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a b s t r a c t

An exact solution is obtained for the steady MHD plane orthogonal stagnation-point flow of a

homogeneous, incompressible, electrically conducting micropolar fluid over a rigid uncharged

dielectric at rest. The space is permeated by a not uniform external magnetic field He and the

total magnetic field H in the fluid is parallel to the velocity at infinity. The results obtained

reveal many interesting behaviours of the flow and of the total magnetic field in the fluid and

in the dielectric. In particular, the thickness of the layer where the viscosity appears depends

on the strength of the magnetic field. The effects of the magnetic field on the velocity and on

the microrotation profiles are presented graphically and discussed.

© 2015 Published by Elsevier Inc.
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1. Introduction

This paper is devoted to the MHD orthogonal stagnation-point flow of a micropolar fluid under the influence of an exter-

nal not uniform magnetic field. The micropolar fluids are a model of non-Newtonian fluids introduced by Eringen [1]. This

model describes fluids consisting of rigid randomly oriented particles suspended in a viscous medium which have an intrinsic

rotational micromotion (for example biological fluids in thin vessels, polymeric suspensions, slurries, colloidal fluids). Extensive

reviews of the theory and its applications can be found in [2,3]. In recent years a vast amount of literature concerning analytical

solutions of flow of a micropolar fluid is available [4–7]; moreover many papers about applications and numerical simulations

have been published [8–17].

Orthogonal stagnation-point flow appears for example when a jet of fluid impinges orthogonally on a solid obstacle. From a

mathematical point of view, this motion represents one of the oldest examples of similarity solutions of the PDEs that govern

the flow.

The steady two-dimensional orthogonal stagnation-point flow of a Newtonian fluid has been studied starting from the work of

Hiemenz [18]. The same flow was treated by Guram and Smith [19] in the micropolar case. Previously Ahmadi [20] obtained self-

similar solutions of the boundary layer equations for micropolar flow imposing restrictive conditions on the material parameters

which make the equations to contain only one parameter and not three as in the general case here considered.

In many physical and engineering problems it is important to study the influence of an external electromagnetic field on such

a flow from both a theoretical and a practical point of view.

In this paper we extend the results of [21] about Newtonian fluids to incompressible homogeneous micropolar fluids. Actually,

we consider the orthogonal stagnation-point flow of such a fluid filling the half-space x2 � 0 when the total magnetic field H

is parallel to the velocity at infinity. We underline that H is not uniform and it depends on a sufficiently regular unknown
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Nomenclature

a positive constant ([t−1])

c1, c2, c3 dimensionless positive micropolar constants

E electric field ([lMt−3i−1])

(e1, e2, e3) canonical base of R
3

H total magnetic field ([l−1i])

He external magnetic field

H� costant ([l−2i])

I microinertia coefficient ([l2])

p pressure ([l−1Mt−2])

p0 pressure at the stagnation-point

Rm magnetic Reynolds number, dimensionless

v velocity field ([lt−1])

w microrotation field ([t−1])

Greek symbols

βm dimensionless constant

η dimensionless spatial variable

ηe electrical permittivity (ηe = (μeσe)
−1) ([l2t−1])

λ, λ0 microrotation positive constants ([l4t−1])

μe magnetic permeability ([lMt−2i−2])

ν Newtonian viscosity coefficient ([l2t−1])

νr microrotation viscosity coefficient ([l2t−1])

ρ mass density ([l−3M])

σ e electrical conductivity ([l−3M−1t3i2])

ϕ, 	, 
 dimensionless unknown functions describing velocity, microrotation, magnetic field

function h = h(x2). We assume that an external magnetic field He permeates the whole space and the external electric field is

absent.

The region where the fluid motion occurs is bordered by the boundary of a solid obstacle which is a rigid uncharged dielectric

at rest.

As it is reasonable from the physical point of view, we first consider an inviscid fluid and the situation of the solid. As far as the

electromagnetic field in the solid (Hs, Es) is concerned, of course Es is zero and we determine Hs by asking that the non-degenerate

field lines of Hs tend to x2 = 0 as x1 goes to infinity. We find that (H, E) = (He, 0) and the pressure field is not modified by the

presence of H.

We then analyse the same problem for a Newtonian fluid. The results here presented extend the existing ones in [21], because

there the authors did not explain properly the physics of the problem and did not take into consideration the behaviour of the

solution, the influence of the parameters on the motion and the thickness of the boundary layer where the effect of the viscosity

occurs.

These preliminary considerations allow us to develop exhaustively the problem for a micropolar fluid. We find that the

pressure field and the flow depend on h(x2). H, v and the microrotation w satisfy an ordinary differential boundary value problem

which depends on two parameters Rm and βm. Rm is the Reynolds number, while βm is a measure of the strength of the applied

magnetic field.

For both fluids we find that the thickness of the boundary layer depends on Rm and βm. More precisely, it increases as βm

increases, while it decreases as Rm increases.

Some numerical examples and pictures are given in order to illustrate the effects due to the magnetic field and the behaviour

of the solution. These numerical results are obtained by using the MATLAB routine bvp4c. Such a routine is a finite difference

code that implements the three-stage Lobatto IIIa formula. This is a collocation formula and here the collocation polynomial

provides a C1-continuous solution that is fourth-order accurate uniformly in [0, 5]. Mesh selection and error control are based

on the residual of the continuous solution. We set the relative and the absolute tolerance equal to 10−7. The method was used

and described in [22].

The paper is organised in this way.

Section 2 deals with the situation of the solid obstacle and of the inviscid fluid. The study of the inviscid flow is important

because we require that the pressure and the flow of a viscous stagnation-point flow approach the pressure and the flow of

an inviscid fluid far from the obstacle. This condition is deduced from the physical experience. The result obtained for the

electromagnetic field in the solid is independent of the kind of fluid.

Section 3 is devoted to the Newtonian fluids. The graphics and the table extend the results contained in [21]. In Section 4 we

examine the same flow of a micropolar fluid.

Section 5 summarises the conclusions.
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2. Preliminaries

We examine the steady MHD plane orthogonal stagnation-point flow under a hypothesis assuring that the magnetic field is

parallel to the flow at infinity. The wall towards which the fluid is pointed is the boundary of a solid which is a rigid uncharged

dielectric at rest. This problem has been introduced in [21] for a Newtonian fluid, but the authors did not explain properly the

physics of the problem and did not consider the thickness of the boundary layer, the behaviour of the solution and the influence

of the parameters on the motion. The aim of this paper is to develop this topic for a micropolar fluid. For the sake of completeness

and to clarify the physics of the problem we will first study the problem for an inviscid and a Newtonian fluid.

Let us consider the steady plane MHD flow of a homogeneous, incompressible, electrically conducting inviscid fluid near a

stagnation point filling the half-space S (see Fig. 1), given by

S = {(x1, x2, x3) ∈ R
3 : (x1, x3) ∈ R

2, x2 > 0}. (1)

The coordinate axes are fixed in order to have that the stagnation-point coincides with the origin and we denote by (e1, e2, e3)

the canonical base of R
3. ∂S, i.e. the plane x2 = 0, is the boundary of a solid which is a rigid uncharged dielectric at rest occupying

S− given by

S− = {(x1, x2, x3) ∈ R
3 : (x1, x3) ∈ R

2, x2 < 0}. (2)

We are interested in the orthogonal plane stagnation-point flow so that

v1 = ax1, v2 = −ax2, v3 = 0, x1 ∈ R, x2 ∈ R
+, (3)

with a positive constant.

The equations governing such a flow in the absence of external mechanical body forces and free electric charges are

ρv · ∇v = −∇p + μe(∇ × H)× H,

∇ · v = 0,

∇ × H = σe(E + μev × H),

∇ × E = 0, ∇ · E = 0, ∇ · H = 0, in S (4)

where v is the velocity field, p is the pressure, E and H are the electric and magnetic fields, respectively, ρ is the mass density

(constant > 0), μe is the magnetic permeability, σ e is the electrical conductivity (μe, σ e = constants > 0).

As usual, we impose the no-penetration condition to the velocity field and we suppose that the tangential components of

H and E and the normal components of B = μe H and D = ε E (ε = dielectric constant) are continuous across the plane x2 = 0.

We suppose that the external magnetic field

He = H∞(x1e1 − x2e2), H∞ = constant, x1 ∈ R, x2 ∈ R,

permeates the whole physical space and that the external electric field Ee is absent.

Remark 1. As it is easy to verify, the field lines of He have the following parametric equations

x1 = A1eH∞ s,

x2 = A2e−H∞ s, s ∈ R, (5)
Please cite this article as: A. Borrelli et al., MHD orthogonal stagnation-point flow of a micropolar fluid with the magnetic field
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where A1, A2 are arbitrary constants. These field lines degenerate if at least one of the two constants A1, A2 vanishes. Otherwise

they are the hyperbolas

x1x2 = A1A2.

We remark that these hyperbolas tend to x2 = 0 as |x1| → +�.

We assume that the total magnetic fields in the fluid and in the solid have the following form

H = H∞ [x1h′(x2)e1 − h(x2)e2], x2 ≥ 0, and

Hs = H∞ [x1h′
s(x2)e1 − hs(x2)e2], x2 ≤ 0, (6)

respectively, where h, hs are sufficiently regular unknown functions to be determined (h, hs ∈ C2(R+)).
We ask that H tends to He as x2 → +� so that H is parallel to v at infinity and

lim
x2→+∞ h′(x2) = 1, lim

x2→+∞[h(x2)− x2] = 0. (7)

Moreover we suppose that

(i) Hs is not uniform;

(ii) the non-degenerate field lines of Hs tend to x2 = 0 as |x1| → +�.

Now our aim is to prove the following theorem

Theorem 2. If the solid which occupies S− is a rigid uncharged dielectric at rest and Hs of the form (6)1 satisfies (i) and (ii), then the

magnetic field Hs is given by

Hs = H∞ h′(0)(x1e1 − x2e2), x2 ≤ 0, (8)

where h(x2) is the function in (6)1.

Proof. Since the solid is an uncharged dielectric, it holds

∇ × Hs = 0, inS−,

from which we get

hs(x2) = C1x2 + C2, x2 ≤ 0, (9)

where C1, C2 ∈ R.

By virtue of the continuity of the tangential components of the magnetic field across the plane x2 = 0, since in S the total

magnetic field is (6)1, we find

C1 = h′(0),

so that

Hs = H∞{h′(0)x1e1 − [h′(0)x2 + C2]e2}. (10)

We remark that if h′(0) = 0, then Hs is uniform which contradicts hypothesis (i).

Hence h′(0) � 0 and the magnetic field lines in the solid are

x1 = B1eH∞ h′(0)λ,

x2 = B2e−H∞ h′(0)λ − C2

h′(0)
, x2 ≤ 0, B1, B2 ∈ R. (11)

The non-degenerate field lines are the curves

x1x2 = B1B2 − C2

h′(0)
x1, x2 ≤ 0, B1, B2 
= 0. (12)

The curves in (12) tend to x2 = 0 as |x1| → +� if, and only if,

C2 = 0,

from which we get the assertion. �

Remark 3. Of course Es = 0 in S−.

Remark 4. We underline that Theorem 2 holds even if S is occupied by a viscous fluid (Newtonian, micropolar and so on) for

which H has the form (6)1.

We now consider the inviscid fluid filling the half-space S . Since S is in contact with the solid through the plane x2 = 0, from

the continuity of the normal component of B and from (6)1 and (8) we deduce

h(0) = 0. (13)
Please cite this article as: A. Borrelli et al., MHD orthogonal stagnation-point flow of a micropolar fluid with the magnetic field
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Our purpose is now to determine (p, H, E) solution of (4) in S with v given by (3) such that H tends to He as x2 goes to infinity so

that

v × H = 0 at infinity (x2 → +∞). (14)

Let the electric field E be in the form

E = E1e1 + E2e2 + E3e3.

The boundary conditions and the Remark 3 require that

E1 = 0, E3 = 0atx2 = 0. (15)

From (4)4 follows that

E = −∇ψ,

where ψ is the electrostatic scalar potential.

Moreover, (4)3 provides E1 = E2 = 0 so that ψ = ψ(x3) and

dψ

dx3
(x3) = H∞

σe
x1{h′′(x2)+ σeμea[h′(x2)x2 − h(x2)]} = −E3. (16)

Further from (15)2, we get E = 0 and

h′′(x2)+ σeμea[h′(x2)x2 − h(x2)] = 0. (17)

Eq. (17) with the boundary conditions (13) and (7)1 has the unique solution h(x2) = x2. This furnishes

H = He = H∞(x1e1 − x2e2).

Since � × H = 0, from (4)1 follows that the pressure field is not modified by the presence of the magnetic field.

We summarise the results obtained for the inviscid fluid in the following theorem.

Theorem 5. Let us consider the steady orthogonal stagnation-point flow of a homogeneous, incompressible, electrically conducting

inviscid fluid that occupies the half-space S and is embedded in the external electromagnetic field He = H∞(x1e1 − x2e2), Ee = 0. If

the total magnetic field in the fluid of the form (6)1 satisfies (7) and the total magnetic field in the solid is given by (8), then

E = 0, H = He,

p = −1

2
ρa2

(
x2

1 + x2
2

)
+ p0, x1 ∈ R, x2 ∈ R

+, p0 ∈ R, (18)

where p0 ∈ R is the pressure at the stagnation point.

Remark 6. The previous result states that H = Hs = He, i.e. the presence of the solid does not influence the total magnetic field

in the fluid which coincides with the external magnetic field.

In order to study the influence of He on the steady orthogonal plane stagnation-point flow for viscous fluids, it is convenient

to suppose that the inviscid fluid orthogonally impinges on the flat plane x2 = A where A is a constant so that

v = a[x1e1 − (x2 − A)e2], He = H∞ [x1e1 − (x2 − A)e2] x1 ∈ R, x2 ≥ A,

H → H∞ [x1e1 − (x2 − A)e2] as x2 → +∞. (19)

In such a way the stagnation point is not (0, 0) but (0, A), the streamlines and the field lines of He are the hyperbolas whose

asymptotes are x1 = 0 and x2 = A and all previous arguments continue to hold by replacing x2 by x2 − A. Therefore in this case

H = H∞ [x1e1 − (x2 − A)e2], p = −1

2
ρa2

[
x2

1 + (x2 − A)2
]

+ p0. (20)

3. Newtonian fluids

Let us consider now the previous problem for a homogeneous, incompressible, electrically conducting Newtonian fluid. The

equations governing such a flow in the absence of external mechanical body forces and free electric charges are

v · ∇v = − 1

ρ
∇p + ν�v + μe

ρ
(∇ × H)× H,

∇ · v = 0,

∇ × H = σe(E + μev × H),

∇ × E = 0, ∇ · E = 0, ∇ · H = 0, in S (21)

where ν is the kinematic viscosity.
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As far as boundary conditions are concerned, we modify only the condition for v, assuming the no-slip boundary condition

v|x2=0 = 0. (22)

Since we are interested in the orthogonal plane stagnation-point flow we suppose

v1 = ax1f ′(x2), v2 = −af (x2), v3 = 0, x1 ∈ R, x2 ∈ R
+, (23)

with f sufficiently regular unknown function (f ∈ C3(R+)).
The condition (22) supplies

f (0) = 0, f ′(0) = 0. (24)

As for the inviscid fluid, we assume that the external magnetic field

He = H∞(x1e1 − x2e2)

permeates the whole physical space and that the external electric field Ee = 0.

Further we suppose that the total magnetic field in the fluid is given by (6)1 where h is a sufficiently regular unknown function

(h ∈ C2(R+)) that by virtue of (8) satisfies condition (13).

Moreover, we impose the following

Condition P. The MHD orthogonal stagnation-point flow of a viscous fluid approaches at infinity the flow of an inviscid fluid whose

velocity, magnetic field and pressure are given by (19)1, (20)1 and (20)2, respectively.

Therefore to (21) we must append the following conditions

lim
x2→+∞ f ′(x2) = 1, lim

x2→+∞ h′(x2) = 1. (25)

The asymptotic behaviour of f and h at infinity is related to the constant A in (19) in the following way:

lim
x2→+∞[f (x2)− x2] = −A, lim

x2→+∞[h(x2)− x2] = −A, (26)

so that

v × H = 0 at infinity. (27)

We underline that the constant A is not a priori assigned but its value can be computed as part of the solution of the problem.

Our aim is now to determine (p, f, H, E) solution in S of (21) with v, H given by (23), (6)1, respectively, such that Condition P

holds.

As for the inviscid fluid, the electric field E satisfies the boundary conditions

E1 = 0, E3 = 0 at x2 = 0. (28)

By using the same arguments as in previous section, we get E = 0 in S and

h′′(x2)+ σeμea[f (x2)h
′(x2)− h(x2)f

′(x2)] = 0. (29)

We now proceed in order to determine f and p. If we substitute (23) into (21)1, then in components we obtain

ax1

[
νf ′′′ + aff ′′ − af ′2 − μe

ρa
H2

∞ hh′′
]

= 1

ρ

∂p

∂x1
,

νaf ′′ + a2ff ′ + μe

ρ
H2

∞ x2
1h′h′′ = − 1

ρ

∂p

∂x2
,

∂p

∂x3
= 0 ⇒ p = p(x1, x2). (30)

By integrating (30)2, we find

p = − ρ
a2

2
f 2(x2)− ρaνf ′(x2)− μe

H2
∞

2
x2

1h′2(x2)+ P(x1),

where the function P(x1) is determined supposing that, far from the wall, the pressure p has the same behaviour as for an inviscid

fluid, whose velocity is given by (19) and the magnetic field and the pressure are given by (20).

Therefore, by virtue of (25) and (26), we get

P(x1) = −ρ
a2

2
x2

1 + μe

H2
∞

2
x2

1 + p∗
0,

where p∗
0 is a suitable constant.

Finally, the pressure field assumes the form

p = −ρ
a2 [

x2
1 + f 2(x2)

]
− ρaνf ′(x2)− μe

H2
∞ x2

1[h′2(x2)− 1] + p0, (31)

2 2
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where the constant p0 is the pressure at the origin.

In consideration of (31), from (30)1 we obtain the ordinary differential equation

ν

a
f ′′′ + ff ′′ − f ′2 + 1 − μe

ρ

H2
∞

a2
[hh′′ − h′2 + 1] = 0. (32)

We can now summarise our results in the following

Theorem 7. Let us consider a homogeneous, incompressible, electrically conducting Newtonian fluid that occupies the half-space S
and is embedded in the external electromagnetic field He = H∞(x1e1 − x2e2), Ee = 0. If the total magnetic field in the solid is given by

(8), then the steady MHD orthogonal plane stagnation-point flow of such a fluid has the form

v =ax1f ′(x2)e1 − af (x2)e2,

H =H∞ [x1h′(x2)e1 − h(x2)e2], E = 0, (33)

p = − ρ
a2

2

[
x2

1 + f 2(x2)
]

− ρaνf ′(x2)− μe

H2
∞

2
x2

1[h′2(x2)− 1] + p0,

x1 ∈ R, x2 ∈ R
+,

where (f, h) satisfies the problem (32), (29), (24), (13), (25).

The problem (32), (29), (24), (13), (25) is solved numerically due to its nonlinearity.

From the numerical solution we will see that f and h satisfy (26) and we compute the value of A.

In order to reduce the number of the parameters, it is convenient to write the boundary value problem in Theorem 7 in

dimensionless form putting

η =
√

a

ν
x2, ϕ(η) =

√
a

ν
f

(√
ν

a
η

)
, 
(η) =

√
a

ν
h

(√
ν

a
η

)
. (34)

So we can rewrite problem (32), (29), (13), (25) as:

ϕ ′′′ + ϕϕ ′′ − ϕ ′2 + 1 − βm(

 ′′ − 
 ′2 + 1) = 0,


 ′′ + Rm(ϕ
 ′ − 
ϕ ′) = 0,

ϕ(0) = 0, ϕ ′(0) = 0, 
(0) = 0,

lim
η→+∞ ϕ ′(η) = 1, lim

η→+∞ 
 ′(η) = 1, (35)

where βm = μe
ρ

H2
∞

a2 , Rm = ν
ηe

, (ηe = (σeμe)−1) is the magnetic Reynolds number.

The previous nonlinear differential problem has been solved numerically by using the bvp4c MATLAB routine. Such a routine is

a finite difference code that implements the three-stage Lobatto IIIa formula. This is a collocation formula and here the collocation

polynomial provides a C1-continuous solution that is fourth-order accurate uniformly in [0, 5]. Mesh selection and error control

are based on the residual of the continuous solution. We set the relative and the absolute tolerance equal to 10−7. The method

was used and described in [22]. The values of Rm and βm are chosen according to [21], where the authors have already computed

the solution but they did not take into consideration the thickness of the boundary layer, the behaviour of the solution and the

influence of the parameters on the motion.

As far as the value of βm is concerned, we have that βm has to be less than 1 in order to preserve the parallelism of H and v at

infinity, as it will be underlined in the sequel.

Further for small values of Rm, Eq. (35)2 reduces to 
 ′ ′ � 0, which gives 
 � η so that the influence of the external magnetic

field on the flow cannot be shown by system (35). In order to remove this difficulty, it is convenient to use the following

transformation [23,24]

ξ =
√

Rmη, ϕ∗(ξ) =
√

Rmϕ(
√

Rmξ), 
∗(η) =
√

Rm
(
√

Rmξ). (36)

From the numerical integration, we will see that

lim
η→+∞ ϕ ′′(η) = 0, lim

η→+∞ ϕ ′(η) = 1.

Therefore we define:

• ηϕ the value of η such that ϕ′(ηϕ) = 0.99.

Hence if η > ηϕ, then ϕ�η − α, with α =
√

a
ν A.

So the influence of the viscosity appears only in a layer near to the wall whose thickness is ηϕ

√
ν
a .

Moreover lim
η→+∞ 
 ′′(η) = 0, lim

η→+∞ 
 ′(η) = 1. If we define as η
 the value of η such that 
 ′(η
) = 0.99, then we have that for

η > η
, 
�η − α.
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Table 1

Descriptive quantities of the motion for several values of Rm

and βm .

Rm βm ϕ ′ ′(0) 
 ′(0) α ηϕ

0.01 0.00 1.2326 0.9273 0.6479 2.3881

0.20 1.2040 0.9191 0.8021 6.6017

0.50 1.1435 0.8991 1.2557 19.4174

0.70 1.0764 0.8733 2.0070 30.1200

0.90 0.9437 0.8162 4.2495 44.7362

0.1 0.00 1.2326 0.8110 0.6479 2.3802

0.20 1.1650 0.7922 0.7884 5.2230

0.50 1.0278 0.7486 1.1879 9.1610

0.70 0.8877 0.6969 1.8066 12.6325

0.90 0.6529 0.5994 3.4034 15.2579

1 0.00 1.2326 0.6080 0.6479 2.3806

0.20 1.1193 0.5812 0.7616 3.1533

0.50 0.9065 0.5258 1.0511 4.3173

0.70 0.7189 0.4727 1.4028 4.7799

0.90 0.4676 0.3976 2.0234 4.9350

100 0.00 1.2326 0.2027 0.6479 2.3806

0.20 1.1004 0.1895 0.7266 2.6669

0.50 0.8665 0.1641 0.9234 3.3783

0.70 0.6686 0.1401 1.1887 4.2186

0.90 0.3935 0.1010 1.8284 4.8675

1000 0.00 1.2326 0.1003 0.6479 2.3806

0.20 1.1019 0.0935 0.7247 2.6619

0.50 0.8704 0.0804 0.9167 3.3621

0.70 0.6740 0.0683 1.1762 4.1973

0.90 0.3993 0.0487 1.8071 4.8625
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Fig. 2. The first figure shows ϕ, ϕ ′ , ϕ ′ ′ for Rm = 1 and βm = 0.5, while the second shows 
 , 
 ′ for Rm = 1 and βm = 0.5.
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The numerical results show that the values computed of α for ϕ and 
 are in good agreement, especially when βm is small

or Rm is big. This fact can be well observed displaying that the velocity and the magnetic field are parallel far from the obstacle,

as we will see in the next figures.

The values of α, ϕ′ ′(0), 
 ′(0) depend on Rm and βm, as we can see from Table 1.

Table 1 has been obtained for small values of Rm recomputing the corresponding values of η, ϕ and 
 after using

transformation (36).

We see that α increases, while ϕ′ ′(0) and 
 ′(0) decrease as βm is increased from 0. Further α, ϕ′ ′(0) and 
 ′(0) decrease as Rm

increases.

We remark that 
 ′(0) � 0 according to hypothesis (i) of Theorem 2.

In Fig. 2(1) there are the profiles ϕ, ϕ′, ϕ′ ′ for Rm = 1 and βm = 0.5, while Fig. 2(2) shows the behaviour of 
 , 
 ′ for the same

values of Rm and βm.

We have plotted the profiles of ϕ, ϕ′, ϕ′ ′, 
 , 
 ′ only for Rm = 1 and βm = 0.5 because they have an analogous trend for Rm � 1

and βm � 0.5.
Please cite this article as: A. Borrelli et al., MHD orthogonal stagnation-point flow of a micropolar fluid with the magnetic field

parallel to the velocity at infinity, Applied Mathematics and Computation (2015), http://dx.doi.org/10.1016/j.amc.2015.04.058

Original text:
Original text:
ure

Original text:
Original text:
   1   

Original text:
Original text:
ure

Original text:
Original text:
   2   

http://dx.doi.org/10.1016/j.amc.2015.04.058


A. Borrelli et al. / Applied Mathematics and Computation xxx (2015) xxx–xxx 9

ARTICLE IN PRESS
JID: AMC [m3Gsc;April 25, 2015;19:46]

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

ϕ

← βm =0

← βm =0.2

← βm =0.3

← βm =0.5

← βm =0.7

← βm =0.8
← βm =0.9

Rm =1.

4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

η

ϕ

← Rm =0.01

← Rm =0.1

← Rm =1

← Rm =10← Rm =1000
βm =0.5.

Fig. 3. Plots showing ϕ ′ for different βm and Rm , respectively.

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222
Table 1 underlines that the thickness of the boundary layer depends on Rm and βm. More precisely, it increases when βm

increases (as is easy to see in Fig. 3(1)). This behaviour is not surprising because βm is a measure of the strength of the applied

magnetic field and as it is underlined in [21] when the magnetic field is strong the disturbances are no longer contained within a

boundary layer along the wall. This means that boundary conditions can no longer be prescribed at infinity. In particular, in [21]

it is proved that in a perfectly conducting fluid the displacement thickness becomes infinite as βm goes to 1−.

As far as the dependence of the thickness of the boundary layer on Rm is concerned, it decreases when Rm increases (as is easy

to see in Fig. 3(2)). This result is standard in magnetohydrodynamic.

Finally, we display the streamlines of the flow in Fig. 4. As is easily seen from the figures, the flow and the magnetic field are

completely overlapped far from the obstacle and the more Rm increases the more the two lines coincide.

4. Micropolar fluids

Consider now the steady two-dimensional MHD orthogonal stagnation-point flow of a homogeneous, incompressible, electri-

cally conducting micropolar fluid towards a flat surface coinciding with the plane x2 = 0, the flow being confined to the half-space

S, having Eq. (1).

In the absence of external mechanical body forces, body couples and free electric charges, the MHD equations for such a fluid

are

v · ∇v = − 1

ρ
∇p + (ν + νr)�v + 2νr(∇ × w)+ μe

ρ
(∇ × H)× H,

∇ · v = 0,

Iv · ∇w = λ�w + λ0∇(∇ · w)− 4νrw + 2νr(∇ × v),

∇ × H = σe(E + μev × H),

∇ × E = 0, ∇ · E = 0, ∇ · H = 0, in S. (37)

where w is the microrotation field, ν is the kinematic Newtonian viscosity coefficient, νr is the microrotation viscosity coefficient,

λ, λ0 (positive constants) are material parameters related to the coefficient of angular viscosity and I is the microinertia coefficient.

We notice that in [1,2], Eqs. (37) are slightly different, because they are deduced as a special case of much more general model

of microfluids. For the details, we refer to [3], p. 23.

As far as the boundary conditions are concerned we prescribe

v|x2=0 = 0, w|x2=0 = 0 (strict adherence condition). (38)

We search v, w in the following form

v1 = ax1f ′(x2), v2 = −af (x2), v3 = 0,

w1 = 0, w2 = 0, w3 = x1F(x2), x1 ∈ R, x2 ∈ R
+, (39)

where f, F are sufficiently regular unknown functions (f ∈ C3(R+), F ∈ C2(R+)).
The conditions (38) supply

f (0) = 0, f ′(0) = 0, F(0) = 0. (40)
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As for the inviscid and Newtonian fluid, we suppose that an external magnetic field

He = H∞(x1e1 − x2e2)

permeates the whole physical space and that the external electric field is absent.

Moreover, the total magnetic field in the fluid is taken in the following form

H = H∞ [x1h′(x2)e1 − h(x2)e2], (41)

where h is a sufficiently regular unknown function (h ∈ C2(R+)). From Theorem 2 follows that in the solid the total magnetic

field has the form Hs = H∞ h′(0)(x1e1 − x2e2), which gives the additional condition

h(0) = 0. (42)

Moreover, we require that the MHD orthogonal stagnation-point flow satisfies Condition P at infinity.

Therefore to (37) we must also append the following conditions

lim
x2→+∞ f ′(x2) = 1, lim

x2→+∞ F(x2) = 0, lim
x2→+∞ h′(x2) = 1. (43)
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Table 2

Descriptive quantities of the motion for several values of c1, c2, c3, Rm and βm .

Rm βm c1 c2 c3 ϕ ′ ′(0) 
 ′(0) 	′(0) α ηϕ η	 δ

0.01 0.00 0.10 1.50 0.10 1.2218 0.9275 -0.0532 0.6445 2.3341 0.7669 2.3341

0.50 1.2231 0.9275 -0.0510 0.6448 2.3508 0.7169 2.3508

3.00 0.10 1.2250 0.9275 -0.0444 0.6453 2.3508 0.6669 2.3508

0.50 1.2256 0.9275 -0.0434 0.6454 2.3675 0.6335 2.3675

0.50 1.50 0.10 1.1780 0.9287 -0.2659 0.6309 2.1340 0.7669 2.1340

0.50 1.1848 0.9287 -0.2553 0.6321 2.1841 0.7169 2.1841

3.00 0.10 1.1943 0.9284 -0.2220 0.6350 2.2174 0.6836 2.2174

0.50 1.1972 0.9284 -0.2173 0.6356 2.2508 0.6502 2.2508

0.50 0.10 1.50 0.10 1.1335 0.8995 -0.0500 1.2492 19.3731 0.7836 19.3731

0.50 1.1347 0.8995 -0.0481 1.2496 19.3731 0.7169 19.3731

3.00 0.10 1.1366 0.8994 -0.0417 1.2508 19.3898 0.6836 19.3898

0.50 1.1371 0.8994 -0.0408 1.2510 19.3898 0.6502 19.3898

0.50 1.50 0.10 1.0929 0.9012 -0.2505 1.2227 19.1731 0.7836 19.1731

0.50 1.0992 0.9011 -0.2409 1.2249 19.1897 0.7336 19.1897

3.00 0.10 1.1085 0.9007 -0.2085 1.2308 19.2397 0.6836 19.2397

0.50 1.1111 0.9007 -0.2043 1.2318 19.2564 0.6502 19.2564

1 0.00 0.10 1.50 0.10 1.2218 0.6081 -0.0532 0.6446 2.3258 1.6005 2.3258

0.50 1.2231 0.6082 -0.0510 0.6448 2.3374 1.3338 2.3374

3.00 0.10 1.2250 0.6082 -0.0444 0.6453 2.3474 1.0020 2.3474

0.50 1.2256 0.6083 -0.0434 0.6454 2.3525 0.8469 2.3525

0.50 1.50 0.10 1.1780 0.6087 -0.2659 0.6310 2.1274 2.9093 2.9093

0.50 1.1848 0.6093 -0.2553 0.6321 2.1691 2.4325 2.4325

3.00 0.10 1.1943 0.6092 -0.2220 0.6350 2.2157 2.3441 2.3441

0.50 1.1972 0.6095 -0.2173 0.6356 2.2391 2.1190 2.2391

0.50 0.10 1.50 0.10 0.8963 0.5258 -0.0429 1.0463 4.2864 1.8723 4.2864

0.50 0.8976 0.5260 -0.0413 1.0462 4.2964 1.5038 4.2964

3.00 0.10 0.8998 0.5260 -0.0350 1.0474 4.2998 0.7469 4.2998

0.50 0.9003 0.5261 -0.0343 1.0474 4.3031 0.7119 4.3031

0.50 1.50 0.10 0.8549 0.5255 -0.2141 1.0265 4.1464 3.8913 4.1464

0.50 0.8616 0.5267 -0.2066 1.0261 4.2031 3.3061 4.2031

3.00 0.10 0.8727 0.5267 -0.1746 1.0321 4.2281 3.1677 4.2281

0.50 0.8753 0.5271 -0.1715 1.0321 4.2464 2.8193 4.2464

100 0.00 0.10 1.50 0.10 1.2218 0.2021 -0.0532 0.6446 2.3258 1.6005 2.3258

0.50 1.2231 0.2023 -0.0510 0.6448 2.3374 1.3338 2.3374

3.00 0.10 1.2250 0.2024 -0.0444 0.6453 2.3474 1.0020 2.3474

0.50 1.2256 0.2024 -0.0434 0.6454 2.3525 0.8469 2.3525

0.50 1.50 0.10 1.1780 0.1999 -0.2659 0.6310 2.1274 2.9093 2.9093

0.50 1.1848 0.2005 -0.2553 0.6321 2.1691 2.4325 2.4325

3.00 0.10 1.1943 0.2011 -0.2220 0.6350 2.2157 2.3441 2.3441

0.50 1.1972 0.2013 -0.2173 0.6356 2.2391 2.1190 2.2391

0.50 0.10 1.50 0.10 0.8560 0.1635 -0.0439 0.9166 3.2928 1.9590 3.2928

0.50 0.8574 0.1636 -0.0421 0.9169 3.3178 1.6189 3.3178

3.00 0.10 0.8595 0.1638 -0.0354 0.9184 3.3311 1.0854 3.3311

0.50 0.8601 0.1638 -0.0347 0.9186 3.3411 0.7786 3.3411

0.50 1.50 0.10 0.8126 0.1609 -0.2196 0.8887 2.9460 3.4378 3.4378

0.50 0.8200 0.1617 -0.2112 0.8907 3.0527 2.9210 3.0527

3.00 0.10 0.8311 0.1624 -0.1772 0.8984 3.1327 2.8459 3.1327

0.50 0.8340 0.1627 -0.1738 0.8993 3.1794 2.5792 3.1794

230

231

232

233

234

235

236

237

238
Condition (43)2 means that at infinity, w = 1

2
∇ × v, i.e. the micropolar fluid behaves like an inviscid fluid.

The asymptotic behaviour of f and h at infinity is related to x2 as for the Newtonian case. Hence relation (26) continues to

hold, so that

v × H = 0 at infinity. (44)

We underline that the constant A is not a priori assigned but its value can be computed as part of the solution of the problem.

Our aim is now to determine (p, f, F, H, E) solution in S of (37) with v, w given by (38) such that Condition P

holds.

Since (37)3–6 are the same as (21)4–7, H, E depend only on the form of the velocity field, which is the same as that of the

Newtonian fluid. Hence, following the arguments of the previous section, we get

E = 0, h′′(x2)+ σeμea[f (x2)h
′(x2)− h(x2)f

′(x2)] = 0. (45)

Now we proceed in order to determine p, f, F.
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We substitute (39) and (41) in (37)1, 3 to obtain

ax1

[
(ν + νr)f

′′′ + aff ′′ − af ′2 + 2νr

a
F ′ − μe

ρa
H2

∞ hh′′
]

= 1

ρ

∂p

∂x1
,

a(ν + νr)f
′′ + a2ff ′ + 2νrF + μe

ρ
H2

∞ x2
1h′h′′ = − 1

ρ

∂p

∂x2
,

∂p

∂x3
= 0 ⇒ p = p(x1, x2),

λF ′′ + Ia(F ′f − Ff ′)− 2νr(2F + af ′′) = 0. (46)

Then, by integrating (46)2, we find

p = − ρ
a2

2
f 2(x2)− ρa(ν + νr)f

′(x2)− 2νrρ

∫ x2

0

F(s)ds − μe

H2
∞

2
x2

1h′2(x2)+ P(x1),

where the function P(x1) is determined supposing that, far from the wall, the pressure p has the same behaviour as for an inviscid

fluid, whose velocity is given by (19) and the magnetic field and the pressure are given by (20).

Therefore, by virtue of (43), (26) and under the assumption F � L1([0, +�]) we get

P(x1) = −ρ
a2

x2
1 + μe

H2
∞ x2

1 + p∗
0,
2 2
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where p∗
0 is a suitable constant.

Finally, the pressure field assumes the form

p = −ρ
a2

2

[
x2

1 + f 2(x2)
]

− ρa(ν + νr)f
′(x2)− 2νrρ

∫ x2

0

F(s)ds − μe

H2
∞

2
x2

1[h′2(x2)− 1] + p0, (47)

with p0 constant.

In consideration of (47), from (46)1 we obtain the ordinary differential equation

ν + νr

a
f ′′′ + ff ′′ − f ′2 + 1 + 2νr

a2
F ′ − μe

ρ

H2
∞

a2
[hh′′ − h′2 + 1] = 0, (48)

together with Eqs. (46)4 and (45)2 and the boundary conditions (40), (43) and (42).

Hence we can state

Theorem 8. Let a homogeneous, incompressible, electrically conducting micropolar fluid occupy the half-space S and is embedded in

the external electromagnetic field He = H∞(x1e1 − x2e2), Ee = 0. If the total magnetic field in the solid is given by (8), then the steady

MHD orthogonal plane stagnation-point flow of such a fluid has the form

v = ax1f ′(x2)e1 − af (x2)e2, w = x1F(x2)e3,

H = H∞ [x1h′(x2)e1 − h(x2)e2], E = 0,

p = − ρ
a2

2

[
x2

1 + f 2(x2)
]

− ρa(ν + νr)f
′(x2)− 2νrρ

∫ x2

0

F(s)ds − μe

H2
∞

2
x2

1[h′2(x2)− 1] + p0, x1 ∈ R, x2 ∈ R
+,

where (f, F, h) satisfies the problem (48), (46)4, (45)2 and the boundary conditions (40), (43) and (42), provided F � L1([0, +�]).

Now it is convenient to rewrite the boundary value problem in Theorem 8 in dimensionless form in order to reduce the

number of the material parameters. To this end if we use

η =
√

a

ν + νr
x2, ϕ(η) =

√
a

ν + νr
f

(√
ν + νr

a
η

)
,


(η) =
√

a

ν + νr
h

(√
ν + νr

a
η

)
, 	(η) = 2νr

a2

√
a

ν + νr
F

(√
ν + νr

a
η

)
, (49)

then system (48), (46)4 and (45)2 can be written as

ϕ ′′′ + ϕϕ ′′ − ϕ ′2 + 1 + 	′ − βm(

 ′′ − 
 ′2 + 1) = 0,

	′′ + c3	
′ϕ − 	(c3ϕ

′ + c2)− c1ϕ
′′ = 0,


 ′′ + Rm(ϕ
 ′ − 
ϕ ′) = 0, (50)
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where c1, c2, c3, βm, Rm are given by

c1 = 4ν2
r

λa
, c2 = 4νr(ν + νr)

λa
, c3 = I

λ
(ν + νr),

βm = μe

ρ

H2
∞

a2
, Rm = ν + νr

ηe
. (51)

The boundary conditions (40), (43) and (42) in dimensionless form become:

ϕ(0) = 0, ϕ ′(0) = 0, 	(0) = 0, 
(0) = 0,

lim
η→+∞ ϕ ′(η) = 1, lim

η→+∞ 	(η) = 0, lim
η→+∞ 
 ′(η) = 1. (52)

The problem (50), (52) is a nonlinear differential problem that we have solved numerically using the bvp4c MATLAB routine.

Such a routine is a finite difference code that implements the three-stage Lobatto IIIa formula. This is a collocation formula

and here the collocation polynomial provides a C1-continuous solution that is fourth-order accurate uniformly in [0, 5]. Mesh

selection and error control are based on the residual of the continuous solution. We set the relative and the absolute tolerance

equal to 10−7. The method was used and described in [22].

The values of c1, c2, c3 are chosen according to [19], while the values of Rm and βm according to [21] and to the previous

section.
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As far as the value of βm is concerned, we recall that βm has to be less than 1 in order to preserve the parallelism of H and v

at infinity.

Further for small values of Rm, it is convenient to use a transformation similar to that given by (36).

From the numerical integration, we will see that the solution (ϕ, 	, 
) of problem (50) satisfies the conditions (52)5–7;

therefore we put:

• ηϕ the value of η such that ϕ′(ηϕ) = 0.99;

• η	 the value of η such that 	(η	) = −0.01.

Hence if η > ηϕ then ϕ�η − α, and if η > η	, then 	�0.

The influence of the viscosity on the velocity and on the microrotation appears only in a layer lining the boundary whose

thickness is ηϕ for the velocity and η	 for the microrotation. The thickness δ of the boundary layer for the flow is defined as

δ = max(ηϕ, η	).

Moreover, as well as in the Newtonian case, lim
η→+∞ 
 ′′(η) = 0, lim

η→+∞ 
 ′(η) = 1. If we define as η
 the value of η such that


 ′(η
) = 0.99, then we have that for η > η
, 
�η − α.

The numerical results show that the values computed of α for ϕ and 
 are in good agreement, especially when βm is small or

Rm is big. This fact can be well observed displaying that the velocity and the magnetic field are parallel far from the obstacle, as we

will see in the next figures. Table 2 shows the numerical results of the descriptive quantities of problem (50), (52) in dependence

of some values of c1, c2, c3, βm and Rm.

When βm and Rm are fixed, we see from Table 2 that if we also fix two parameters among c1, c2, c3, then the values of α,

ϕ′ ′(0), 	′(0), have the following behaviour:

• they increase as c2 or c3 increases;

• they decrease as c increases.
1
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The influence of c1 appears more considerable also on the quantities quoted in the table.

Figs. 5–7 elucidate the dependence of the functions ϕ′, 	 on the parameters c1, c2, c3. We can see that the function which

appear most influenced by c1, c2, c3 is 	, in other words the microrotation. More precisely, the profile of 	 rises as c3 or c2

increases and c1 decreases. As it happened for the descriptive quantities of the motion, c1 is the parameter that most influences

the microrotation.

The function ϕ′ does not show considerable variations as c1, c2, c3 assume different values.

As far as the dependence on Rm and βm is concerned, we see from Table 2 that:

• if βm increases, then α and 	′(0) increase, while ϕ′ ′(0) and 
 ′(0) decrease;

• if Rm increases, then α, ϕ′ ′(0), |	′(0)| and 
 ′(0) decrease.

In Fig. 8(1) we display the profiles ϕ, ϕ′, ϕ′ ′ when c1 = 0.5, c2 = 3.0, c3 = 0.5, Rm = 1 and βm = 0.5, while Fig. 8(2) shows the

behaviour of 	, 	′ for the same values of the parameters. The behaviour of 
 , 
 ′ is shown in Fig. 8(3).

We have plotted the profiles of ϕ, ϕ′, ϕ′ ′, 	, 	′, 
 , 
 ′ only for these values of the parameters because they have an analogous

behaviour for c � 0.5, c � 3.0, c � 0.5, Rm � 1 and βm � 0.5.
1 2 3
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Table 2 underlines that the thickness of the boundary layer depends on Rm and βm. More precisely as in the Newtonian case,

it increases as βm increases (as is easy to see in Fig. 9(1) and (2)) and it decreases as Rm increases (as is easy to see in Fig. 9(3)

and (4)).

We underline that the micropolar nature of the fluid reduces all the descriptive quantities of the motion in comparison to

those of the Newtonian fluid, especially the thickness of the boundary layer for the velocity.

Finally, we display the streamlines of the flow in Fig. 10. As it is easy to see from the figures, the flow and the magnetic field

are completely overlapped far from the obstacle and the more Rm increases the more the two lines coincide.

5. Conclusions

In this paper we study the MHD orthogonal stagnation-point flow of a micropolar fluid when the total not uniform magnetic

field is parallel to the velocity at infinity. In order to analyse in a complete way the problem, we first examine the same situation

for an inviscid and a Newtonian fluid. The region where the fluid motion occurs is bordered by the boundary of a solid obstacle

which is a rigid uncharged dielectric at rest. We prove that the total magnetic field in the solid is related to the total magnetic

field H in the fluid. By means of similarity transformations, we reduce the MHD PDEs to a nonlinear system of ODEs which has

been numerically integrated for each model of fluid. The results obtained show that

• The thickness of the boundary layer depends on two parameters: Rm (the magnetic Reynolds number) and βm (coefficient

proportional to the strength of the external magnetic field).

• In the micropolar case, we study the influence of the micropolar constants c1, c2, c3 on the flow.

• The micropolar nature of the fluid reduces all the descriptive quantities of the flow in comparison to the Newtonian case.
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