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A B S T R A C T

The aim of this study is to develop an accurate and reliable numerical model of the coastal Talar aquifer
threatened by seawater intrusion by developing an ensemble meta-model (MM). In comparison with previous
methodologies, the developed model has the following superiority: (1) Its performance is enhanced by developing
ensemble MMs using four different meta-modelling frameworks, i.e., artificial neural network, support vector
regression, radial basis function, genetic programing and evolutionary polynomial regression; (2) The accuracy of
different MMs based on 16 integration of four meta-modeling frameworks is compared; and (3) the effect of
aquifer heterogeneity on the MM. The performance of the proposed MM was assessed using an illustrative case
aquifer subject to seawater intrusion. The obtained results indicate that the ensemble MM that combines all four
meta-modeling frameworks outperformed the GP and ANN models, with a correlation coefficient of 0.98.
Moreover, the proposed MM using nonlinear-learning ensemble of SVR-EPR achieves a better and robust fore-
casting performance. Therefore, it can be considered as an accurate and robust simulator to predict salinity levels
under different abstraction patterns in variable density flow. The result of uncertainty analyses reveals that
robustness value and pumping rate are inversely proportional and scenarios with a robustness measure of about
12% are more reliable.
1. Introduction

Coastal aquifers are subject to seawater intrusion (SWI), generally
caused by over pumping.

Thus, it is necessary to design appropriate management strategies for
optimal water extraction from coastal aquifers while controlling the SWI
into the wells [1]. Different numerical models based on variable density
flow have been developed and combined with optimization algorithms to
find the optimal pumping strategies [2]. Nevertheless, to converge the
optimal pumping patterns, the repetitive process of
simulation-optimization (SO) model for computing state variables is time
consuming [3]. One of the techniques to reduce the computational time
on the coupled SO model is to construct efficient replacement models,
generally named MMs of the original numerical model [4]. MMs have
been applied in recent studies to approximate complex numerical density
dependent flow and contaminant transport [5,6]. In SO model for SWI
management, two types of meta-modeling approaches have been
generally implemented: offline and online. In the offline approach, the
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numerical model is completely substituted by MM and sampling algo-
rithm is independent of the optimization model whereas, in the online
approach, the MM is trained adaptively using the numerical model dur-
ing optimization process [7].

At present, there are relatively limited on-line MMs for SO process
and major off-line methods implemented in SWI managements. For
example, Rao et al, [8] used Artificial Neural Network (ANN) as the
approximation of finite difference SEAWAT [9] model and coupled with
simulated annealing optimization algorithm to identify the optimal lo-
cations for a group of production wells in costal deltas with paleo
channels.

Kourakos and Mantoglou [10] developed a novel meta-modeling
framework using modular neural network (MNN) where many
sub-network cooperate to approximate numerical SEAWAT model.
The efficiency of their proposed model for pumping management of 34
public wells in the Greek island of Santorini indicated that the
time required by the MM scheme is only 5% of the time of standard SO
model.
cember 2020
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Dhar and Datta [11] compared the burden time of the direct link of
Non-dominated Sorting Genetic Algorithm-II (NSGA-II) with FEM-
WATER [12] and ANN-based MM as an approximation of the numerical
model. The performance evaluations of the results between the two
techniques of SO indicated that the developed ANN model is computa-
tionally effective in generating the optimal Pareto front.

Despite the popularity of ANN as MM, there are some disadvantages
of this model including high computational time for training its param-
eters and over-fitting as far as model complexity [13]. On the other hand,
GP model has rather simple formulation and hence it needs less model
parameters compared to weights of ANN [14].

Sreekanth and Datta [14] compared the performance and computa-
tional time of GP and MNN as a MM for FEMWATER model, into the
optimization problem. They substituted FEMWATER with MNN and MM
and linked to a multi-objective genetic algorithm to find the optimal
pumping rate of an illustrative study area with 11 pumping wells and
compared it with the genetic programming (GP). The result showed that
GP parameters using online technique are less than MNN model and
hence the Pareto solution generated by linked GP and optimization
model has less uncertainty.

In terms of simplicity and robustness, radial basis functions (RBF) was
reported as the best meta-modelling formwork [15,16]. Several works
have replaced simulation models by RBF for computationally intensive
optimization of SWI problems.

Papadopoulou et al [15] applied a RBF-ANN as a replacement of
density dependent model and coupled it with a differential evolution
algorithm to reduce the burden time of optimization runs. Christelis and
Mantoglou [16] assessed the efficiency of cubic RBF in single-objective
pumping optimization of real coastal aquifer at Vathi in Kalumnos Is-
land, Greece. They found that using the adaptive RBF MM the run time of
the SWI optimization was reduced by 96 %.

Recently, there has been the interest in implementation of novel data
driven model such as Evolutionary Polynomial Regression (EPR) and
Kernel Extreme Learning to decrease the run time of SO processes.

Hussain et al [17] developed EPR as a replacement for SUTRA [18]
code and combined it with a multi objective genetic algorithm to assess
the effect of different desalination techniques for controlling SWI in a
hypothetical aquifer. The Pareto solution generated by EPR - NSGAII
algorithm was compared with those obtained using SUTRA - NSGAII.
They found that the Pareto front generated by two schemes of SO model
have a similar trend, while retaining the advantage of MM in 98%
reduction in run time compared to original SO framework.

Song et al [19] proposed an online meta-modeling framework based
on Kernel Extreme Learning machine where the MM is adaptively trained
using SEAWAT model during optimization to reduce error accumulation
of prediction and escape from the local optima trap.

It is evident from the literature review that the commonly used MM
for the management of coastal aquifers include ANN, RBF, GP, and EPR.
In most previous studies, the common approach is to build an accurate
MM using a single algorithm. However, few studies have attempted to
compare the performances and uncertainties of different MMs in a single
framework analysis. Moreover, the uncertainties generated by single MM
parameters may result in low accuracy in forecasting [20]. Thus, a
combination of the ensemble MMs with an uncertainty analysis model
can improve the accuracy and robustness of the prediction [20].

The aim of this study is to construct a fast and robust MM for the
management of Talar aquifer with the minimum SWI subject to a set of
physical and technical constraints.

In Iran, the change in management authority over the time has
resulted in different management scemarios. The Iranian government
first started enacting water laws affecting coastal area in 1932; the
Ministry of Agriculture has been responsible for river and watershed
protected zones until 2008, at which time the Ministry of Energy
assumed the responsibility. The government considers water that dis-
charges into lakes and seas as surplus, making it easier for Ministry of
Energy to issue withdrawal certificates. Thus, the development of a
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robust management model for coastal aquifers, considering water laws in
Iran is necessary. In this study, we designed robust and fast MMs to find
the optimal pumping rate from Talar aquifer under seawater intrusion.

This paper is organized in four sections:

� 1) development of a finite difference numerical model to simulate
density-dependent groundwater flow and solute transport for Talar
aquifer;

� 2) designing 16 MMs using different combination of four algorithms.
i.e., ANN, RBF, GP, SVR and EPR, including four single models, 15
linear ensembles and one non-linear ensemble;

� 3) assessing the performance of all 16 MM to identify the best;
� 4) selecting the most robust management scenarios from the optimal
solutions generated by the best MM.

2. Methodology

In this section, the governing equations of numerical model and the
formulation of nonlinear learning ensemble model using four machine
learning models (i. e. Support vector machine, Evolutionary polynomial
regression, Genetic programming and Radial basis function) are pro-
posed. Then, the uncertainty analysis of MM using Info-gap theory is
presented. Finally, the boundary condition and location of case study for
discussion and comparison of MM are described.

2.1. Governing equation

The finite difference variable density ground water flow model
SEAWATwas implemented to simulate flow and solute transport in a real
anisotropic aquifer subject to SWI. SEAWAT solves the integrated flow
and solute transport equations simultaneously by coupling MODFLOW
[21] and MT3DMS [22]. The SEAWAT model implemented in this paper
is based on MODFLOW-2000 and MT3DMS, in the framework of GMS
10.2. The variable density flow equation in an anisotropic aquifer can be
written as [23]:

rðKðrhþ ηCrzÞ¼ Ss
∂h
∂t þ nη

ρ
ρ0

q (1)

Where K is the hydraulic conductivity tensor (LT�1), h is hydraulic head
(L), η is a constant for density coupling, Ss is specific storage (L�1), C is
dissolved concentration (ML�3), Z is reference head level, t represents
time (T), n the porosity of the medium, q is volumetric inflow rate, ρ0 is
the density of freshwater (ML3). ρ is the bulk density of seawater (ML�3).

The governing equation for solute transport in aquifers without
explicit consideration of sorption can be written as [24]:

rðDrCÞ�rðVaCÞþm� ρ*

ρ
qc¼ ∂c

∂t (2)

Where D is the key component of dispersion (L2T�1), Va is the velocity
vector (LT�1), q is the volumetric source per unit volume of aquifer
(L3T�1), m ¼ qCm denotes the chemical reaction term (ML3T�1).

2.2. Development of single MM

2.2.1. Support vector machine

Given a set of instance fbQj; SWIjg in which bQj ¼ fQj;1;Qj;2;…;Qj;ng is
the vector of input, n represents input dimensions and SWIj ¼

Pn
i¼1

SWIj;i is

the output of support vector machine (SVR) model.
The goal of SVR algorithm is to reach a linear relation in the high-

dimensional feature space using a projection of input vector bQj by the

nonlinear function φðbQjÞwhich minimizes the risk Rðf Þ. This process can
be written as [25]:
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f ðQÞ¼WTφ bQj þ b (3)

� �

Rðf Þ¼ 1
2

��W2
��þ C

Xm

j¼1
L
�bQj; SWIj; f

�bQj

�
(4)

Where W , b are weight and bias, respectively. C is a penalty coefficient
and L represents the loss function. The optimal value of the above
mentioned parameters can be calculated by the following optimization
equation:

minimze
1
2

��W2
��þ C

Xm

j¼1

�
εj þ εi

�
(5)

subject to SWIj �
�
WTφ

�bQj

�
þ b

�
� εþ εj (6)

�
WTφ

�bQj

�
þ b

�
� SWIj � εþ εi (7)

εjεi � 0 j¼ 1; 2; 3;…;m (8)

Where εj and εidenote a threshold precision, the regression equation can
be expressed as below:

f ðxÞ¼
Xm

j¼1
ðai � aiÞK

�bQj0 ; bQj

�
þ b (9)

Where aj0 and ai are Lagrange multipliers and KðbQj0 ;
bQjÞ is kernel func-

tion based on the radial basis function with radius of σ as expressed below
[25]:

K
�
Qj0 ;Qj

�¼ e

�
�
bjjQ

j
0 �bQ jjj
2σ2

�
(10)

2.2.2. Evolutionary polynomial regression
Evolutionary polynomial regression (EPR) combines the features of

regression techniques with the genetic programming. The outputs of EPR
are mathematical expressions of input parameters [26]. A typical struc-
ture of EPR algorithm can be written as:

SWI¼
Xk

j¼1
F
�bQ; f bQ; aj

�þ a0 (11)

Where SWI is the model predicted output, bQ is the input vector, f is a
function determined using engineering judgment, F is a function gener-
ated within the optimization process, k is the number of expression of F ,
aj is coefficient of ith term and a0 is the bias.

The optimal value of aj is identified using genetic algorithm (GA) to
reach the best efficiency of EPR model with high correlation between
simulated (by SEAWAT) and predictedSWI. The decision variables of GA
model are the number of expression, range of exponent and type of
expression to build the EPR model. In the EPR model different mathe-
matical expressions are generated for different ranges of input
parameters.
2.2.3. Genetic programming
Genetic programming is an evolutionary algorithm approach to solve

a complex problem by breaking it into smaller sub-problems. It is a new
form of the genetic algorithm (GA) and uses the basic concept of GA to
make a regression model over a set of populations. GP has a tree structure
composed of input data and different mathematical expressions such as
subtraction and multiplication. The main object of GP is to generate
many mathematical programs which are highly correlated to input and
output data. An error criterion is comparing the output of each program
3

with the target value. GP identifies the optimal solution over randomly
generated programs by defining cross-over and mutation with the aim of
error minimization. GP structure is like a tree in which the mathematical
operators are defined as splitting criteria. Hundreds of mathematical
equations are examined by the natural selection to reach the goodness of
fit criteria [27].

2.2.4. Radial basis function
RBF forecasts the output at the input Qj as follows:

SWIj
�
Qj

�¼Xn

i¼1
wiφ

���Qj �Qi

��� (12)

Where n is the size of vectorQj, wi is the weights of interpolation, φ is a
radial function, and ||Qj � Qi|| is the Euclidean distance between two
pointsQj and Qi. The most commonly used types of radial basis functions
for predicting groundwater quality is the Gaussian function [28], which
can be expressed as:

φðrÞ¼ e�ðεrÞ2 (13)

in which ε is a constant parameter that improves the prediction accuracy.

2.3. Proposed linear ensembles

In previous studies the ensemble data driven models [28,29] have
been reported as efficient tools for modeling non-linear problems. A
weighted average MM using the optimal weight of single MM can
enhance the performance of MM [7]. This technique is based on mini-
mizing the error index (E):

Eens ¼ 1
k

Z 0

k
ðoutðxÞ � outensðxÞÞ2dx ¼ mTRm (14)

Where m is the weight of each MM, outðxÞ and outens are the actual value
and predicted value of input x respectively. R is the covariance matrix
which is expressed as [7]:

Rij ¼ 1
n
αT

iαj (15)

Where n is the number of training samples, i and j represent different
MMs and α is the vector of errors. The ensemble model which indicates
the smallest error between the predicted and observed value of training
samples is selected as the best MM.

2.4. Proposed nonlinear ensembles of SVR and EPR

A new meta-modelling technique, EnsemSVR-EPR is developed as
an approximation for SEAWT code. The ensemble models which are
explained below can predict the variation of output (SWI) due to
different input vectors Q using the result of SEAWAT model. Never-
theless, the generalization performance of SVR model is restricted by
the number of regression coefficient vectors. Regarding the high ef-
ficiency of the ensemble method, nonlinear ensembles of SVR, EPR
and GA (EnsemSVR-EPR) are constructed in this study (see Figure 1).
The weighted contribution of SVR models is implemented for the
training of a global EPR tree in which the maximum depth of tree is
optimized and adapted using GA during training process (see
Figure 1). The principal object of EPR tree is to learn the nonlinear
behavior of five SVR models and identify the optimal weights for
ensemble learning. Thus the output of SVR models and the actual
value of output on training samples were set respectively as the input
and output for construction of the EPR tree. The depth of the EPR tree
is optimized with GA algorithm to reach the performance of
EnsemSVR-EPR. Since the proposed EnsemSVR-EPR is trained with
small training examples, the model does not have high accuracy for
unseen samples. To overcome this problem, within the optimization

https://en.wikipedia.org/wiki/Gaussian_function
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process, new samples are generated by SEAWAT model and added to
the training data. The performance of MMs is assessed using statistical
criteria such as the root mean squared error (RMSE), the mean of the
absolute error (MAE) and correlation coefficient (R2):

RMSE¼
"
1
n

Xn

i¼1
ðXnum � XmetaÞ2

#1
2

(16)

MAE¼ 1
n

Xn

i¼1
jXmeta � Xnumj (17)

CC¼
Pn

i¼1ðpnum � pmetaÞðsnum � pmetaÞ�Pn
i¼1ðpnum � pmetaÞ2

Pn
i¼1ðsnum � pmetaÞ2

�0:5 (18)

where n is number of training samples, Xnum and Xmetadenote the output
value of numerical and MM, respectively.

2.5. Uncertainty analysis using the info-gap theory

The Info-gap theory (IGT) presented by Ben-Haim [30] is a
non-stochastic approach to minimize management decisions and to
maximize robustness. For the implementation of the Info-gapmethod it is
necessary to determine first the main parameters of the simulation model
significantly affecting the objective function. Then, engineering judge-
ment is used for the determination of the values of the uncertain pa-
rameters upper bound b1 and the lower bound b2 around the calibrated
value. The simulation model is run for different set of values of uncertain
parameters within the predefined range. Thus, the model should be
simulated for b1 þ b2 þ 1 cases and this process is carried out for all
uncertain parameters simultaneously. The robustness bound is expressed
as:

rb;i ¼ ui;max �wi � ðui;max � ui;minÞ (19)
Figure 1. Flow diagram of the
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Robustness threshold (rb;i) is set equal to the maximum value of the
output minus a constant percent (w). ui;max and ui;min are the maximum
and minimum deviations from the desired value, respectively.

The most sensitive parameter in SWI problems is usually the hy-
draulic conductivity which is strongly affected by the heterogeneity of
the geological structure of the aquifer. This heterogeneity can result in
uncertainty in model predictions. In order to calculate the robustness of a
non-dominated scenario, in this paper first the k value for the ith region
(ki) has been varied between the center and upper value (u1) with con-
stant intervals. The value of output (i.e. SWI) for scenario j(zj) is calcu-
lated for i ¼ 0;1;2;…u1: If for the value of i ¼ a, the objective function
value is less than a chosen threshold ðrbÞ, the robustness of scenario j for
ki is considered equal to a. This means that the scenario with i ¼ u1is the
one with the highest robustness for the parameter ki. Therefore, the
robustness for the ith scenario can be expressed as:

gi ¼max
�
k : zi;k � rb

�
k ¼ 0; 1; 2;…; u1 (20)

In order to provide the upper bound for k, its value in each part of the
aquifer is projected using different realizations of the field k in log of
wells. Different permutations of k are calculated and the minimum and
maximum projected k values are taken, respectively, as the center and
upper bound for the Info-gap method [31]. Regarding different ranges of
robustness value for optimal scenarios, these values are normalized
relating to maximum probable robustness value [32]:

a¼ gmax � g
gmax � gmin

; gmax ¼ u1; gmin ¼ 0 (21)

Where g represents the normalized robustness.

2.6. Case study

Talar aquifer (52�220- 53�420N and 36�430- 37�300E) is located in the
coastal area of Mazandaran city, Iran (Figure 2 a). The total area of
proposed EnsemSVR-EPR.

mailto:Image of Figure 1|tif


Figure 2. a) Layout of Talar aquifer b) aquifer boundary conditions c) source and sink locations of study area.
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aquifer near the Caspian sea is 776 km2, 30% of which is plain with
agricultural and industry use. The major part of the unconfined Talar
aquifer consists of fine grained sand and conglomerate deposits and the
permeability of the aquifer near the study area (Figure 2 b) varies be-
tween 0.15 m=day and0:4m=day. The average annual precipitation
ranges from 665mm in the south to 761mm in the north and recharge by
irrigation is about 32% of total extraction. In the Talar aquifer ground-
water is extracted by 1320 shallow wells, with pumping rate of 195
million m3=day for agricultural use (89%) and drinking purposes (11%).
The boundary conditions of the study area are the Caspian Sea at the
north side and the mountain front in the south. The western and eastern
boundaries of the study area are Babolrood and Siahrood, respectively
(Figure 2 b).

3. Model development

The remainder of this section is arranged as follows. In section 1, the
proposed SEAWAT model is applied to pumping optimization in the
coastal aquifer primarily affected by SI in the Talar aquifer of Iran. In
5

section 2, the proposed MM model is trained with pumping patterns
generated by SEAWAT model.
3.1. Development of numerical model

A variable density flow equation is implemented using SEAWAT in
framework of GMS. 10. 2 to simulate groundwater level and salinity
distribution in the Talar region. The length andwidth of study area are 16
km and 11 km respectively, which are divided into 500 m � 500 m cells
in X and Y directions and vertically divided into 3 layers.

The simulation time in the transient condition was set equal to 5
years with 60 monthly time steps. The initial total dissolved solids
(TDS) value of southern edge and shoreline was considered 0 g=l and
12.6g=l, respectively [30]. For the other active cells near the rivers
and Siahrood river the concentration was set 0.1 g=l. To develop the
numerical model, Caspian Sea boundary was defined using constant
head (CHD) package with constant salt concentration. Also, the
southern boundary was set as constant flow boundary with conduc-
tance and groundwater level of 18500 m2=day and 18 m; respectively.

mailto:Image of Figure 2|tif


Table 1. Flow and transport model parameters.

Parameter Range (units) Number of parameters

Thickness of aquifer (d) 10–49(b) (m) -

Shoreline slope (-) 0.06(b) (-) 1

Density of seawater (ρs) 1015(b) (kg=m3) 1

Density of fresh water (ρ0) 1000(b) (kg=m3) 1

Longitudinal dispersivity (αL) 30–50(b) (m) 1

Transverse dispersivity (αT) 4–10(b) (m) 1

Molecular diffusion coefficient (Dm) 6 � 10�7(b) (-) 1

Fluid viscosity (μÞ 86(b) (kg/(m=d)) 1

Horizontal hydraulic conductivity (kh) 0.15–0.4(a) (m=d) 3

Effective porosity (n) 0.35(b) (-) 1

Specific storage (ss) 6 � 10�4(b) (-) 1

Vertical anisotropy (λ) 10–50(b) (-) 2

a Parameters for calibration step.
b Parameters values from Mahab Ghodss Consulting [33].

Figure 3. The chart of predicted and observed groundwater level (left) and TDS concentration (right) of observation point O2.

A. Ranjbar, C. Cherubini Heliyon 6 (2020) e05758
Lateral boundaries were Siahrood and Babolrood rivers with the
conductance of 4500m2=day and simulated using River package. There
are 1320 shallow wells with low pumping rates (each 0–25 m3= day)
in the study area with an overall pumping rate of about 14820 m3=

day (see Figure 2c). The range of flow and transport parameters used
by the simulation model are summarized in Table 1.

Model calibration was performed using PEST 13.0 with data
from two observation wells (O1 and O2) located near the shoreline
(Figure 2c). The observation data from 2012 to 2015 were set for
calibration and validation of groundwater level and salinity con-
centration. The aquifer parameters chosen for calibration of
Figure 4. Variation of salinity throughout the st
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groundwater level and transport were the three hydraulic conduc-
tivities (HK) in XY plan (ki) and the recharge in the southern
boundary (Q) (see Figure 2c). The initial value of southern bound-
ary Qwas defined using general head boundary (GHB) with the
conductance (8430 m2=day) and stage (18 m). The initial ground-
water level of the study area was calculated by means of kriging
based on 4 observation data (see Figure 2c). MODFLOW model was
executed for a 100 years period, to reach a transient condition for
groundwater head. To enhance model performance, a sensitivity
analysis was performed to assess the effect of different values of HK
on groundwater levels (Colombani et al., 2016).
udy area at the end of the September 2020.

mailto:Image of Figure 3|tif
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Figure 5. Variation of head throughout the study area at the end of September 2020.

Figure 6. The structure of developed EnsemSVR-EPR.
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3.2. Calibration of numerical model

To obtain a good fit between simulated and observed groundwater
head, the water elevation of general head boundary in the southern edge
was adjusted, since it was the main source of inflow for the aquifer.
Regarding the result of sensitivity analysis the groundwater level of Obs
point O1 is mostly influenced to k1 whereas k3has little impact on
7

groundwater head. Thus, to increase model accuracy, the small step of
k1(0:02m=d) was set in the calibration stage. Figure 3 shows the simu-
lated versus observed values of groundwater head and TDS concentra-
tions. The good match between the simulated and observed TDS after
adjustment of parameter values indicates that calibration of dispersion
and diffusion coefficients was not necessary.

mailto:Image of Figure 5|tif
mailto:Image of Figure 6|tif


Table 2. Evaluation results for the MMs.

MM R2 MAEðmÞ RMSEðmÞ
ANNa 0.97 8.53 12.21

RBFb 0.93 22.45 36.23

EPRc 0.94 19.81 31.28

GPd 0.96 11.58 15.52

0.8ANNþ 0.2RBF 0.95 13.45 17.23

0.7ANNþ0.3EPR 0.97 9.84 14.21

0.6ANNþ0.5GP 0.98 7.78 11.26

0.2RBFþ0.8EPR 0.92 23.16 37.46

0.1RBFþ0.9GP 0.92 22.16 36.51

0.3EPRþ0.7GP 0.95 14.68 17.69

0.6ANNþ0.1RBFþ0.3EPR 0.97 10.14 15.42

0.5ANNþ0.1RBFþ0.4GP 0.96 12.78 16.68

0.4ANNþ0.2EPRþ0.4GP 0.98 6.54 9.88

0.1RBFþ0.4EPRþ0.5GP 0.96 12.26 14.28

0.4ANNþ0.1RBFþ0.2EPRþ0.3GP 0.97 9.81 11.56

EnsemSVRd-EPR 0.99 5.52 7.75

a Artificial neural network.
b Radial basis function.
c Evolutionary polynomial regression.
d Support vector regression.
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Groundwater level of the calibrated model (Figure 3) confirms that
there is a high correlation between simulated and observed data for 0.85
of the points. The REm and RMSE for TDS were 0.0046 g= l and 0.38g= l,
respectively. Figure 4 and Figure 5 show the simulated TDS concentra-
tion and groundwater head in the study area at the end of September
2020, respectively. As illustrated in Figure 4, SWI length is mostly
impacted by pumping rate near the coastline. Figure 5 reveals that
extraction rates increases toward the north and west and hence TDS line
12.6 g=l in this zone is advanced to a distance of 2.2 km from the sea
boundary. Whereas the impact of recharge rate is higher in the east edge,
which has a small depth (<12 m) and hence this area has a small SWI
value (1.35 km).

3.3. Development of MM

In the developed prediction model, SWIj demonstrates the maximum
displacement of seawater wedge associated with the pumping rate vector

ðbQjÞ thus, the MM estimates theSWIj, given the total pattern of pumping
rates. In order to reduce the number of inputs, 14 circular areas including
wells are defined. In this method, the temporal variation of seawater
wedge toe is forecasted discretely by some learning models with different
weights and bias terms (see Figure 6). The boundary of each control area
is determined on the basis on the distances ðRÞbetween wells (see
Figure 6) and the pumping rate of wells inside the control area is
considered equal. Therefore, the MM has 14 inputs controlling SWI.The
total length of seawater intrusion over total time step ðSWItotÞcan be
calculated using the principle of superposition as expressed below:

SWItot ¼
XT

t¼1
SWIt (22)

In this relation SWI is the location of iso-contour TDS-50% (6.3 = l ).
For RBF model, the value of C and type of basis function were

chosen by trial and error 3 and Gaussian basis function, respectively. A
2-layers back-forward ANN algorithm was developed with Lev-
enberg–Marquardt training scheme. The optimal number of neurons
was chosen as 14 with sigmoid output function and the learning rate
and momentum coefficients were assigned as 0.2. The GP algorithm
was generated using a population size of 300, cross over and mutation
rates were chosen as 45 and 85 percent, respectively. For the gener-
alization of GP model, the number of parameters using mathematical
8

operators such as subtraction and division was set as 36. In this study,
from different models generated by EPR, the simplest model with the
smallest number of parameters and with the highest correlation was
chosen. The generated EPR equations for SWI (m) predictions are
written as:

P1 :
ðSWIÞ:71

20
¼ þ 4:85ðQ1Þ0:33 þ 3:60ðQ2Þ0:28 þ 2:05ðQ3Þ0:32 þ 1:32ðQ4Þ0:41

þ 0:27ðQ5Þþ0:23 þ 1:2ðQ11Þ0:37

P4 :
ðSWIÞ:71

20
¼ 3:53ðQ1Þ0:33 þ 4:36ðQ2Þ0:24 þ 5:05ðQ3Þ0:28 þ 4:12ðQ4Þ0:32

þ 1:24ðQ11Þ0:41 þ 0:25ðQ12Þþ0:21

P5 :
ðSWIÞ:71

20
¼ þ 1:834ðQ2Þ0:33 þ ðQ3Þ0:28 þ 4:65ðQ4Þ0:32 þ 5:46ðQ5Þ0:41

þ 0:74ðQ6Þþ0:23 þ 1:58ðQ12Þ0:37

P7 :
ðSWIÞ:71

20
¼ þ 1:25ðQ5Þ0:33 þ 3:32ðQ5Þ0:24 þ 4:56ðQ6Þ0:28 þ 4:59ðQ7Þ0:32

þ 5:16ðQ8Þ0:41 þ 3:26ðQ9Þþ0:23 þ 2:27ðQ10Þ0:37 þ 0:27ðQ14Þ0:37

Where Pi and Qi are the center and pumping rates of ith cluster
(Figure 6).

To enhance the predictive and generalization abilities of the Ensem
SVR-EPR method, five different SVR models are determined by trial and
error. The structure of SVR models are respectively SVR1 with C ¼ 15
and σ ¼ 0:1, SVR2 with C ¼ 15 and σ ¼ 0:15, SVR3 with C ¼ 25 and σ ¼
0:25, SVR4 with C ¼ 15 and σ ¼ 0:2, SVR5 with C ¼ 15 and σ ¼ 0:5,
SVR6 with C ¼ 15 and σ ¼ 0:1. The population size of GA is set as 50 and
the values of genetic operators, e. g. mutation and crossover probability
are assigned as 0.05 and 0.8, respectively.

4. Results and discussion

The remainder of this section is arranged as follows. In section 1, the
Performance of MMs is discussed base on statistical indexes. In section 2,
the robustness of optimal scenarios proposed are measured by an effi-
cient MM.
4.1. Performance of MMs

To assess the efficiency of the proposedMMs, the training sampleswere
dividedbymeans of the hold-out technique and30%of instanceswere used
in the validation step. Table 2 displays the statistical criteria obtained for all
16MMs andMMswith lower correlation and higher error values placed at
the end of the table. Moreover, the optimal weights for linear combination
of 4 MMs are presented in Table 2. For all MMs, R between simulated and
predicted SWIvaries from0.90 to0.99. EnsemSVR-EPR showsbettermodel
performance with R2 as 0.99 and RMSE value of 7.75 which displays the
advantage of nonlinear-learning ensemble.

These results support the conclusions of Roy and Datta (2017) who
used Ensemble model as an alternative metamodelling method for
coastal aquifer management and compared it with the most widely used
ANN.

As indicated in Table 2, between four single MMs, ANNmodel has the
best correlation coefficient (CC ¼ 0.98) with minimum RMSE (12.21)
and MAE (8.53) for testing samples. Table 2 also suggests the same trend
of correlation coefficient for the prediction of SWI and by GP and ANN
model. The observations of the present study over single MMs contradict
with Christelis and Mantoglou (2017) conclusion which that emphasized
the minor differences between GP and ANN in the simulation-
optimization system.



Figure 7. Comparison of the results of SEAWAT model with EnsemSVR-EPR for different locations: a) P1, b) observation P4, c) observation P5, d) observation P7.

Figure 8. The comparison of testing error among SEAWAT simulator and EnsemSVR-EPR at point.

Table 3. Robustness thresholds for input-outputs.

Robustness threshold SWI Pumping rate

Minimum value 0.074 0.117

Maximum value 0.635 0.875

wa (%) ðrbÞb rb

5 0.607 0.839

10 0.579 0.804

15 0.550 0.768

20 0.522 0.733

25 0.494 0.698

30 0.466 0.662

35 0.438 0.627

40 0.410 0.591

45 0.382 0.556

50 0.354 0.521

a Specific percent (w) of the difference of the maximum and minimum amount
of the utility function.

b Robustness thresholds.
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The high correlation coefficient of GA among single MMs confirms
the previous results of Kourakos and Mantoglou [10] especially in
multi-objective optimization formulations.

However, Table 2 reveals that ensemble MM does not always achieve
good performance compared to the single MM. In general, the linear
combination of ANN and GP with other algorithms improves the effi-
ciency of MMs. Among the single and ensemble MMs, RBF and RBFþ GP
show apparently the lowest correlation with highest error indexes.

Therefore the EnsemSVR-EPR MM can be implemented as the best
approximation of numerical model for prediction of SWI in variable
density flow. The scatter plot of EnsemSVR-EPR for testing samples is
shown in Figure 7 and reveals that the predicted value of SWI length is in
good agreement with the results of SEAWAT model.

A single-parameter sensitivity analysis using the exponential terms of
EPR tree was performed to investigate the effect of each input parameters
(pumping rates) on the SWI length. The results indicated that SWI length
is most influenced by Q5 and Q3 and hence, the coefficients of this inputs
are greater than the other 14 inputs. Thus, in the adaptive sampling by
SEAWAT model new 100 training samples are generated near this point.
To evaluate the capability of adaptive EnsemSVR-EPR model to predict
the peak value of TDS, the predicted and simulated values of TDS for
9
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Figure 9. Robustness measures of different solutions considering the SWI
objective (w ¼ 40).
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point 7 are graphically presented in Figure 8. As shown the maximum
value of error between EnsemSVR-EPR and the numerical model is about
95 m and the error frequency around mean value (15.85) follows a
Gaussian distribution.

The results of this study is in agreement with a highlighted finding of
Jovanovi�c et al [34] who consistently indicated that the Ensemble of
MMs can improve robustness of the predictions by extracting data while
supporting among single MM by reducing the effect of poor predictions.

4.2. Robustness of solutions

The start points of info-gap criteria are presented in Table 3. This
considers different user-defined values for w. The values of SWI have
Figure 10. The value of objective functions versu

Figure 11. Upper and lower boun
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been rescaled by a min-max normalization with the minimum ¼ 100 m
and the maximum value ¼ 6200 m to define the lower and upper bounds
of rb. As shown in Table 3, the robustness thresholds for SWI and
pumping rates vary around the mean (0.41) and they maximum (0.117)
value, respectively.

For the robustness assessment of each scenario, it is necessary to
calculate the range of variation of HK for each region. As illustrated in
Figure 1, the HK of three geological parts is varied between 0.15 m=day
to 0.4 m=day. The objective function value has been assumed not to be
influenced by the dispersion coefficient and HK has been assumed as the
most sensitive parameter. Figure 9 shows the robustness measure due to
the variation of HK. As illustrated in this figure, the robustness measure
for SWI scenarios varies from 2 to 18. However, the highest-robustness
scenario has the lowest pumping rate.

HK is less sensitive to SWI when the discharge rate from all 14 regions
is small and the distribution of salinity proves to be mostly dependent on
discharge from coastal wells. Therefore, different SWI levels can be
caused by a constant discharge rate. Figure 9 illustrates the two scenarios
21 and 36 (in red) having the same discharge rates and “15” and “12”
robustness measures, respectively.

The highest-robustness scenario is the one in which most of the dis-
charges are from regions 2 and 3.

The scenarios which have a robustness measure higher than 12% can
be considered as reliable. The robustness measures of different scenarios
for objective function of pumping rates are 18 while the profit depends
on the discharge rate and is not affected by the aquifer HK. Figure 10
illustrates that a few scenarios having similar values of robustness mea-
sures have different pumping rates and SWI.

Figure 10 shows the normalized SWIand pumping rate values
related to the robustness of each scenario, in which the relation
s robustness measure for different scenarios.

d around the calibrated value.
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Figure 12. Temporal and spatial location of transition zone (scenario 2).
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between robustness measure and pumping rate value is inversely
proportional. With the additional consideration on Figure 10, it can be
concluded that the scenarios 17 to 21 require about 50% of maximum
pumping rate.

The location of seawater wedge toe corresponding to the lower (0.1,
0.35, 0.3) and upper bounds of HK (0.4, 0.34, 0.4) is measured. To find
the most robust outputs among MM results, the SWI length of 22 samples
for 9 realizations of HK is measured. It is obvious from Figure 11 that the
highest and lowest variation of SWI corresponds to scenarios 6 and 2,
respectively. It means that scenario 2 is the least impacted by the vari-
ation of HK and it has the highest robustness.

The spatial location of the interface for many conditional HK fields
corresponding to the scenario 2 is illustrated in Figure 12. The results
indicate that the interface location for all four realizations is closer to the
calibrated HK, thus scenario 2 is reliable. This scenario corresponds to
discharge from point 5. Although the effect of HK on SWI is increased
when the total abstraction rate is large, the result of Figure 12 highlights
that a constant pumping rate can cause different shapes of the saline
zone. This is because of the HKdistribution in the aquifer is heteroge-
neous which causes non-uniform effects on transition zone.

5. Conclusions

In this study,fivemachine learning algorithms includingANN,GP, EPR,
SVR and RBF, were developed to build 15 linear and one non-linear
ensemble MMs as approximation of SEAWAT model for density depen-
dent flow modelling of Talar aquifer. The ensemble MMs are adaptively
assessed for 100 pumping patterns by SEAWAT model. To increase the ac-
curacy of the predicted salinity time series, the predicted value by MMs at
four observation points was evaluated. The assessment of statistical criteria
reveals that EnsemSVR-EPR MM with external optimization system has a
great performance to predict the variation of TDS due to different pumping
11
patterns in the aquifer with 1320 pumping wells. The combination of RBF
withotherMMs results in significant reduction in the correlation coefficient
compared to GP model. Moreover, ensemble MM did not always achieve
good efficacy relative to the single MM. Finally, the robustness of accurate
EnsemSVR-EPR model under variation of calibrated aquifer parameters is
investigated. The result indicates that SWI length is greatly influenced by
the variation of hydraulic conductivityfield, which results in uncertainty of
MM prediction. However, SWI level in the middle part of aquifer is less
influenced by the variation of hydraulic conductivity and EnsemSVR-EPR
MM presents a reliable prediction for this area.
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