6200U 2.4GHz, run-
ning SWI Prolog 7.2.3 [Wielemaker et al. 2012] on a virtual Linux Debian 8 64bit ma-
chine with two allocated cores and 4GB of RAM) the non-accountability of the FPSB
auction and provided as a counterexample the history

HAP = {H(do(a, opauc), Topen),H(do(b, bid(Q1)), Tbid)} (19)

that says that if the auctioneer opened an auction and the only other action is a bid
(i.e., there is no declaration of a winner), then there is a violation, but it is unclear who
is to blame for the violation. In fact, one option is that the auctioneer should declare
a winner, the other option being that a third agent makes a better bid. Note that the
provided counterexample (19) contains variables (the price Q1 of the bid and the times
in which the events are executed), since any history matching with the given one would
be non-accountable. In this experiment, we considered a set of three agents (named a,
b and c).

After looking at the counterexample (19), the designer decided that in such a situ-
ation the auctioneer should be indicted; he then was able to update the protocol, by
adding the following rule:

H(do(Auctioneer, opauc), Topen) ∧H(do(Bidder1, bid(Q1)), Tbid)
→ E(do(Auctioneer, answ(Bidder2, win,Q2)), Twin).

(20)

that, intuitively, states that if there exists (at least) one bid, the auctioneer must al-
ways declare some winner. By adding IC (20), in case there is no winner declaration, in
all violation sets there will be the expectation E(do(Auc, answ(Bidder2, win,Q2)), Twin),
so the history (19) becomes accountable. As expected, the algorithm confirms the ac-
countability for the history depths (up to 4) examined before the timeout.

It is worth noting that the protocol was already able to identify the violation state
(so it was correct for the task taken into consideration at that time); thanks to the new
definition of accountability and to the checker we developed, it was possible to improve
it and make it more apt toward new challenges.

The same experiment was also run on the English auction [Alberti et al. 2006b], and
the result was similar.

6. RELATED WORK
Kailar [1996] proposes a framework for the analysis of protocol accountability, but for
a notion of accountability that is different from the one analyzed in this article, i.e.,

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

https://bitbucket.org/malbertife/bmc_accountability

Accountable Protocols in ALP A:17

the ability for a participant interaction to prove the origin of an action; for example,
a customer in an electronic commerce transaction might want to prove that the mes-
sage she or he received was in fact sent by the seller. Such property, while obviously
important, is orthogonal to the one studied in this article, in that we assume that the
originator of each action (communicative or physical) has been established, and we
focus on whether the action has caused a violation of the interaction protocol.

Cederquist et al. [2005] propose a framework in which agents can distribute data
along with usage policies, and they are accountable for their actions. Agent actions
can be logged securely. The only actions allowed are those explicitly permitted by poli-
cies; agents are free to deviate from the policies, but their violations can be tracked
by an auditing authority that can observe (some of) their logged actions. The paper
[Cederquist et al. 2005] defines a language for agent actions and policies, and a logic
to reason about actions and, in particular, to prove that an action was permitted by
a policy; an implementation of the reasoner is also provided. In our work, we start
from a different normative premise, which is more realistic for the open systems to
which SCIFF has been applied: all actions are allowed if not explicitly forbidden; also,
the policy language in [Cederquist et al. 2005] is tailored for access control scenar-
ios, while the SCIFF language supports a variety of open systems, as shown in the
aforementioned application papers.

Baldoni et al. [2012] address a problem similar to the one addressed by the present
work: they developed a tool to visualize all the possible enactments of a protocol, in
order to visualize possible violations. They formalize interaction protocols by means
of responsibility and commitments [Castelfranchi 1995], a successful framework for
defining and reasoning about interaction protocols. Their case study is the Markets in
Financial Instruments Directive (MiFID) issued by the European Union. While Bal-
doni et al. [2012] adopt a framework that supports responsibility and propose a tool to
detect visually violations, we propose tools that address accountability, with the aim of
detecting automatically (either by means of checking syntactic features, or by means
of software tools) if a protocol is not accountable.

In [Baldoni et al. 2016], the authors introduce the term “Computational Account-
ability” as the application of Artificial Intelligence techniques to address the problems
of “traceability, evaluation, and communication of values and good conduct”. They de-
scribe a work in progress aimed to analyze agent accountability in a society ruled by
commitment-based interaction protocols: since each commitment has a debtor and a
creditor (and intuitively, the debtor is accountable to the creditor), and each commit-
ment is originated by an action, the idea is to establish an agent’s accountability by
following the causal chain that led to a violated commitment.

Our work also differs from [Baldoni et al. 2012] and [Baldoni et al. 2016] in that
our proposed formalization of the notion of accountability is based on expectations, as
defined in the SCIFF framework [Alberti et al. 2008], rather than commitments. Both
formalisms are aimed at providing semantics to interaction protocols without hinder-
ing agent autonomy, but expectations differ from commitments in two important as-
pects: first, they do not have a mutable state, but collectively describe an evolution of
an open system conforming to a protocol; second, an expectation is not characterized
by a debtor and a creditor (although, loosely speaking, the agent whose behavior is
described by the expectation can be viewed as the debtor, and the society as the cred-
itor). An in-depth comparison between commitments and expectations is available in
[Torroni et al. 2009].

Kafalı et al. [2016] present a framework, named Revani, for Revision and Verifica-
tion of Normative Specifications for privacy. They adopt a formal computational rep-
resentation of norms, also incorporating the social (e.g., humans) and technical (e.g.,
computers) elements peculiar of privacy. They consider three types of norms: Autho-

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 M. Gavanelli et al.

rization, Commitment, and Prohibition. Each norm is in practice an atom with predi-
cate A, C, or P , and indicates who is accountable to whom. Assumptions, in the form
Head ← Body rules, then describe the operating environment and what can or cannot
happen. Revani also provides a mechanism which, on the basis of truth of enabling
conditions, makes some effects taking place. Basically, effects are addition or deletion
of propositional atoms. To perform formal verification, model checking for CTL logic is
exploited in order to check if the specified norms, assumptions, and mechanisms, en-
tails requirements (i.e., properties) specified as CTL formulas. If not, the model checker
adopted (i.e., NuSMV) provides a counterexample. An iterative design process for spec-
ifications is also provided, in order to revise specifications until requirements are en-
tailed. This design process is sound, even if not complete (might not always compute a
revise specification satisfying the requirements). In our approach, instead, we exploit
an abductive proof procedure (rather than a model checker) to check accountability of
a SCIFF protocol. The proof procedure is also able to provide a counter-example useful
to fix the protocol.

7. CONCLUSIONS
Accountability is an important property in human societies, and it will be more and
more important in software agent societies. In this work, we consider a notion of ac-
countability, taken from the field of ethics and philosophy [Van de Poel et al. 2015], and
we provided a formal definition based on the SCIFF framework [Alberti et al. 2008].
SCIFF is a framework grounded on logic programming and including a language for
defining interaction protocols and a proof-procedure to check the compliance of the
agents to the protocols.

The formal definition of accountability given in this work can be used to verify if a
protocol is accountable, i.e., if in any violation state there exists at least one agent that
can be asked to account for the violation.

In order to help the designer of interaction protocols, we provided a guideline and
a tool. The guideline is a defined a static syntactic property of a protocol (called con-
sequential protocol) that ensures that a protocol is accountable. We found that many
of the protocols defined in the past for SCIFF fall within the class of consequential
protocols, and are by construction accountable.

Nevertheless, there are accountable protocols that are not consequential, as shown
in various examples. We proposed a tool, based on the SCIFF proof-procedure, that
checks if an existing protocol is not accountable. By running the tool on the previously
defined protocols, we were able to spot some cases of non accountability; the tool also
provided a counterexample showing a possible course of events in which, although a
violation was detected, no agent was liable. After this check it was possible to fix and
improve the protocol toward accountability.

REFERENCES
Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma, Paola Mello, and Marco Montali. 2006a.

An Abductive Framework for A-Priori Verification of Web Services. In Proceedings of the 8th Symposium
on Principles and Practice of Declarative Programming, Michael Maher (Ed.). ACM Press, New York,
USA, 39–50.

Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma, Paola Mello, Marco Montali, Ser-
gio Storari, and Paolo Torroni. 2006. Computational Logic for Run-Time Verification of Web Ser-
vices Choreographies: Exploiting the SOCS-SI Tool. In Web Services and Formal Methods: Third
International Workshop, WS-FM 2006 Vienna, Austria, September 8-9, 2006 Proceedings, Mario
Bravetti, Manuel Núñez, and Gianluigi Zavattaro (Eds.). Springer, Berlin, Heidelberg, 58–72.
DOI:http://dx.doi.org/10.1007/11841197 4

Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma, Paola Mello, Marco Montali, and Paolo
Torroni. 2007. A rule-based approach for reasoning about collaboration between smart Web services.

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

http://dx.doi.org/10.1007/11841197_4

Accountable Protocols in ALP A:19

In Proceedings of the 1st International Conference on Web Reasoning and Rule Systems (RR) (Lecture
Notes in Artificial Intelligence), Massimo Marchiori, Jeff Z. Pan, and Christian de Sainte Marie (Eds.),
Vol. 4524. Springer-Verlag, Innsbr uck, 279–288.

Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma, Paola Mello, and Paolo Torroni. 2006b.
Compliance Verification of Agent Interaction: a Logic-Based Software Tool. Applied Artificial Intelli-
gence 20, 2-4 (Feb.-April 2006), 133–157.

Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma, Paola Mello, and Paolo Torroni.
2006c. Security protocols verification in Abductive Logic Programming: a case study. In Proceedings
of ESAW’05, Oguz Dikenelli, Marie-Pierre Gleizes, and Andrea Ricci (Eds.). Lecture Notes in Artificial
Intelligence, Vol. 3963. Springer, Kusadasi, Turkey, 106–124.

Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma, Paola Mello, and Paolo Torroni. 2008.
Verifiable Agent Interaction in Abductive Logic Programming: the SCIFF Framework. ACM Transac-
tions on Computational Logic 9, 4 (2008), 29:1–29:43.

Marco Alberti, Anna Ciampolini, Marco Gavanelli, Evelina Lamma, Paola Mello, and Paolo Torroni. 2003. A
Social ACL Semantics by Deontic Constraints. In Multi-Agent Systems and Applications III. Proceedings
of the 3rd International Central and Eastern European Conference on Multi-Agent Systems, CEEMAS
2003 (Lecture Notes in Artificial Intelligence), V. Mar̆ı́k, J. Müller, and M. Pĕchouc̆ek (Eds.), Vol. 2691.
Springer Verlag, Prague, Czech Republic, 204–213.

Marco Alberti, Marco Gavanelli, Evelina Lamma, Paola Mello, Giovanni Sartor, and Paolo Torroni. 2006a.
Mapping Deontic Operators to Abductive Expectations. Computational and Mathematical Organization
Theory 12, 2–3 (Oct. 2006), 205 – 225. DOI:http://dx.doi.org/10.1007/s10588-006-9544-8

Marco Alberti, Marco Gavanelli, Evelina Lamma, Paola Mello, and Paolo Torroni. 2004. Modeling Interac-
tions Using Social Integrity Constraints: A Resource Sharing Case Study. In Declarative Agent Lan-
guages and Technologies, João Alexandre Leite, Andrea Omicini, Leon Sterling, and Paolo Torroni
(Eds.). Lecture Notes in Artificial Intelligence, Vol. 2990. Springer-Verlag, 243–262. First International
Workshop, DALT 2003. Melbourne, Australia, July 2003. Revised Selected and Invited Papers.

Marco Alberti, Marco Gavanelli, Evelina Lamma, Giovanni Sartor, and Paolo Torroni. 2006b. Un Sistema
Basato su Logica Computazionale per il Trattamento degli Operatori Deontici. In La Gestione e la Ne-
goziazione Automatica dei Diritti sulle Opere dell’Ingegno Digitali: Aspetti Giuridici e Informatici, Silvia
Bisi and Claudio di Cocco (Eds.). Gedit, Bologna, Chapter 1, 1–33.

Matteo Baldoni, Cristina Baroglio, Elisa Marengo, and Viviana Patti. 2012. Supporting the Analysis of Risks
of Violation in Business Protocols: The MiFID Case Study. Physica-Verlag HD, Heidelberg, 545–553.
DOI:http://dx.doi.org/10.1007/978-3-7908-2789-7 59

Matteo Baldoni, Cristina Baroglio, Katherine M. May, Roberto Micalizio, and Stefano Tedeschi. 2016. Com-
putational Accountability. In URANIA 2016 Deep Understanding and Reasoning: A challenge for Next-
generation Intelligent Agents (CEUR Workshop Proceedings - AI*IA Series), Paola Mello, Michela Mi-
lano, and Federico Chesani (Eds.).

Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan
Zhu. 2003. Bounded Model Checking. Advances in Computers 58 (2003), 117 – 148.
DOI:http://dx.doi.org/10.1016/S0065-2458(03)58003-2

Olivier Boissier, Marco Colombetti, Michael Luck, John-Jules Ch. Meyer, and Axel Polleres.
2013. Norms, organizations, and semantics. Knowledge Eng. Review 28, 1 (2013), 107–116.
DOI:http://dx.doi.org/10.1017/S0269888912000367

Mark Bovens. 1998. The quest for responsibility - Accountability and Citizenship in Complex Organizations.
Cambridge University Press, Cambridge.

C. Castelfranchi. 1995. Commitments: From individual intentions to groups and organizations. In Proceed-
ings of the First International Conference on Multiagent Systems, San Francisco, California, USA. AAAI
Press, San Francisco, California, 41–48.

J. G. Cederquist, R. Conn, M. A. C. Dekker, S. Etalle, and J. I. den Hartog. 2005. An audit logic for ac-
countability. In Sixth IEEE International Workshop on Policies for Distributed Systems and Networks
(POLICY’05). IEEE, 34–43. DOI:http://dx.doi.org/10.1109/POLICY.2005.5

Federico Chesani, Paola Mello, Marco Montali, and Sergio Storari. 2007. Testing Careflow Process Execution
Conformance by Translating a Graphical Language to Computational Logic. In Proceedings of the 11th
Conference on Artificial Intelligence in Medicine (AIME ’07). Springer-Verlag, Berlin, Heidelberg, 479–
488. DOI:http://dx.doi.org/10.1007/978-3-540-73599-1 64

Federico Chesani, Paola Mello, Marco Montali, and Paolo Torroni. 2011. Modeling and verifying business
processes and choreographies through the abductive proof procedure SCIFF and its extensions. Intelli-
genza Artificiale 5, 1 (2011), 101–105. DOI:http://dx.doi.org/10.3233/IA-2011-0011

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

http://dx.doi.org/10.1007/s10588-006-9544-8
http://dx.doi.org/10.1007/978-3-7908-2789-7_59
http://dx.doi.org/10.1016/S0065-2458(03)58003-2
http://dx.doi.org/10.1017/S0269888912000367
http://dx.doi.org/10.1109/POLICY.2005.5
http://dx.doi.org/10.1007/978-3-540-73599-1_64
http://dx.doi.org/10.3233/IA-2011-0011

A:20 M. Gavanelli et al.

Amit K. Chopra and Munindar P. Singh. 2014. The thing itself speaks: Accountability as a foundation for
requirements in sociotechnical systems. In IEEE 7th International Workshop on Requirements Engineer-
ing and Law, RELAW 2014, 26-26 August, 2014, Karlskrona, Sweden, Daniel Amyot, Annie I. Antón,
Travis D. Breaux, Aaron K. Massey, and Alberto Siena (Eds.). IEEE Computer Society, Karlskrona,
Sweden, 22. DOI:http://dx.doi.org/10.1109/RELAW.2014.6893477

Anna Ciampolini, Paola Mello, Marco Montali, and Sergio Storari. 2005. Using Social Integrity Constraints
for On-the-Fly Compliance Verification of Medical Protocols. In 18th IEEE Symposium on Computer-
Based Medical Systems (CBMS 2005), 23-24 June 2005, Dublin, Ireland. IEEE Computer Society, Trin-
ity College Dublin, Ireland, 503–505. DOI:http://dx.doi.org/10.1109/CBMS.2005.102

Benjamin Cox, J.D. Tygar, and Marvin Sirbu. 1995. NetBill Security and Transaction Protocol. In Proceed-
ings of the First USENIX Workshop on Electronic Commerce. USENIX Association, New York.

Thomas Eiter and Georg Gottlob. 1995. The Complexity of Logic-based Abduction. J. ACM 42, 1 (Jan. 1995),
3–42. DOI:http://dx.doi.org/10.1145/200836.200838

N. Fornara and M. Colombetti. 2003. Defining Interaction Protocols using a Commitment-based Agent Com-
munication Language. In Proceedings of the Second International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS-2003), J. S. Rosenschein, T. Sandholm, M. Wooldridge, and
M. Yokoo (Eds.). ACM Press, Melbourne, Victoria, 520–527.

T. H. Fung and R. A. Kowalski. 1997. The IFF proof procedure for abductive logic programming. Journal of
Logic Programming 33, 2 (1997), 151–165.

J. Jaffar and M.J. Maher. 1994. Constraint Logic Programming: a Survey. Journal of Logic Programming
19-20 (1994), 503–582.

Özgür Kafalı, Nirav Ajmeri, and Munindar P. Singh. 2016. Revani: Revising and Verify-
ing Normative Specifications for Privacy. IEEE Intelligent Systems 31, 5 (2016), 8–15.
DOI:http://dx.doi.org/10.1109/MIS.2016.89

Rajashekar Kailar. 1996. Accountability in Electronic Commerce Protocols. IEEE Trans. Softw. Eng. 22, 5
(May 1996), 313–328. DOI:http://dx.doi.org/10.1109/32.502224

A. C. Kakas, R. A. Kowalski, and Francesca Toni. 1993. Abductive Logic Programming. Journal of Logic and
Computation 2, 6 (1993), 719–770.

Marco Montali. 2010. Specification and Verification of Declarative Open Interaction Models: a Logic-Based
Approach. Lecture Notes in Business Information Processing, Vol. 56. Springer.

Roger M. Needham and Michael D. Schroeder. 1978. Using Encryption for Authentication in Large Networks
of Computers. Commun. ACM 21, 12 (December 1978), 993–999.

Maja Pesic and Wil M. P. van der Aalst. 2006. A Declarative Approach for Flexible Business Pro-
cesses Management. In Business Process Management Workshops: BPM 2006 International Work-
shops, BPD, BPI, ENEI, GPWW, DPM, semantics4ws, Vienna, Austria, September 4-7, 2006. Pro-
ceedings, Johann Eder and Schahram Dustdar (Eds.). Springer, Berlin, Heidelberg, 169–180.
DOI:http://dx.doi.org/10.1007/11837862 18

Fariba Sadri, Francesca Toni, and Paolo Torroni. 2003. Minimally Intrusive Negotiating Agents for Resource
Sharing. In Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI’03).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 796–801. http://dl.acm.org/citation.cfm?
id=1630659.1630774

Munindar P. Singh. 1998. Agent Communication Languages: Rethinking the Principles. IEEE Computer 31,
12 (Dec. 1998), 40–47. DOI:http://dx.doi.org/10.1109/2.735849

Paolo Torroni, Federico Chesani, Paola Mello, Pinar Yolum, Munindar P. Singh, Marco Alberti, Marco Ga-
vanelli, and Evelina Lamma. 2009. Modeling Interactions via Commitments and Expectations. In Hand-
book of Research on Multi-Agent Systems: Semantics and Dynamics of Organizational Models, Vir-
ginia Dignum (Ed.). Information Science Reference, Hershey, PA, 263–284. http://www.igi-global.com/
reference/details.asp?ID=33141

Ibo Van de Poel, Lambèr Royakkers, and Sjoerd D. Zwart. 2015. Moral Responsibility and the Problem of
Many Hands. Routledge.

Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager. 2012. SWI-Prolog. Theory and Prac-
tice of Logic Programming 12, 1-2 (2012), 67–96. DOI:http://dx.doi.org/10.1017/S1471068411000494

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

http://dx.doi.org/10.1109/RELAW.2014.6893477
http://dx.doi.org/10.1109/CBMS.2005.102
http://dx.doi.org/10.1145/200836.200838
http://dx.doi.org/10.1109/MIS.2016.89
http://dx.doi.org/10.1109/32.502224
http://dx.doi.org/10.1007/11837862_18
http://dl.acm.org/citation.cfm?id=1630659.1630774
http://dl.acm.org/citation.cfm?id=1630659.1630774
http://dx.doi.org/10.1109/2.735849
http://www.igi-global.com/reference/details.asp?ID=33141
http://www.igi-global.com/reference/details.asp?ID=33141
http://dx.doi.org/10.1017/S1471068411000494

	Introduction
	Preliminaries: the SCIFF language
	The SCIFF proof-procedure

	Accountability in SCIFF
	Syntactic features that ensure accountability
	Checking accountability
	Related work
	Conclusions

