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Abstract: This paper presents a two-step methodology for the stochastic generation of snapshot 
peak demand scenarios in water distribution networks (WDNs), each of which is based on a single 
combination of demand values at WDN nodes. The methodology describes the hourly demand at 
both nodal and WDN scales through a beta probabilistic model, which is flexible enough to suit 
both small and large demand aggregations in terms of mean, standard deviation, and skewness. 
The first step of the methodology enables generating separately the peak demand samples at WDN 
nodes. Then, in the second step, the nodal demand samples are consistently reordered to build 
snapshot demand scenarios for the WDN, while respecting the rank cross-correlations at lag 0. The 
applications concerned the one-year long dataset of about 1000 user demand values from the district 
of Soccavo, Naples (Italy). Best-fit scaling equations were constructed to express the main statistics 
of peak demand as a function of the average demand value on a long-time horizon, i.e., one year. 
The results of applications to four case studies proved the methodology effective and robust for 
various numbers and sizes of users. 
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1. Introduction 
The last three decades have seen the spread of physically based models, which are 

used by water utility staff for replicating the nonlinear behavior of water distribution 
networks (WDNs) with specific objectives, such as contingency planning, network 
optimization, and strategy planning [1,2]. Among the critical inputs of WDN modelling, 
nodal demands play a major role [3]. Therefore, numerous research efforts have recently 
been dedicated to the accurate assessment of nodal demands, while benefitting from 
increasingly large datasets provided by smart water metering technologies [4]. 

A viable option to reconstruct demand lies in the application of the bottom-up 
stochastic approach [5], which is the topic of the present paper. This approach aims to 
reconstruct the whole WDN demand starting from the single nodes upward, while 
representing the single nodal demands as stochastic variables. 

If the focus is the representation of demand at very fine spatial and temporal scales, 
pulse generation models can be used (e.g., see [6] for a review of these models), which can 
reproduce the arrival time, duration, and intensity of demand pulses generated by each 
faucet present in any WDN node. The output of these models can be used as an input to 
unsteady flow models with large computational overhead, as was shown in work [3]. 
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Other kinds of approaches can be used when larger time steps are considered. If the 
focus is to reproduce nodal demand time series with values aggregated at temporal step 
ranging from minutes to hours, methodologies such as those proposed in the works [7–
10] can be used. The output of these methodologies can be used as an input to the extended 
period simulation, which represents the behavior of the WDN as a succession of steady 
states [5]. The overall pulse model of Gargano et al. [8] aims to extend the concept of pulse 
from the representation of the instantaneous demand of the single faucet to the 
representation of the overall demand of one user or one node at a larger time step. In the 
methodology of Alvisi et al. [7], the demand associated with the generic time step is 
represented by the random variable through the multinomial probability distribution, 
with predetermined mean and standard deviation. Furthermore, cross-correlations 
between timeseries at lag 0 and lag 1 are considered. Compared to [7], the methodology 
of Creaco et al. [10], based on the beta probability distribution, preserves the skewness in 
demand time series and enforces correlations between time series at all lags. Furthermore, 
Creaco et al. [10] also presented a procedure to reconcile the generated demand time series 
with demand pulses generated at fine time step, thus enabling reconstruction of demand 
at any time step. The methodology of Kossieris et al. [9] is based on the mixed-type 
distribution for the representation of demand time series, while yielding similar 
performance to the methodology of Creaco et al. [10]. 

In various cases, the modelling objective has focused on exploring the performance 
and reliability of the WDN only in peak demand scenarios, with no need to investigate 
the temporal pattern of demand [5]. Starting from the early decades of the twentieth 
century [11], the peak demand has been the subject of numerous works, aimed at 
estimating the daily peak demand coefficient, as the ratio of maximum to daily average 
demand, as a function of the number of users. While the first works described this 
coefficient as a deterministic variable e.g., see [11–14], Tricarico et al. [15] were among the 
first to present the daily peak demand coefficient as a random variable. The probabilistic 
approach in [15] was later refined by Gargano et al. [16], who successfully described the 
daily peak demand coefficient using three probability distributions, namely the log-
normal, Gumbel, and log-logistic distributions. Furthermore, Gargano et al. [16] used 
statistical analysis to express the parameters of these distributions as a function of the 
number of users and of the temporal step used for demand representation. Balacco et al. 
[17] used a different probabilistic framework, based on the exponential and Gumbel 
distributions, to develop a relationship between the above mentioned daily peak demand 
coefficient and the number of users. The applications of Balacco et al. [17] concerned 
several towns in Puglia. Finally, Del Giudice et al. [18] provided a methodological 
framework to investigate the main features of water demand hourly peak coefficients, 
with the objective to estimate the sample mean of hourly peak factors, the associated 
standard error (allowing definition of confidence bands), and its probability distribution. 
While considering the sample means normally distributed, they also provided empirical 
relations to express the sample mean and standard error as a function of the number of 
users. Though providing formulations and relationships that can be profitably used by 
practitioners to estimate the overall peak demand coefficient in a WDN, the 
methodologies in [15–18] fail to describe how the peak must be allocated to its nodes. In 
fact, in a generic peak scenario, the adoption of a single peak demand coefficient at all 
nodes, according to the deterministic top-down approach [5], may lead to an unrealistic 
representation of the peak demand in the WDN. One of the few works aimed at 
reconstructing the snapshot peak demand scenario in an entire WDN, as the combination 
of peak demands at all the nodes, is that of Magini et al. [19]. In the methodology 
presented in [19], combinations of simultaneous nodal demands are first generated 
through the gamma probability distribution with parameters expressed as a function of 
the number of nodal users by means of scaling laws. Then, nodal demand series are 
resorted to preserve correlation between nodes through the Iman–Canover method [20]. 
Though the methodology of Magini et al. [19] performs effectively at reconstructing peak 
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demands through the bottom-up approach, the following aspects in [19] require further 
analysis and are therefore explored in the present paper: 
• Being based on two parameters, the gamma probability distribution used in [19] 

enables respecting statistics of user demands only up to the second order, i.e., mean 
and standard deviation. Therefore, the question arises if more complex distributions, 
such as the beta distribution with tunable bounds [10], can be used to respect bounds 
and statistics of user demands up to the third order i.e., including the skewness; 

• The scaling laws used in [19] for expressing the moments of the peak demand are 
based on the number of users as independent variable. However, demand may differ 
significantly from a user to another, being affected by the number and kind of 
household occupants, which is often unknown and/or variable in the year. Therefore, 
the average demand value on the long run, i.e., one year, is a more significative 
variable than the number of nodal users and can be considered as the independent 
variable for more well-founded scaling equations; 

• In some cases, there may not be enough demand data to calibrate the scaling 
equations for estimating rank cross-correlations between nodal peak demands. 
Therefore, the question arises if an alternative procedure can be conceived to impose 
cross-correlations in the WDN. 
The rest of the paper is organized as follows. Section 2 contains the methodology. 

Section 3 contains the applications, i.e., datasets from the district of Soccavo, Naples, Italy 
[10,18,21] and results. Sections 4 and 5 contain the discussions and conclusions, 
respectively. 

2. Methodology 
The methodology adopted in this paper consists of two steps, i.e., step 1 and step 2, 

which follow a preliminary step 0. As the flow chart in Figure 1 shows, step 0 operates on 
the smart metering data of measured consumption at the users of a WDN. It aims to create 
aggregated datasets of measured peak demands associated with growing values of the 
average demand on the long run. Step 1 concerns parameterization of a beta probability 
distribution model for the bottom-up generation of peak demand samples as a function 
of the average demand. Step 2 concerns the resorting of generated demand samples to 
preserve the expected degrees of rank cross-correlation in a WDN. In the following 
subsections, the preliminary step 0, and steps 1 and 2 of the methodology are described. 

2.1. Step 0—Creation of the Dataset 
The objective of Step 0 is to obtain samples of measured peak demand (for different 

aggregation levels) associated with various values of the average demand on the long run. 
As is explained below, these samples are obtained by aggregating the peak demand 
measurements at the users of a WDN. However, the level of aggregation at which the 
generic average demand value on the long run is obtained is not relevant for the statistical 
analyses of Steps 1 and 2. 

Step 0 starts from the recorded timeseries of demand at a high number nu of users of 
a WDN with the temporal resolution of one hour, which corresponds to the typical time 
step used for WDN modelling, covering a period of at least one year. This dataset will 
look like the demand data 𝑑 , with subscript i and superscript j associated with the i-th 
of the nu users and with the j-th of the 8760 h in the year (8760 = 24 h ×365 days), reported 
as a matrix in Table 1. It must be noted that the number 8760 for the hours is used here for 
explicative reasons, without loss of generality. Longer durations of timeseries could also 
be adopted. For the timeseries recorded at the i-th user, the long-time average 𝑑  can be 
easily calculated (final row of the matrix in Table 1). If the series duration is one year, as 
is assumed implicitly hereinafter, 𝑑  represents the yearly average. 

The first operation to carry out in Table 1 lies in the selection of the data to be used 
for the statistics, based on a certain criterion, e.g., the data of a certain hour of the day in 
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a certain period of the year, e.g., the morning peak in working weekdays. In this context, 
let us assume that Ntot hours of the year (with Ntot < 8760), which are considered 
homogeneous from the statistical viewpoint, are selected leading to the dataset shown in 
Table 2. The yearly average value in Table 2 is kept the same as that in Table 1, since it 
does not depend on the criterion chosen to select the Ntot hours of the year. 

 
Figure 1. Flowchart of the methodology. 

Table 1. Explicative dataset of recorded time series for nu users in the whole year. See text. 

Time (h) User 1 User 2 User 3 … User nu-1 User nu 
1 𝑑  𝑑  𝑑  … 𝑑  𝑑  
2 𝑑  𝑑  𝑑  … 𝑑  𝑑  
… … … … … … … 

8759 𝑑  𝑑  𝑑  … 𝑑  𝑑  
8760 𝑑  𝑑  𝑑  … 𝑑  𝑑  

Yearly Average 𝑑  𝑑  𝑑  … 𝑑  𝑑  

Table 2. Explicative dataset of demands for nu users in Ntot selected hours of the year. See text. 

Selected Times User 1 User 2 User 3 … User nu-1 User nu 
1 𝑑  𝑑  𝑑  … 𝑑  𝑑  
2 𝑑  𝑑  𝑑  … 𝑑  𝑑  

… … … … … … … 
Ntot−1 𝑑  𝑑  𝑑  … 𝑑  𝑑  
Ntot 𝑑  𝑑  𝑑  … 𝑑  𝑑  

Yearly Average 𝑑  𝑑  𝑑  … 𝑑  𝑑  

Then, the spatial aggregation is performed by randomly summing the columns of 
Table 2 from the left to the right, to obtain the aggregated demands 𝐷  and the 
aggregated yearly averages 𝐷  (see Table 3), calculated by the two following formulas, 
respectively: 𝐷 ∑ 𝑑 , (1)𝐷 ∑ 𝑑 ,. (2)
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Table 3. Explicative dataset of nu aggregated demands in Ntot selected hours of the year. See text. 

Selected Times Aggregation 1 
Aggregation 

2 Aggregation 3 … Aggregation nu−1 
Aggregation 

nu 
1 𝐷  𝐷  𝐷  … 𝐷  𝐷  
2 𝐷  𝐷  𝐷  … 𝐷  𝐷  
… … … … … … … 

Ntot-1 𝐷  𝐷  𝐷  … 𝐷  𝐷  
Ntot 𝐷  𝐷  𝐷  … 𝐷  𝐷  

Yearly Average 𝐷  𝐷  𝐷  … 𝐷  𝐷  

The spatial aggregation can be reiterated various times, considering a different 
(random) sequence of users at each time. This will result in a different sequence of 
aggregated demands. Of course, the last aggregations (for i slightly lower than nu) will be 
potentially very similar, while the very last ones (for i = nu) will be identical between each 
other. In fact, for i = nu, all demands at time instant j are considered in all sequences within 
the aggregation. It is worth noting that reiterating n times Step 0 is likely to reproduce 
Table 3 n times, where in each column (i.e., for a given aggregation), different values are 
found related to the appropriate yearly average 𝐷 . At the end of Step 0, the n tables 
obtained can be concatenated horizontally. The demand samples associated with the not 
aggregated measured demand (i.e., Table 2) are also concatenated at the end, to include 
numerous demand data associated with low values of Dy that would not be generated in 
the aggregation process. Finally, the columns of the final dataset are sorted in ascending 
order of Dy and the doublet columns potentially present are removed. As a result, the final 
dataset contains peak demand samples for growing values of Dy, independently of the 
aggregation level. 

2.2. Step 1—Beta Probability Distribution with Tuneable Bounds 
The beta probability distribution with tunable bounds was chosen in this work to 

represent the generic aggregated demand Di in each column of Table 3. This choice was 
due to its capability of reproducing the statistics of demand series in terms of mean, 
standard deviation, and skewness, as was shown by Creaco et al. [10]. 

The density function f of the beta distributed random variable Di, representing the 
water demand of a generic aggregation (see Table 3), is [22]: 𝑓 𝐷 = , , (3)

in which B, α and β are the beta function and the positive shape parameters, respectively. 
Finally, a ≥ 0 and b > a are the lower and upper bounds, respectively. Parameters α and β, 
and bounds a and b can be related to mean Dmean and standard deviation σ of Di through 
the following Equations (4)–(7): 𝛼 = �̅� − 1 , (4)

𝛽 = 1 − �̅� �̅� 1 − �̅�𝜎 − 1 , (5)

where: �̅� = ; (6)𝜎 = 𝜎𝑏 − 𝑎. (7)

The skewness γ of the beta probability function can be evaluated as a function of α 
and β as: 
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𝛾 = 2 𝛽 − 𝛼 𝛼 + 𝛽 + 1𝛼 + 𝛽 + 2 𝛼𝛽 . (8)

For any pair of values of a (<Dmean) and b (>Dmean), α and β can be obtained from 
Equations (4) and (5) while respecting mean Dmean and standard deviation σ of demand Di. 
This occurs if Dmean and σ, in Equations (6) and (7), respectively, are set equal to the mean 
and standard deviation of the measured demand variable Di (method of the moments). 
However, each a, b pair determines different values of the shape parameters α and β, and 
subsequently of γ. In this work, a was set at the minimum observed value Dmin of Di (which 
was therefore an additional parameter of the probability distribution model), while b was 
suitably modified. In practice, the increase (or decrease) in b results in the lengthening (or 
shortening) of the right tail of the probability distribution, and therefore in the increase 
(or decrease) in the value of γ. The best value of b can be found by solving numerically an 
implicit equation obtained by setting γ at the observed value γobs in Equation (8), after 
replacing α, β, �̅�, and 𝜎, as they are expressed in Equations (4)–(7). In this work, a local 
optimization based on the active-set method [23] aimed at minimizing the absolute 
difference between γ in Equation (8) and γobs was applied with an initial value of b equal 
to the measured maximum value of Di to find a solution of the implicit equation. 

Summing up what is reported above, parameters α and β, and bounds a and b can be 
univocally identified starting from minimum Dmin, mean Dmean, standard deviation σ, and 
skewness γ in the measured demand data. Best-fit scaling equations can be constructed to 
relate Dmin, Dmean, σ, and γ of the random variable Di, i.e., the demand in the peak hour in 
working weekdays, to the yearly average demand 𝐷 . This enables obtaining a 
probability model to generate samples of peak demand values for any value of yearly 
average demand, when single or aggregated users have similar characteristics to those 
considered for model parameterization (available data). Specifically, the probability 
distribution model can be applied to generate a sample of Ng peak demand values (Di) for 
the generic node i (with known value of the yearly average demand 𝐷 ) of a WDN. It can 
also be applied to generate a sample of Ng demand values (𝐷 ) for the whole WDN, 
which has a known value of the yearly average demand 𝐷 . However, if rank cross-
correlations between nodes are neglected, the peak demand estimate DWDN* obtained for 
the whole WDN by summing all nodal demand samples, i.e., 𝐷 ∗ = ∑ 𝐷  with Nn 
equal to the number of nodes in the WDN, may not respect the expected statistics of 
standard deviation and skewness for the yearly average demand 𝐷  of the whole 
WDN. The next subsection deals with the resorting of the demand samples generated for 
each WDN node to preserve the Spearman rank cross-correlations at lag 0. 

2.3. Step 2—Re-Sorting of Generated Demand Samples 
The algorithm used in this work to enforce rank cross-correlation is based on a 

modified version [24] of the Gaussian Copula [25]. Let us assume we have used Step 1 of 
the methodology to generate uncorrelated demand samples of Ng peak demands 𝐷  for 
Nn nodes in a WDN, where subscript i and superscript j range from 1 to Nn and from 1 to 
Ng, respectively. This method consists of generating Nn samples of Ng values 𝑦 , sampled 
from random variables with mean values to 0 and standard deviations equal to 1 through 
the multivariate normal distribution characterized by a correlation matrix with sizes Nn x 
Nn, in which the generic element ρk,l represents the expected rank cross-correlation 
between peak demand Dk for the generic node k and peak demand Dl for the generic node 
l. The rank cross-correlation matrix is symmetric with diagonal element equal to 1. To 
enforce the expected rank cross-correlations ρk,l, the values 𝐷  must be reordered using 
the same sorting as 𝑦 . 

If datasets of peak demand are available, such as those obtained from step 0 of this 
methodology, the values of rank cross-correlation can be calculated by confronting a k-
column of one dataset with the l-column of another. Then, a best-fit scaling equation can be 
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constructed to relate rank cross-correlations ρk,l to the yearly average demands of 
nodes/aggregations k and l. By applying this equation, the rank cross-correlation for two 
generic WDN nodes with similar characteristics of peak demand to the datasets can be 
evaluated. 

If the peak demand datasets are not numerous enough to enable robust best-fit 
equations, the following simplified procedure can be applied. This procedure is based on 
a numerical optimization and considers a single value of correlation ρ in the WDN. In 
other words, ρk,l = ρ for any pair of nodes k and l in the network. The optimal value of ρ is 
searched for by applying a local optimization based on the active-set method [23], to 
obtain a cumulative distribution of 𝐷 ∗  close to that of 𝐷 . Summing up, with 
reference to the uncorrelated demand samples of Ng peak demands 𝐷  for the Nn nodes 
and to the sample of Ng peak demands 𝐷  for the whole WDN, both available from 
Step 1, the following instructions are carried out for each value of ρ proposed by the 
optimizer: 
1. Resort the Nn samples of Ng peak demands 𝐷  following the  ρ-based sort obtained 

through the Copula algorithm. 
2. Estimate the 1-norm distance between the cumulative distribution of 𝐷 ∗  and of 𝐷 , i.e., the sum of the absolute difference between 𝐷 ∗  and 𝐷  evaluated 

for the different values of the cumulative frequency. 
When the optimizer converges, the best value of ρ that minimizes the 1-norm 

distance between the two cumulative distributions (objective function) is obtained. 
At the end of Step 2, Ng scenarios of peak demands 𝐷  will be available. The generic 

j-th of the Ng scenarios contains the re-sorted peak demand values 𝐷 , with i ranging from 
1 to Nn nodes of the WDN. 

3. Applications 
3.1. Data 

The applications of this work were carried out using the users’ demand collected 
with a smart metering system from the Soccavo district of Naples, Italy. These data have 
already been used in the scientific literature [10,18,21]. They include the demand time 
series of nu = 1067 residential users with one hour resolution, for a total time period of one 
year (8760 values for each user), from 20 March 2017 h 0–1, to 19 March 2018 h 23–24. The 
demand time series data available from the monitoring of the Soccavo district are 
characterized by yearly average demands dy ranging from 3.47 × 10−4 to 0.014 L/s. Further 
details can be found in the work of Fiorillo et al. [21]. The application of the first part of 
the preliminary Step 0 of the methodology (see Tables 1 and 2) enabled selection of Ntot = 
228 h in the year, corresponding to the morning peak from 8 am to 9 am in the working 
weekdays in all the months of the year except for August, which showed a very different 
behavior from the rest of the year. Then, in the second part of Step 0, two datasets were 
randomly generated for the Step 1 of the methodology. Each dataset was obtained by 
iterating the aggregation procedure based on Equations (1) and (2) (see Tables 2 and 3) for 
n = 50 times. As subsets of these two datasets, four smaller datasets (two with n = 1 and 
two with n = 2) were used for Step 2 of the methodology, that is for the characterization of 
the rank cross-correlation. The numerosity of these datasets was chosen to obtain a 
sufficiently representative group of datasets for assessing the parameters of the beta 
probability distribution and the rank cross-correlations, respectively. In the following 
subsections, first the results of Step 1 and Step 2 are described, followed by explicatory 
applications of the methodology for demand generation in WDNs. Only for clarity’s sake, 
it is worth reminding at this stage that each dataset is organized like in Table 3, with each 
column reporting peak demand values D associated with a certain value of yearly average 
demand Dy. 
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3.2. Results of Step 1 
Since the parameters α and β, and bounds a and b of the beta probability distribution 

can be evaluated only if the minimum value Dmin, mean Dmean, standard deviation σ, and 
skewness γ have been assigned, best-fit scaling equations were constructed to relate Dmin, 
Dmean, σ, and γ of the peak demand D to the yearly average demand Dy. Therefore, the two 
datasets constructed in Step 0 were used for constructing/calibrating and for validating 
the best-fit equations, respectively. In the graphs in Figure 2, Dmin, Dmean,  σ, and γ are 
plotted against Dy for the peak demands D in the calibration datasets, independently of 
the aggregation level. These graphs show very regular increasing patterns of the first three 
parameters as a function of Dy. Though all peak demands have a clearly positive 
asymmetry, the pattern of γ shows instead some irregularities, maybe because Dy is 
unable to explain alone the variability in γ. Linear best-fit models were used to express 
Dmin and Dmean. Due to the change in slope in the pattern σ(Dy) at around Dy = 0.02 L/s, a 
combination of two linear models was chosen for σ. Finally, an exponentially decreasing 
model was chosen for γ. The best-fit scaling equations are reported in the following Table 
4, pointing out very high-fitting performance in terms of R2 for the first three parameters 
and a sufficient performance for γ (see also the lines in the graphs in Figure 2). 

 
Figure 2. (a) Minimum value Dmin, (b) mean value Dmean, (c) standard deviation σ, and (d) skewness 
γ in peak demand D as a function of the yearly average demand Dy, as obtained from calibration 
dataset (grey dots) and from best-fit equations (black lines). 

The goodness of fit of the best-fit equations persisted in the validation dataset (see 
graphs in Figure 3 and the last column in Table 4). 

A last verification of the beta probability model with parameters estimated through 
the best-fit scaling equations for Dmin, Dmean, σ, and γ is shown in the graphs in Figure 4. 
Each graph allows comparing the histogram of normalized frequencies of the measured 
peak demand for a certain value of yearly average demand Dy, with the beta probability 
density function associated with same value of Dy. Globally, Figure 4 points out a 
satisfactory agreement for both low (graphs a and b) and high (graphs c and d) values of 
Dy. Incidentally, it must be remarked that the low and high values of yearly average 
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demand Dy determined different patterns for the probability density function of peak 
demand D, since the probability of values of D close to 0 is high for the former and null 
for the latter. Furthermore, it must be remarked that the beta probability model enabled 
preservation of the skewness values obtained with the best-fit equation reported in Table 
4. In fact, in the four case studies, it provided γ values equal to 1.7595, 1.6148, 0.2156, and 
0.2156, respectively. If applied in the same context and parameterized only based on Dmean 

and σ, the gamma probability model described in the work [19] would provide γ values 
equal to 1.9560, 1.9560, 0.1760, and 0.1605. Therefore, it would overestimate or 
underestimate the skewness for the low or high values of Dy, respectively. Another benefit 
of the beta probability model is that it fits the minimum value Dmin of D better than the 
gamma probability model, for which Dmin=0 for any value of Dy. 

 
Figure 3. (a) Minimum value Dmin, (b) mean value Dmean, (c) standard deviation σ, and (d) skewness 
γ in peak demand D as a function of the yearly average demand Dy, as obtained from validation 
dataset (grey dots) and from best-fit equations (black lines). 

Table 4. Best-fit equation obtained for each of the four parameters of the probability model and for the rank cross-
correlation. R2 in calibration and validation. 

Equation R2 (-) in Calibration R2 (-) in Validation 
Dmin = max(0. 1.423Dy − 0.105) 0.998 0.998 

Dmean = 1.817Dy 1.000 1.000 
σ = 1.78Dy for Dy ≤ 0.02 L/s 

0.995 0.994 
σ = 0.138Dy + 0.033 for Dy > 0.02 L/s 

γ = 0.216+(1.886 − 0.216) exp (−17.781 Dy) 0.428 0.459 
ρ = [−110.73 prod2 + 9.199 prod + 0.002]∙ratio0.15 for (prod) ≤ 0.04 L2/s2 

0.904 0.921 
ρ = [0.130 ln(prod) + 0.624]∙ratio0.15 for (prod) > 0.04 L2/s2 

3.3. Results of Step 2 
The four datasets constructed in Step 0 to explore rank cross-correlation were used 

to construct/calibrate and validate best-fit scaling equations. Calibration was carried out 
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using one dataset with n = 1 and one dataset with n = 2. Validation was carried out using 
the other dataset with n = 1 and the other dataset with n = 2. In either phase, rank cross-
correlations (different combinations of k and l columns) were calculated between the peak 
demand samples in the dataset with n = 1 and those in the dataset with n = 2. Values of 
the rank cross-correlations equal to 1 due to the presence of identical peak demand 
samples were discarded from the analysis. The rank cross-correlations between the very 
much aggregated peak demands were also removed because the random sequential 
aggregation leads to overly similar peak demand samples at the last iterations and, 
therefore, to misleading rank cross-correlations very close to 1, as it was said above. The 
analysis of the rank cross-correlation ρ between two samples of peak demand showed that 
this variable tends to increase when the product prod of the yearly average demands 
grows. Under the same value of prod, ρ tends to increase when the ratio of the minimum 
(low) to the maximum (high) yearly average demand grows from 0 to 1. The relationship 
between ρ and prod was expressed by a polynomial model and a logarithmic model, valid 
for low and high values of prod, respectively. Both models were multiplied by a power of 
ratio to introduce the dependency of ρ on ratio. The calibrated best-fit equations are 
reported in Table 4, as well as the high-fitting performance in terms of R2 in both 
calibration and validation. The graphs in Figure 5 compare the ρ values obtained from the 
datasets with those obtained through the best-fit scaling equations as a function of prod, 
attesting to the goodness of fit of the latter equations. In fact, in both graphs, the clouds of 
dots associated with the measured and calculated values of ρ as a function of prod are 
satisfactorily overlapped. 

 
Figure 4. For different values of the yearly average demand Dy [(a) 0.0044 L/s, (b) 0.010 L/s, (c) 1.50 
L/s, and (d) 4.21 L/s] probability density p of the peak demand (black line) obtained with the beta 
probability distribution model compared with the histogram of normalized frequencies in the 
measured series. 

Then, some tests were carried out on the numerical optimization procedure for 
sample re-sorting. In fact, for various pairs of values of Dy, peak demand samples were 
generated and re-sorted by using the optimization procedure described above and by 
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enforcing the correlation degree obtained through the best-fit formula. In all cases, the 
optimization-based re-sorting yielded similar rank cross-correlations to those suggested 
by the formula. Other tests of step 2 of the methodology can be found in the following 
subsection. 

3.4. Peak demand Generation in WDNs 
Four case studies, numbered as 1a, 1b, 2a, and 2b, were considered for peak demand 

generation, to test the methodology under different demand conditions. All case studies 
were assumed to have similar peak demand features to the Soccavo district, thus 
legitimizing the applicability of the relationships in Table 4. Obviously, the relationships 
would need to be recalibrated under different peak demand conditions. 

Case study 1a was represented by the WDN serving a small fictitious town quarter 
in Italy. Further details can be found in the work [26]. The quarter was assumed to host 
850 inhabitants, linked to 183 nodes, 170 of which have known nonzero average demand. 
The yearly average demand Dy of the whole WDN was about 1.57 L/s. Case study 1b 
differed from case study 1a due to the amplification of each node demand through a factor 
of 2.5, resulting in a yearly average demand Dy of the whole WDN of about 3.93 L/s. 

 
Figure 5. Rank cross-correlations ρ between peak demands D as a function of the product prod of 
yearly average demands Dy, as obtained from datasets (grey dots) and from best-fit equations 
(black crosses). Calibration and validation in graphs (a) and (b), respectively. 

Case study 2a considered in this work was a skeletonized version of case study 1a. 
Further details can be found in the work [26]. In particular, demanding people’s allocation 
in the skeletonized WDN was carried out considering the criterion of connection 
proximity to the node. To this end, the demanding people placed along the upstream part 
of the generic pipe were allocated to the upstream node in the skeletonized layout, and 
vice-versa. This resulted in 12 nodes associated with known nonzero demand values. Case 
study 2b differed from the case study 2a due to the amplification of demand through a 
factor of 2.5. As expected, the values of Dy for the whole WDN in case studies 2a and 2b 
were equal to those in case studies 1a and 1b, respectively. The Dy values of each 
demanding node in case studies 2a and 2b are reported in Table 5. 

By applying step 1 of the methodology with the best-fit equations for Dmin, Dmean, σ, 
and γ reported in Table 4, (starting from the Dy values in the nodes) samples of peak 
demand D were generated for the WDN nodes in all case studies using the corresponding 
beta probability distributions. Specifically, one sample with Ng = 100,000 peak demand 
values was generated for each node of given yearly average Dy. Then, the WDN peak 
demand DWDN* was obtained by summing the nodal peak demands without resorting. 
Obviously, it was made up of a sample of Ng = 100,000 values. As the graphs in Figure 6 
show, the cumulative distribution of DWDN* may be far from the theoretical cumulative 
distribution DWDN obtained by applying the beta probability model related to the whole 
yearly average demand 𝐷 , especially for larger nodal values of the yearly average 
demand (case studies 1b, 2a, and 2b). 
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Both variants of re-sorting in Step 2 of the methodology, based on the best-fit 
equation and on the optimization, respectively, brought the cumulative distribution of 
DWDN* very close to the theoretical cumulative distribution of DWDN (see Figure 6). 

The single values of rank cross-correlations ρ obtained through the optimization in 
the four case studies were equal to 0.002, 0.0063, 0.1025, and 0.3381, respectively. As 
expected, ρ grew when the average value of Dy at WDN nodes increased. In each case 
study, the ρl,k values obtained through the best-fit equation changed from pair of nodes to 
pair of nodes, but lay around the single value obtained through the optimization. As 
further evidence of the effectiveness of the methodology, the graphs in Figure 7 compare, 
for case study 2a, the histogram of normalized frequencies of DWDN* with the theoretical 
beta probability density function of the peak demand DWDN in the whole WDN, proving 
that only by resorting nodal demand samples can the sum of nodal demand represent the 
expected demand for the whole WDN. 

Table 5. Yearly average demands Dy (L/s) at the various nodes and in the whole WDN in case 
studies 2a and 2b. 

Demanding Node Case Study 2a Case Study 2b 
1 0.11470 0.2868 
2 0.11285 0.2821 
3 0.13135 0.3284 
4 0.09250 0.2313 
5 0.14615 0.3654 
6 0.16835 0.4209 
7 0.21645 0.5411 
8 0.15540 0.3885 
9 0.09065 0.2266 

10 0.13505 0.3376 
11 0.13135 0.3284 
12 0.07770 0.1943 

Total 1.57250 3.9313 

 

Figure 6. In case studies (a) 1a, (b) 1b, (c) 2a, and (d) 2b, cumulative frequency of the peak demand 
in the whole network: theoretical frequency (_________), frequency obtained with no re-sorting (_ 
_ _ _ _), frequency obtained with the equation-based re-sorting (_________), frequency obtained 
with the optimization-based re-sorting (_________). 
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The theoretical mean, standard deviation, and skewness values and the values 
obtained by summing the generated peak nodal demand samples are reported in Table 6, 
showing that the only preserved statistic without data re-sorting was the mean. This is 
because the mean is simply additive. Best-fit equation-based and optimization-based 
resorting yielded significant improvements to preservation of standard deviation and 
skewness. 

 
Figure 7. In case study 2a, comparison of theoretical probability density function of the whole 
peak demand with the histogram of normalized frequencies of the demand obtained by summing 
the single nodal demands and by applying (a) no re-sorting, (b) best-fit equation-based re-sorting, 
and (c) optimization-based resorting. 

Table 6. Statistical consistency of the various methods in case study 2a. 

  Theoretical No Resorting Equation Optimisation 
Mean (L/s) 2.86 2.86 2.86 2.86 

Standard Deviation (L/s) 0.25 0.18 0.27 0.26 
Skewness (-) 0.22 0.10 0.18 0.17 

4. Discussion 
The best-fit scaling equations obtained in the present work to estimate Dmean, σ, and 

ρ, shown in Table 4, can be compared with the scaling laws derived through a theoretical 
framework, e.g., [19,27]. These laws are based on the nodal number of consumers and the 
statistical features of water demand of the typical single user, the unitary user. To put 
them over the same ground as the best-fit equations of this work, the scaling laws were 
reformulated through algebraic manipulations as a function of the yearly average 
demand, instead of the number of users (see Appendix A). The calibration of the scaling 
laws on the Soccavo dataset yielded the following equations: 𝐷 = 1.817𝐷 . (9)𝜎 = 0.182 𝐷 . . (10)
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𝜌 , = .   . .
. . . . . . . (11)

Equation (9) for estimating Dmean is identical to the best-fit equation obtained in the 
present work (see Table 4). Equation (10) for estimating σ has a similar fit to the calibration 
data (R2 = 0.994), in comparison with the best-fit equation obtained in the present work 
(see graphs a and c in Figure 8). However, it must be remarked that the calibration of the 
scaling law causes a significant underestimation of σ for the low values of Dy (see graphs 
b and d in Figure 8). Equation (11) for estimating rank cross-correlation has a globally 
lower goodness of fit (R2 = 0.897, see Figure 9) and tends to underestimate the variability 
in the value of ρ. 

 
Figure 8. (a) Standard deviation σ in the peak demand D as a function of the yearly average 
demand Dy, as obtained from calibration dataset (grey dots) and from best-fit equations of this 
work (black lines); (b) zoom of (a) into the lower values of Dy and σ; (c) standard deviation σ in the 
peak demand D as a function of the yearly average demand Dy, as obtained from calibration 
dataset (grey dots) and from calibrating the theoretical scaling law with the Soccavo data (black 
lines); (d) zoom of (c) into the lower values of Dy and σ. 

As a result of the comparison shown in Figures 8 and 9, best-fit scaling equations 
with a better goodness of fit than the calibrated theoretical scaling laws can be obtained 
to relate the statistical parameters of consumption to the yearly average demand. 

Another issue to be discussed lies in the comparison of the bottom-up approach for 
generating peak demand scenarios with the traditional deterministic top-down approach, 
based on applying amplificative peak coefficients on the yearly average demands Dy at 
WDN nodes. In case study 2a, in the case of nodal demands reconstructed using the 
optimization-based resorting, the peak demand coefficient was evaluated at the WDN 
nodes as the ratio of the peak demand on the yearly average demand. This was done in 
20 demand scenarios featuring similar values of the cumulative frequency F close to 0.5 
evaluated on the whole network demand (see graph c in Figure 6). As Table 7 shows, the 
peak demand coefficient in the whole WDN was about 1.81 in all scenarios. The nodal 
demand coefficients were, instead, quite variable around this value. 
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Figure 9. As a function of the product prod of yearly average demands Dy, comparison of rank 
cross-correlations ρ between peak demands D obtained from calibration datasets (grey dots) with 
the values obtained through (a) the best-fit equations of this work (black crosses) and through (b) 
the calibration of the theoretical scaling law on the Soccavo district (black crosses). 

Table 7. In case study 2a with nodal demands reconstructed based on the optimization-based resorting, peak demand 
coefficient (-) at the nodes and in the whole network in various demand scenarios featuring similar values of the 
cumulative frequency F = 0.5 evaluated on the whole network demand. 

Scenario Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8 Node 9 Node 10 Node 11 Node 12 Total 
1 1.77 2.24 1.42 1.85 2.12 1.59 2.09 1.70 1.64 1.97 1.76 1.27 1.81 
2 1.13 2.39 1.62 1.54 1.65 1.97 2.04 1.96 1.45 2.39 1.49 1.65 1.81 
3 1.93 1.76 2.08 0.90 2.56 2.30 1.70 1.29 2.15 1.16 1.13 3.14 1.81 
4 2.35 1.76 1.96 0.78 2.48 2.06 1.77 1.56 2.13 1.57 1.80 0.97 1.81 
5 1.57 2.26 1.42 1.49 1.98 2.37 1.99 1.49 1.96 1.61 1.30 2.26 1.81 
6 1.71 1.84 1.39 2.62 1.79 1.70 2.03 1.71 2.65 1.92 1.19 1.44 1.81 
7 2.29 2.02 2.20 1.28 1.58 2.12 1.38 1.79 1.96 1.80 1.83 1.64 1.81 
8 1.39 1.62 1.60 1.80 1.39 1.51 2.10 1.80 1.44 2.20 2.55 2.28 1.81 
9 1.78 1.46 2.33 2.01 1.87 2.12 1.54 1.80 1.25 2.20 1.16 2.36 1.81 

10 2.07 1.76 1.63 2.98 1.27 1.51 1.80 2.06 1.75 1.96 1.52 1.93 1.81 
11 2.69 1.43 1.86 2.61 1.80 1.54 1.65 1.30 2.28 1.47 1.92 1.99 1.81 
12 1.70 2.10 2.11 1.68 1.28 1.59 2.37 2.18 1.81 1.59 1.62 1.12 1.81 
13 1.78 1.58 1.48 1.44 2.06 1.81 1.89 2.34 1.23 1.77 1.57 2.60 1.81 
14 2.04 2.13 1.73 1.90 1.43 1.58 1.85 2.01 1.81 1.76 1.43 2.52 1.81 
15 1.86 1.86 1.61 1.12 2.13 1.62 1.42 2.26 2.05 1.95 1.74 2.46 1.81 
16 2.66 1.46 1.96 1.80 2.11 1.69 1.75 1.49 1.10 1.57 2.30 1.78 1.81 
17 2.31 1.71 1.94 2.45 1.97 1.83 1.45 1.39 1.51 2.20 1.49 2.01 1.81 
18 2.30 1.50 2.00 1.40 1.96 1.84 1.88 1.53 2.78 1.70 1.62 1.14 1.81 
19 1.48 1.39 2.50 1.64 1.88 2.11 1.73 1.63 2.30 1.97 1.44 1.55 1.81 
20 1.75 1.67 2.44 1.64 1.83 1.76 1.98 1.64 1.44 1.90 1.80 1.53 1.81 

Min 1.13 1.39 1.39 0.78 1.27 1.51 1.38 1.29 1.10 1.16 1.13 0.97 1.81 
Max 2.69 2.39 2.50 2.98 2.56 2.37 2.37 2.34 2.78 2.39 2.55 3.14 1.81 

To better explore the difference of the bottom-up approach presented in this paper 
and the deterministic top-down approach, Figure 10 presents a comparison in terms of 
histogram of frequencies of the peak demand coefficient at node 1 in case study 2a. Graph 
(a) shows the histogram of frequencies obtained through the bottom-up approach, 
whereas graph (b) shows that obtainable through the deterministic top-down approach, 
by applying to all WDN nodes the same demand coefficient as the whole WDN. The 
comparison points out that the use of the deterministic top-down approach leads to the 
underestimation of the range of variation in the demand coefficient. 
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The results shown in Table 7 and in Figure 10 point out that the bottom-up generation 
presented in this work enables a much more realistic peak demand allocation than the 
standard top-down approach used in the engineering practice, which assigns the peak 
coefficient of the whole WDN to the single nodes. In this context, it must be noted that 
limitation is not inherent in the top-down approach but rather in the way practitioners 
apply it. In fact, there are notable examples in the scientific literature [28,29], where this 
limitation does not appear in the context of the top-down generation of demand time 
series. However, the top-down generation of peak demand scenarios has not been much 
explored so far. 

 
Figure 10. Histogram of frequencies of peak demand coefficient at node 1 in case study 2a, as was 
obtained (a) through the bottom-up stochastic approach presented in this paper and as would be 
obtained (b) through the deterministic top-down approach. 

5. Conclusions 
The main conclusions of this work are the following: 

1. The beta probability distribution model with tunable bounds is effective at 
representing the peak demand at different degrees of aggregation, while successfully 
preserving bounds and statistics up to the third order; 

2. By making use of available data of measured consumption at WDN users, best-fit 
scaling equations can be constructed to relate mean, standard deviation, skewness, 
and rank cross-correlation of peak demands to the yearly average values; 

3. An optimization-based re-sorting of data samples generated at each WDN node with 
the beta probability distribution can be used when there are not enough data to 
calibrate the scaling equations for estimating rank cross-correlations between nodal 
peak demands; 

4. The bottom-up approach presented in this work yields more realistic demand 
scenarios than the deterministic top-down approach used in the engineering practice, 
based on applying single amplificative factors to all WDN nodes. 
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Appendix A 
The theoretical scaling laws are equations derived through a theoretical framework 

based on the assumption that water flow in a meter, corresponding to the water 
consumption of a unit user, is a random variable or realization of a stationary stochastic 
process e.g., see [19,27]. These laws relate the statistics Dmean, σ, and ρ of the aggregated 
users to the corresponding statistics 𝐷 , , 𝜎 , and 𝜌  of the typical unitary user, 
which must be calibrated based on monitored demands. 

The theoretical scaling law for the average demand Dmean is: 𝐷 = 𝑛  𝐷 , . (12)

in which nu is the number of aggregated users. The following manipulations involving the 
introduction of the yearly average demand Dy of the aggregated users lead to equation 
(9): 𝐷 = 𝑛  𝐷 , =  𝐷 , 𝐷 = 𝑝𝑎𝑟 𝐷 . (13)

The theoretical scaling law for the variance σ2, i.e., the square of the standard 
deviation σ, is: 𝜎 = 𝑛 𝜎  (14)

in which θ is an exponent ranging from 1 (fully uncorrelated demands) to 2 (fully 
correlated demands). The following manipulations involving the introduction of the 
yearly average demand Dy lead to Equation (10): 𝜎 = 𝑛 / 𝜎 = / 𝑛 / 𝜎 = / /  𝜎 𝐷 / = 𝑝𝑎𝑟 𝐷 / . (15)

The theoretical scaling law for the rank cross-correlation ρ between demands at 
nodes k and l is: 𝜎𝜌 , = 𝑛 ,   𝑛 , 𝜌𝑛 , 1 + 𝜌 𝑛 , − 1 𝑛 , 1 + 𝜌 𝑛 , − 1  

(16)

in which 𝑛 ,  and 𝑛 ,  are the number of users at node k and the number of users at node 
l, respectively. The following manipulations involving the introduction of the yearly 
average demand Dy for both nodes k and l lead to Equation (11): 

𝜌 , = ,   ,, , , , =   =   
. (17)

In the reformulated theoretical scaling laws, parameters par1, par2, par3, par4, and θ 
must be calibrated on the field based on monitored demands. 
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