
ar
X

iv
:1

70
2.

04
88

4v
1 

 [
m

at
h.

A
P]

  1
6 

Fe
b 

20
17

Semi-wavefront solutions in models of collective movements

with density-dependent diffusivity

Andrea Corli

Department of Mathematics and Computer Science, University of Ferrara

I-44121 Italy, e-mail: andrea.corli@unife.it

Luisa Malaguti

Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia

I-42122 Italy, e-mail: luisa.malaguti@unimore.it

September 1, 2018

Abstract

This paper deals with a nonhomogeneous scalar parabolic equation with possibly
degenerate diffusion term; the process has only one stationary state. The equation can
be interpreted as modeling collective movements (crowd dynamics, for instance). We first
prove the existence of semi-wavefront solutions for every wave speed; their properties
are investigated. Then, a family of travelling wave solutions is constructed by a suitable
combination of the previous semi-wavefront solutions. Proofs exploit comparison-type
techniques and are carried out in the case of one spatial variable; the extension to the
general case is straightforward.
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1 Introduction

This paper deals with the scalar parabolic equation

ρt + f(ρ)x =
(

D(ρ)ρx
)

x
+ g(ρ), (x, t) ∈ R× [0,+∞), (1.1)

where f ∈ C1[0, ρ], f(0) = 0, g ∈ C[0, ρ] and D ∈ C1[0, ρ], for some ρ > 0; we denote

h(ρ) = f ′(ρ).

The diffusion coefficient (or diffusivity) D is required to satisfy one of the following assump-
tions, in increasing order of degeneracy at 0:

(D0) D(ρ) > 0 for ρ ∈ [0, ρ];

(D1) D(ρ) > 0 for ρ ∈ (0, ρ] and D(0) = 0, Ḋ(0) > 0;
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(D2) D(ρ) > 0 for ρ ∈ (0, ρ] and D(0) = Ḋ(0) = 0.

We denoted by a dot the differentiation with respect to ρ. In the following, we simply refer
to condition (D) when we indifferently assume either (D0) or (D1) or else (D2). About the
forcing term g we require that it vanishes at ρ, namely,

(g) g(ρ) > 0 for ρ ∈ [0, ρ) and g(ρ) = 0.

The reaction-diffusion-convection equation (1.1), with D vanishing (as a power function)
at some points, models several physical and biological phenomena. We refer to [15, 17, 24, 30,
31] for many applications and analytic results; however, none of these papers seems to deal
with a source term g satisfying (g) . The porous media equation [31], where D(ρ) = mρm−1,
does not enter in this framework if 1 < m < 2, since in that case D(0) = 0 but Ḋ(0) = ∞;
nevertheless, we shall provide results later on also for this case. However, our main source
of inspiration has been the appearance of (1.1) with g = 0 in the framework of collective
movements, namely, traffic flows and crowd dynamics. We briefly account on this topic in
the following lines.

The simplest continuum (macroscopic) model for traffic flow is probably the famous
Lighthill-Whitham-Richards equation [21, 28]

ρt +
(

ρv(ρ)
)

x
= 0. (1.2)

It coincides with (1.1) if D = g = 0 and f(ρ) = ρv(ρ). Here, ρ ∈ [0, ρ] represents a density, ρ
being the maximal density; the function v(ρ) is an assigned speed, which is usually assumed
to be decreasing and satisfying v(ρ) = 0. Because of its simplicity, equation (1.2) is also the
starting point for modeling crowd dynamics; we refer to [2, 3, 10, 29] for more information
on these subjects.

Already Lighthill and Whitham [21] proposed to include a linear diffusion term in (1.2)
to avoid the appearance of shock waves; in this case, the diffusivity D is constant and (D0)
holds. We notice that the fundamental property of mass conservation, which clearly holds
for equation (1.2), is still valid in presence of a further diffusion term [31, (3.43)]. In recent
years, several authors discussed the problem of choosing the “correct” diffusivity D. In
particular, the paper [25] (see also [26, 27]) considers the case

D(ρ) = −ρ
(

Lv′(ρ) + τρ
(

v′(ρ)
)2
)

, (1.3)

where L and τ are an anticipation distance and a relaxation time, respectively. Consider
v ∈ C2[0, ρ] and assume minρ∈[0,ρ] ρv

′(ρ) > −L/τ , so that D(ρ) > 0 if ρ ∈ (0, ρ]; if v′(0) 6= 0
then (D1) holds, if v

′(0) = 0 then (D2) holds. On the other hand, (D) fails under the choice
v(ρ) = min

{

v,C log(ρ/ρ)
}

, where v is the maximal velocity and C > 0 a constant [25]:
the problem is not only the loss of smoothness of D, which is discontinuous, but also the
fact that it identically vanishes in a right neighborhood of 0. A thorough discussion on the
possible choices of D is provided in [2] and leads to discard constant diffusivities; the case
D(0) = D(ρ) = 0 is motivated in [11], see also [4, 5]. The case when both h and D depend
on x is considered in [7].

Equation (1.1) also occurs in crowd dynamics, again in the case g = 0. It has recently
been proposed in [6] (see also [10, 32]) for

v(ρ) = v

(

1− e
−γ

(

1

ρ
−

1

ρ

))

, D(ρ) = −δρv′(ρ), ρ ∈ [0, ρ]. (1.4)
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Here, v and ρ have the same meaning as above, 0 < γ < ρ is obtained through experimental
data and δ > 0 represents the characteristic depth of the visual field of pedestrians. In (1.4)
we clearly think of v as a function defined in (0, ρ] and extended to 0 in C∞ way. The choice
(1.4) satisfies assumption (D2); notice that D(ρ) 6= 0. We emphasize that the exponential
flatness of D at 0 due to (1.4) is far from being common in applications; see however [31,
§21.3].

In the framework of collective movements, the case when g does not vanish identically
seems to have been often neglected but it is important to model entries or exits; we refer to
[1] for traffic flows and [10] for pedestrian dynamics with zero diffusivity. Usually such terms
are localized in the space variables [1], but we chose both to a have a diffuse forcing and
keep the assumptions on g as simple as possible. Assumption (g) could be meaningful, for
instance, in the case of pedestrians moving (or standing) along a long corridor (or street);
if the number of side entries (cross streets, respectively) reaching the corridor is large, one
could drop a model with many localized entries in favor of a model with a diffuse source
term. Such a situation occurs, for instance, at the barriers of a subway exit; or where the
platforms of a railway station reach the main hall; or replacing the corridor with a beach
where the access is free. The assumption g(ρ) = 0 in (g) models the fact that there is no
room for further entries if the maximal density is reached. A simple example of forcing term
g satisfying (g) is g(ρ) = L · (ρ− ρ)α, for constants L > 0 and α > 0: it plays a key role in
Theorem 2.5.

In order to encompass all significative cases, in the last part of the paper we also consider
the case when the slope of D at 0 is infinity, as it is the case for the above mentioned porous
media equation if 1 < m < 2. More precisely, in that part we assume D ∈ C[0, ρ] ∩C1(0, ρ)
and one of the following conditions:

(D̂0) D(ρ) > 0 for ρ ∈ [0, ρ] and Ḋ(0) = ±∞.

(D̂1) D(ρ) > 0 for ρ ∈ (0, ρ] and D(0) = 0, Ḋ(0) = ∞.

As for (D), we simply refer to (D̂) when we assume indifferently either (D̂0) or (D̂1). We
treat case (D) first and separately from case (D̂) to avoid the discussion of several subcases
at the same time; indeed, the techniques used for the former case are analogous to those
exploited for the latter.

In this paper we consider neither the case where D also vanishes at ρ nor, as a con-
sequence, the case where in addition it changes sign in the interval (0, ρ). In the case
g(0) = g(ρ) = 0, the former case was studied in [23], the latter in [22]; see also [13] for D
changing sign two times. Indeed, the case when D changes sign is mentioned in [25] and
occurs in (1.3) for particular but meaningful choices of v, L and τ ; moreover, it naturally
arises by applying the expansion of [6] to some velocity laws recently introduced in [8] to
model panic phenomena in crowd dynamics, see [29] for more information. The case when
D depends on ρx has been studied by many authors, see for instance [14].

Several extensions of the results provided in this paper, namely, the case when D(ρ) = 0
and g either satisfies (g) or can assume negative values, are contained in [9]; here, we set up
the main mathematical framework and only deal with the simplest application. Nevertheless,
most of our results are new and are not contained in [13, 22, 23].

Now, we focus on the analytical aspects of the paper, that we believe are interesting
by their own. A traveling-wave solution of equation (1.1) is a solution ρ(x, t) satisfying
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ρ(x, t) = ϕ(x − ct) for some wave profile ϕ(ξ) and constant speed c. It is easy to see that
ϕ(ξ) satisfies the equation

(

D(ϕ)ϕ ′
) ′

+
(

c− h(ϕ)
)

ϕ ′ + g(ϕ) = 0 (1.5)

in some open interval I ⊆ R; we denoted by a prime the differentiation with respect to ξ.
Since (1.5) is an autonomous equation, every function ϕ(ξ − ξ0), that is obtained from a
traveling-wave solution by a shift of length ξ0, is again a traveling-wave solution. Therefore,
profiles can be unique only up to shifts. A traveling-wave solution between two stationary
states of (1.1), i.e. two zeros of g, which in addition is monotonic, is usually known as a
wavefront solution. For such sources g, equation (1.1) usually supports wavefront solutions;
we refer to [15, 16, 23] and references therein for recent results on this topic.

In [12] it is considered the case when g only vanishes at one point (namely, ρ = 0) and
D, h, g are polynomials. By classical techniques in the phase plane, the authors show the
existence of global traveling wave solutions that decrease to 0, see Section 2. According to
our assumption (g), also equation (1.1) has only one stationary state (namely ρ = ρ) but
the domain of g is the closed interval [0, ρ]; hence, only semi-wavefront solutions, see Section
2, may exist, as already showed in [15] in the special case h(ϕ) ≡ 0. Roughly speaking, the
wave profiles of such solutions are only defined in a half-line (−∞,̟) or (̟,+∞) and tend
to the stationary state either at −∞ or to +∞; a suitable change of variable commutes wave
profiles of a type in those of the other type.

The aim of this paper is to extend some results of [15] to equation (1.1) when h(ϕ) does
not necessarily vanish identically, providing a unified treatment when either (D) or (D̂) holds;
moreover, we improve the results in [15] by fully characterizing the slope of the wave profile
when it reaches 0. In Theorem 2.4, which extends [15, Theorem 6.1], we prove that equation
(1.1) has semi-wavefront solutions both with decreasing and with increasing profiles, for every
wave speed c; moreover, such solutions are of class C2 (see Remark 6.1) and are unique up
to shifts. We also explicitly compute the slope of the front when it reaches the value 0, see
Theorem 2.4. In Theorem 2.5, which parallels [15, Theorem 6.2], we fully characterize the
semi-wavefront solutions of (1.1) that reach the value ρ only asymptotically: this happens
if and only if g satisfies condition (2.11). A last result concerns the juxtaposition of two
semi-wavefront profiles to obtain a global traveling-wave solution; while this procedure is
succesfull for some dispersive equations [19], we show that it is not effective in the current
case.

The main technical tool to prove the above results is an order reduction of equation
(1.5). Indeed, due to the sign condition on the source term g, it is possible to prove that
every semi-wavefront solution has a wave profile ϕ(ξ) that is strictly monotone in the region
where 0 ≤ ϕ(ξ) < ρ, see Proposition 6.1; hence, it is invertible there, with inverse function
ξ = ξ(ϕ), ϕ ∈ [0, ρ). This allows us to reduce the second-order equation (1.5) to a first-order
equation; indeed, a straightforward computation shows that z(ϕ) := D(ϕ)ϕ ′

(

ξ(ϕ)
)

, ϕ ∈
(0, ρ), satisfies the singular equation

ż(ϕ) = h(ϕ)− c− D(ϕ)g(ϕ)

z(ϕ)
, ϕ ∈ (0, ρ). (1.6)

The study of (1.6) requires an original technique that has been developed in [23] and is
based on comparison-type arguments, i.e., on the existence of upper- and lower-solutions.
The possible degenerate behavior of D imposes a quite sharp construction of these solutions.
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We mentioned above that assumption (D) fails if D ∈ C1[0, ρ] vanishes identically in
[0, ρ1], for 0 < ρ1 < ρ, [25]. However, if D is strictly positive in (ρ1, ρ], then our results
apply and provide wave profiles connecting ρ1 with ρ. Moreover, our results directly extend
to scalar parabolic equations in several space dimensions; in that case, the solutions are of
the form ρ(x, t) = ϕ(x · ν − ct), where ν ∈ R

n, |ν| = 1, is a fixed vector and x ∈ R
n. Indeed,

in such a case equation (1.5) becomes
(

D(ϕ)ϕ ′
) ′

+
(

c− h(ϕ) · ν
)

ϕ ′ + g(ϕ) = 0,

which is analogous to (1.5).
The plan of the paper now follows. Section 2 contains the statements of the main results;

proofs are postponed to the following sections, in particular to Section 7. Section 3 shows
some applications to the model for crowds dynamics introduced above. Sections 4 to 8 deal
with case (D). In Section 4 we prove some basic facts about equation (1.6); the study of a
first-order boundary value problem related to that equation is completed in Section 5 while
in Section 6 we show the equivalence of (1.5) and (1.6). In the final Section 8 we discuss the
problem of pasting semi-wavefront profiles to obtain global traveling-wave solutions. Case
(D̂) is studied in Section 9.

2 Main results

This section contains the main results of the paper. First, we introduce the notions of
traveling-wave and semi-wavefront solutions to (1.1); assumptions (D) and (g) are not needed
in these definitions. We refer to [15] for more details.

Definition 2.1. Let I ⊆ R be an open interval, c ∈ R and ϕ : I → [0, ρ] such that ϕ ∈ C(I),
D(ϕ)ϕ ′ ∈ L1

loc(I) and

∫

I

{

(

D
(

ϕ(ξ)
)

ϕ′(ξ)− f
(

ϕ(ξ)
)

+ cϕ(ξ)
)

ψ′(ξ)− g
(

ϕ(ξ)
)

ψ(ξ)

}

dξ = 0, (2.1)

for every ψ ∈ C∞
0 (I). Then, for all (x, t) with x− ct ∈ I, the function ρ(x, t) = ϕ(x− ct) is

said a traveling-wave solution of equation (1.1) with wave speed c and wave profile ϕ. The
traveling-wave solution is global if I = R.

If ϕ is a differentiable function, ϕ′ is absolutely continuous and (1.5) holds a.e., then
clearly (2.1) holds. Such profiles, as well as the corresponding traveling-wave solutions, are
called classical. In this paper we always deal with classical profiles; nevertheless, the above
definition of weak solution is exploited in Section 8.

Of course, if ϕ(ξ) satisfies (2.1) (or (1.5) a.e. in I), then ρ(x, t) = ϕ(x − ct) is a weak
solution of (resp., solves a.e.) (1.1) in the corresponding subset of R2.

Now, we introduce semi-wavefront solutions for equation (1.1). With respect to traveling-
wave solutions, we essentially require that the wave profiles are defined in a half-line and, as
a consequence, tend to a stationary value either at +∞ or at −∞.

Definition 2.2. Consider a traveling-wave solution ρ of equation (1.1) whose wave profile ϕ
is defined in (̟,+∞), with ̟ ∈ R; let ℓ+ ∈ [0, ρ] be such that g(ℓ+) = 0. If ϕ is monotonic,
non-constant and

ϕ(ξ) → ℓ+ as ξ → +∞,
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then ρ is said a semi-wavefront solution of (1.1) to ℓ+.
Similarly, assume that ϕ is defined (−∞,̟) and let ℓ− ∈ [0, ρ] be such that g(ℓ−) = 0.

If ϕ is monotonic, non-constant and

ϕ(ξ) → ℓ− as ξ → −∞,

then ρ is said a semi-wavefront solution of (1.1) from ℓ−.
In both cases, a semi-wavefront solution is strict if it is not extendible to a global traveling-

wave solution.

For sake of precision, we point out that monotonic in the previous definition is meant
in the weak sense: if ξ1 < ξ2, then either ϕ(ξ1) ≤ ϕ(ξ2) or ϕ(ξ1) ≥ ϕ(ξ2). Above and in
the following, wave profiles are always defined in their maximal existence interval. Due to
the regularity of D and g, we will show in the following (see Theorem 2.4) that (1.1) always
admits classical semi-wavefront solutions for any c ∈ R.

For comparison with our results, we first provide a simple application of [15] to equation
(1.1) in the case g ≡ 0, namely:

ρt + f(ρ)x =
(

D(ρ)ρx
)

x
, (x, t) ∈ R× [0,+∞). (2.2)

We notice that any ρ̃ ∈ [0, ρ] is an equilibrium for equation (2.2); however, for simplicity, we
only focus on ρ.

Theorem 2.1. Assume condition (D); then we have the following results.

(i) If c < h(ρ) (c > h(ρ)), then equation (2.2) has a classical semi-wavefront solution from
ρ (resp., to ρ) with wave speed c;

(ii) if c = h(ρ), the same result holds if and only if for some 0 < δ ≤ ρ we have

∫ ρ

ρ−s

[

h(σ) − h(ρ)
]

dσ > 0

(

resp.,

∫ ρ

ρ−s

[

h(σ)− h(ρ)
]

dσ < 0

)

, for 0 < s < δ;

(iii) if c > h(ρ) (c < h(ρ)), then equation (2.2) has no classical semi-wavefront solution
from ρ (resp., to ρ) with wave speed c.

Moreover, when the above semi-wavefront solutions exist they are unique up to shifts and
their wave profiles are of class C2 in (−∞,̟) or (̟,+∞), respectively.

Condition (ii) in Theorem 2.1 is satisfied if f is strictly concave (resp., strictly convex) in
a neighborhood of ρ. For sake of completeness, in the case f is strictly concave we rephrase
[15, Theorem 9.1], which concerns wavefront solutions [15, p. 5].

Proposition 2.1. Consider equation (2.2) under assumption (D), where f is strictly con-
cave; fix ρ− ∈ [0, ρ] and ρ+ ∈ [0, ρ], ρ− 6= ρ+. Then, wavefront solutions connecting ρ− with
ρ+ exist if and only if ρ− < ρ+; in that case we have

c =
f(ρ+)− f(ρ−)

ρ+ − ρ−
.

If ρ− > 0, wavefront solutions are classical and strictly monotonic; if ρ− = 0, wavefront
solutions are still classical and strictly monotonic under (D0) but they are weak under both
(D1) or (D2). In the latter case, we have ϕ(ξ) = 0 for ξ ∈ (−∞, ξ0], for some ξ0 ∈ R, with
ϕ′(ξ+0 ) > 0 under (D1) and ϕ(ξ

+
0 ) = ∞ under (D2).
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From now on we only deal with the full equation (1.1). For brevity we often provide
complete statements and proofs for semi-wavefront solutions from ρ; analogous results hold
for semi-wavefront solutions to ρ. Two results on the existence of semi-wavefront solutions
follow.

Theorem 2.2. Assume (D) and (g). The existence of a strict semi-wavefront solution from
ρ of (1.1) with speed c is equivalent to the solvability, for the same c, of the boundary-value
problem











ż = h(ϕ) − c− D(ϕ)g(ϕ)
z ,

z(ϕ) < 0, ϕ ∈ (0, ρ),
z(0+) =: z0 ≤ 0, z(ρ−) = 0.

(2.3)

Since the first equation in (2.3) is singular and its right-hand side is not defined at points
ϕ0 where z(ϕ0) = 0, we used the limit notation z(ϕ±

0 ) for such points. We emphasize that
z0 is not a datum in (2.3) but simply a shortcut for the real number z( 0+). Moreover, the
requirement z(ϕ) < 0 for ϕ ∈ (0, ρ) is always satisfied if z0 < 0 and then it is needed only
when z0 = 0. Solutions z to (2.3) are meant in the sense z ∈ C0[0, ρ] ∩C1(0, ρ).

The next theorem extends to the case z(0+) < 0 an analogous result proved in [23] in
the case z( 0+) = 0 and under (D2).

Theorem 2.3. Assume (D) and (g). Then, problem (2.3) is uniquely solvable for every
c ∈ R. More precisely, in case (D0) we have z(0+) < 0 for every c; in cases (D1) and (D2)
there exists a real number c∗ satisfying the estimate

2

√

Ḋ(0)g(0) + h(0) ≤ c∗ ≤ 2

√

sup
s∈(0,ρ)

D(s)g(s)

s
+ max

ρ∈[0,ρ]
h(ρ), (2.4)

such that z(0+) < 0 if c < c∗ and z(0+) = 0 if c ≥ c∗.

We notice that in case (D2) the inequalities in (2.4) reduce to

h(0) ≤ c∗ ≤ 2

√

sup
s∈(0,ρ)

D(s)g(s)

s
+ max

ρ∈[0,ρ]
h(ρ). (2.5)

Now, we provide our main results. The first one concerns the existence of strict semi-
wavefront solutions to (1.1), under assumptions (D) and (g); since wave profiles are defined
in their maximal existence interval, then ϕ(̟) = 0; see Figure 1. For brevity, in cases (D1),
(D2) and for c ≥ c∗, we introduce the notation

r±(c) :=
h(0) − c±

√

(h(0) − c)2 − 4Ḋ(0)g(0)

2
. (2.6)

Notice that the term under square root is positive because of (2.4); moreover, r±(c) < 0.

Theorem 2.4 (Semi-wavefront solutions). Consider equation (1.1) under assumptions (D)
and (g). Then, the following holds.

(i) For every wave speed c ∈ R, equation (1.1) has a strict classical semi-wavefront solution
from ρ and a strict classical semi-wavefront solution to ρ. These solutions are unique
up to shifts and their wave profiles are of class C2 in (−∞,̟) or (̟,+∞), respectively.
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(ii) Consider a semi-wavefront solution from ρ; then, about the slope of the profile when it
reaches 0, we have:

in case (D0): lim
ξ→̟−

ϕ ′(ξ) ∈ (−∞, 0), (2.7)

in case (D1): lim
ξ→̟−

ϕ ′(ξ) =



























−∞ if c < c∗,
r−(c

∗)

Ḋ(0)
if c = c∗,

r+(c)

Ḋ(0)
if c > c∗,

(2.8)

in case (D2): lim
ξ→̟−

ϕ ′(ξ) =











−∞ if c ≤ c∗,

− g(0)

c− h(0)
if c > c∗.

(2.9)

(iii) Let ϕ1 and ϕ2 be two profiles corresponding to semi-wavefront solutions from ρ with
wave speeds c1 < c2, respectively; unless of a shift we can assume ̟1 = ̟2 =: ̟. Then

ϕ2(ξ) < ϕ1(ξ), for ξ ∈ (−∞,̟) with ϕ2(ξ) < ρ. (2.10)

In cases (ii) and (iii) analogous results hold for semi-wave-front solutions to ρ.

✲ξ

✻
ϕ

ρ

ϕ3

ϕ3

̟3

sϕ1

̟1

❘

ϕ2

̟2

✯

Figure 1: A strictly decreasing semi-wavefront solution ϕ1 from ρ, a strictly increasing
semi-wavefront solution ϕ2 to ρ, a non-strictly decreasing semi-wavefront solution ϕ3 from
ρ.

Remark 2.1. Theorem 2.4 states that under assumption (g) we have semi-wavefront solu-
tions of speed c for every value of c.

However, in the case g = 0 we only have such solutions for some values of c, see Theorem
2.1: assuming for instance h ≡ 0, then semi-wavefront solutions from ρ may only move to
the left and semi-wavefront solutions to ρ may only move to the right. This is the effect of
diffusion, which spreads the wave and then makes the function t→ ρ(x, t) decrease.

On the contrary, in the case when D ≡ 0, one expects that the presence of the positive
source term g makes the function t → ρ(x, t) increase; as a consequence, semi-wavefront
solutions from ρ should move to the right and semi-wavefront solutions to ρ should move to
the left.

In presence of both diffusion and source term, these opposite behaviors tune up and lead
to the existence of semi-wavefront solutions for every c. The reader can convince her/himself
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of this tuning in the case h ≡ 0, D constant and g(ρ) = 1 − ρ, where explicit solutions are
easily constructed.

As depicted in Figure 1, the wave profiles can reach the value ρ for a finite ξ0 and then
assume identically the value ρ for ξ < ξ0 (or ξ > ξ0).

Let ρ be any semi-wavefront solution in Theorem 2.4 and ϕ its wave profile; assume that
ϕ is defined either in (−∞,̟) or in (̟,+∞). Because of (g), the value ϕ(̟) is not an
equilibrium of (1.1) (semi-wavefront solutions are strict) and, as a consequence, the value
ϕ(̟) is not a constant solution of (1.1). This is a striking difference with the applications
considered in [15], where semi-wavefront solutions, when they are considered for equations
without source terms, have ϕ(̟) as a solution of the equation.

Definition 2.2 requires that semi-wavefront solutions possess monotonic wave profiles;
clearly, in the statement of Theorem 2.4 profiles from ρ are decreasing while profiles to ρ
are increasing. Our next result shows that non-strictly monotonic wave profiles, such as ϕ3

in Figure 1, can be ruled out by requiring a growth condition on the source term g in a
neighborhood of ρ; indeed, such condition is sharp.

Theorem 2.5 (Characterization of strictly monotonic solutions). Consider equation (1.1)
under assumptions (D) and (g); let L > 0 and ρ1 ∈ [0, ρ) be two constants.

(i) If
g(ρ) ≤ L(ρ− ρ), ρ ∈ [ρ1, ρ], (2.11)

then the wave profile ϕ of every semi-wavefront solution satisfies ϕ(ξ) < ρ for every ξ
in its domain.

(ii) If there is α ∈ (0, 1) such that

g(ρ) ≥ L(ρ− ρ)α, ρ ∈ [ρ1, ρ], (2.12)

then every wave profile ϕ of a semi-wavefront solution satisfies ϕ(ξ) ≡ ρ on (−∞, ξ]
(or on [ξ,+∞)), for some ξ in its domain.

In our last result we only require D ∈ C[0, ρ] ∩ C1(0, ρ) and assume (D̂); this means
that we allow D to have infinite slope at 0. The statement below is analogous to those of
Theorems 2.3 and 2.4; notice that under (D̂1) we formally deduce c∗ = ∞ in (2.4), which
would suggest the solvability of (2.3) for any c and, moreover, z(0+) < 0. This is indeed the
case. For brevity we only deal with the case of profiles from ρ; the case of profiles to ρ is
completely analogous.

Theorem 2.6. Assume (D̂) and (g); then, problem (2.3) is uniquely solvable for every c ∈ R

and z(0+) < 0 for every c. In turn, equation (1.1) has a strict classical semi-wavefront
solution from ρ for every c; solutions are unique up to shifts and their wave profiles are of
class C2 in (−∞,̟). Moreover,

in case (D̂0): lim
ξ→̟−

ϕ ′(ξ) ∈ (−∞, 0), in case (D̂1): lim
ξ→̟−

ϕ ′(ξ) = −∞. (2.13)

Results analogous to those stated in Theorem 2.4(iii) and Theorem 2.5 still hold under
assumption (D̂).

For simplicity, in the following sections we shorten the expression “ρ is a semi-wavefront
solution of (1.1) from ρ with wave profile ϕ” by writing “ϕ is a semi-wavefront of (1.1) from
ρ ” and so on.
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3 An example

Consider the model of crowd dynamics discussed in the Introduction, namely

ρt +
(

ρv(ρ)
)

x
=
(

D(ρ)ρx
)

x
. (3.1)

We assume, as it is often usual in this modeling, that f(ρ) = ρv(ρ) is a strictly concave
function; in particular this assumption is satisfied if v and D are given by (1.4). In such a
case, h(ρ) = v(ρ) + ρv ′(ρ) and h(ρ) = −γv

ρ ; as in Theorem 2.1, we only focus on ρ. If (D)
holds, by Theorem 2.1 and the comment following it we deduce that equation (3.1) has

(i) a semi-wavefront solution from ρ (to ρ) for every c ≤ h(ρ) (resp., c > h(ρ));

(ii) no semi-wavefront solution from ρ (to ρ) if c > h(ρ) (resp., c ≤ h(ρ)).

In all cases the corresponding profile ϕ is a solution in a half-line I of

(

D(ϕ)ϕ′
)′
+
(

cϕ− ϕv(ϕ)
)′

= 0. (3.2)

Moreover, by [15, Theorem 5.2] we have that ϕ(ξ) ∈ (0, ρ) for every ξ ∈ (−∞,̟).
Now, we show some additional results about (3.1).

Lemma 3.1. Let c ≤ h(ρ) and ϕ be a classical semi-wavefront profile from ρ for (3.1).
Then, there exists ̟ ∈ R such that ϕ(ξ) → 0 as ξ → ̟−; moreover,

lim
ξ→̟−

ϕ ′(ξ) =

{

λ < 0 if (D0) holds,
−∞ if (D1) or (D2) hold,

(3.3)

for some real number λ.

Proof. We integrate (3.2) in [ξ0, ξ] ⊂ I and find

D
(

ϕ(ξ)
)

ϕ′(ξ)−D
(

ϕ(ξ0)
)

ϕ′(ξ0) + c
[

ϕ(ξ) − ϕ(ξ0)
]

− f
(

ϕ(ξ)
)

+ f
(

ϕ(ξ0)
)

= 0. (3.4)

By (D) and the behavior of ϕ at −∞ we deduce that ϕ′ has finite limit at −∞; the bound-
edness of ϕ implies that ϕ′(ξ0) → 0 as ξ0 → −∞. Therefore, if we pass to the limit in (3.4)
for ξ0 → −∞, we obtain

D
(

ϕ(ξ)
)

ϕ′(ξ) =
(

ρ− ϕ(ξ)
)

(

c− −f(ϕ(ξ)
ρ− ϕ(ξ)

)

, ξ ∈ I. (3.5)

Denote I = (−∞, ξ1) for some ξ1. The case ξ1 = ∞ is excluded since every global traveling
wave solution of equation (3.1) is easily seen to be increasing by Proposition 2.1; hence ξ1
is a real value. Moreover, when considering condition (D), the strict concavity of f and the
estimate c ≤ h(ρ), we can infer from (3.5) that ϕ ′ < 0 in I, so that limξ→ξ−

1

ϕ(ξ) exists and

it is necessarily 0; it implies that ξ1 = ̟. Finally, again from (3.5), we obtain that

lim
ξ→̟−

D
(

ϕ(ξ)
)

ϕ′(ξ) = lim
ξ→̟−

c
[

ρ− ϕ(ξ)
]

+ f
(

ϕ(ξ)
)

= cρ ≤ f ′(ρ)ρ < 0 (3.6)

and claim (3.3) follows from (3.6).
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We notice that if D is given by (1.4), then (D2) holds and ϕ
′(ξ) → −∞ as ξ → ̟− by

Lemma 3.1.
Second, we discuss the problem of the global existence (in the weak sense) of semi-

wavefronts. This issue is crucial for the case g 6= 0; the corresponding discussion is postponed
to Section 8. By Proposition 2.1, equation (3.1) admits classical wavefront solutions, which
are always increasing; their presence makes the case of semi-wavefronts from ρ different from
that of semi-wavefronts to ρ.

Lemma 3.2. If c /∈
(

h(ρ, 0)
]

, then no strict classical semi-wavefront profile from or to ρ
can be extended to R by 0 as a weak solution of (3.2).

If c ∈
(

h(ρ), 0
]

, then wavefront profiles exists. In this case, if c 6= 0, they are classical
and strictly monotone; if c = 0, then the wavefront profile is weak, ϕ(ξ) = 0 if ξ ∈ (−∞, ξ0]
and ϕ′(ξ+0 ) = ∞ for some ξ0 ∈ R.

Proof. We deal separately with the cases of semi-wavefronts from and to ρ. Recall Theorem
2.1.

(i) Let ϕ be a classical semi-wavefront profile from ρ, with wave speed c, in the half-line
(−∞,̟); then we have c ≤ h(ρ). We claim that the extension ϕ̃ of ϕ with 0 to [̟,∞)
is not a global (weak) solution of (3.2). Indeed, clearly ϕ̃ is a solution in R \ {̟}; by
taking I = R in (2.1) and a test function ψ with ψ(̟) 6= 0, it is easy to see that ϕ̃ is
a weak solution of (3.2) if and only if limξ→̟− D

(

ϕ(ξ)
)

ϕ′(ξ) = 0. This condition is
never satisfied because of (3.6). This proves our claim.

(ii) Let ϕ be a classical semi-wavefront profile to ρ; hence c > h(ρ) = f ′(ρ).

If c ∈
(

f ′(ρ), 0
]

, then there is a unique ρ− ∈ [0, ρ) such that c = −f(ρ−)
ρ−ρ− . By Proposition

2.1, equation (3.1) has a wavefront solution with speed c; by uniqueness, the profile ϕ
coincides with that wavefront and hence it is a global traveling-wave solution.

If c > 0, then ϕ is a strict semi-wavefront solution to ρ, hence it is defined in some
half-line (̟,∞); moreover, arguing as before we have that limξ→̟+ D

(

ϕ(ξ)
)

ϕ′(ξ) =
cρ > 0, so, again, ϕ is not extendable in a weak sense by 0.

Again for the same model, we now consider the case when g 6= 0; more precisely we focus
on the case g(ρ) = L · (ρ− ρ). In the case D is given by (1.4), condition (2.5) (see Theorem
2.3) can be written as

v ≤ c∗ ≤ v + v∗, (3.7)

where v∗ > 0 satisfies (v∗)2 = 4Lδv̄γρ−2
0 (ρ−ρ0) e−γ

(

1

ρ0
−

1

ρ

)

for ρ0 = γ/2+ρ−
√

(

γ/2
)2

+ ρ2.

Even if semi-wavefront solutions ρ(x, t) are important in several applications [15], in the
framework of collective movements their interest is limited by the fact that they are only
defined in half-planes x− ct ≷ ̟. However, while referring to Section 8 for a discussion of
the non-existence of global traveling-wave solutions, we provide here a simple application.
Consider the initial-boundary value problem











ρt +
(

ρv(ρ)
)

x
=
(

D(ρ)ρx
)

x
+ g(ρ), x < 0, t > 0,

ρ(0, t) = ρb(t) t > 0,
ρ(x, 0) = ρ0(x) x < 0,

(3.8)

11



with 0 ≤ ρ0(x), ρb(t) ≤ ρ for every x < 0 and t > 0. Problem (3.8) models a pedestrian
motion in the half-line x < 0, with initial datum ρ0; pedestrians enter either through the x
axis with rate g or through the boundary x = 0 because of the term ρb. By Theorem 2.4,
we fix any c > 0, denote by ϕ the correspondng semi-wavefront profile from ρ and shift it
so that it is defined in I = (−∞,̟] with ̟ ≥ 0. Then, we define ρ(x, t) = ϕ(x − ct), for
x < 0 and t > 0; this definition makes sense because c > 0. The function ρ solves (3.8) in
the special case ρ0(x) := ϕ(x), ρb(t) = ϕ(−ct). In particular, according to Theorem 2.5, the
road is completely filled in finite (or infinite) time depending on the source term g.

4 Comparison-type techniques

In this section we prove some results on the comparison-type techniques that we use in
the following; we point out that the differentiability of D is not required here. For c ∈ R,
z0 6= 0, a ∈ [0, ρ) and b ∈ (0, ρ], we introduce the following initial- and final-value problems
corresponding to (1.6):
{

ż(ϕ) = h(ϕ) − c− D(ϕ)g(ϕ)
z(ϕ) , ϕ > a,

z(a) = z0,

{

ż(ϕ) = h(ϕ) − c− D(ϕ)g(ϕ)
z(ϕ) , ϕ < b,

z(b) = z0.
(4.1)

In the following, we slightly simplify the limit notation used in the Introduction (see Theorem
2.2) for boundary values of solutions to singular equations as that in (4.1): for instance, in
the case z0 = 0 we briefly write z(a) = 0 instead of z(a+) = 0. Analogously, we use the
notation ż(0) for the right derivative of the function z at 0.

In Lemma 4.1 we discuss the existence and uniqueness of solutions to both problems in
(4.1) while in Lemma 4.2 we show that the existence of a strict lower- or upper-solution for
equation (1.6) determines an invariant region for the solutions of either (4.1)1 or (4.1)2.

Lemma 4.1. Consider the problems in (4.1), for the above values of c, z0, a and b.

(1) The initial-value problem (4.1)1 has a unique solution za(ϕ) defined in its right maximal-
existence interval [a, β). In particular, za(β) is a real value and za(β) = 0 if β < ρ.

(2) The final-value problem (4.1)2 has a unique solution zb(ϕ) defined on all (0, b].

Proof. Denote by fc the right-hand side of equation (1.6); since fc is globally continuous
in its domain and locally Lipschitz-continuous in z, the uniqueness of the solutions of both
(4.1)1 and (4.1)2 is guaranteed and it only remains to investigate their maximal-existence
intervals.

The solutions of equation (1.6) never vanish in their domain because (1.6) is singular
when z = 0. Moreover, if z(ϕ) is a positive solution in some interval (a, b) ⊆ (0, ρ), then the
negative function η(ϕ) = −z(ϕ) is a solution in (a, b) of

η̇(ϕ) = −h(ϕ) + c− D(ϕ)g(ϕ)

η(ϕ)
. (4.2)

Since (4.2) and (1.6) are completely analogous, we may restrict to the case z0 < 0, see
Figure 2. At last, assume that z(ϕ) is defined in some maximal-existence interval (α, β).
Since z(ϕ) < 0 in (α, β), the sign conditions in (D) and (g) imply that

ż(ϕ) > h(ϕ)− c, in (α, β). (4.3)
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Then, the function z is bounded in (α, β). Now, we prove that both z(α) and z(β) exist.
Indeed, by multiplying by z equation (1.6) we obtain that

1

2

dz2(ϕ)

dϕ
=
(

h(ϕ) − c
)

z(ϕ) −D(ϕ)g(ϕ).

By integrating in [ϕ0, ϕ] ⊂ (α, β) we have

z2(ϕ0) = z2(ϕ)− 2

∫ ϕ

ϕ0

(h(σ) − c)z(σ) dσ + 2

∫ ϕ

ϕ0

D(σ)g(σ) dσ.

Since, moreover, z(ϕ) < 0 in (α, β), we deduce

z(ϕ0) = −
√

z2(ϕ)− 2

∫ ϕ

ϕ0

(h(σ)− c)z(σ) dσ + 2

∫ ϕ

ϕ0

D(σ)g(σ) dσ,

which implies the existence of z(α). The existence of z(β) is proved analogously.

✲
ϕ

✻z
a b

✒

✯

✶
❨

❨
z0 z0

Figure 2: Solutions to the initial-value problem (4.1)
1
(left-to-right arrows) and to the

final-value problem (4.1)
2
(right-to-left arrows); here, z0 < 0.

(1) We showed above that za(β) exists in R; if β < ρ, the continuation theorem for solutions
of an ordinary differential equation implies za(β) = 0.

(2) Let (α, b] ⊆ (0, b] be the left maximal-existence interval of zb and assume by contradiction
that α > 0. Since zb(α) is a real value, then zb(α) = 0 and so zb is continuously
extendable to [α, b]. Consider now a sequence {ψn}n ⊂ (α, b] that converges to α. By
the mean value Theorem we find a sequence {ϕn}n ⊂ (a, b) with ϕn ∈ (α,ψn) such that

z(ψn)

ψn − α
= ż(ϕn) < 0 (4.4)

for all n ∈ N. If α > 0, from (1.6) we obtain that

lim
ϕ→α+

ż(ϕ) = lim
ϕ→α+

(

h(ϕ) − c− D(ϕ)g(ϕ)

z(ϕ)

)

= +∞,

in contradiction with (4.4). Hence, α = 0 and zb is defined on all (0, b].
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According to Lemma 4.1, every solution z of (1.6) defined in (0, b) ⊆ (0, ρ] has a contin-
uous extension to [0, b), still denoted by z.

Now, we briefly recall the definitions of upper- and lower-solution for equation (1.6).

Definition 4.1. Let J ⊆ [0, ρ] be an interval. A function ω ∈ C1(J) is a lower-solution for
equation (1.6) if

ω̇(ϕ) ≤ h(ϕ)− c− D(ϕ)g(ϕ)

ω(ϕ)
, ϕ ∈ J. (4.5)

Similarly, a function η ∈ C1(J) is an upper-solution for (1.6) if

η̇(ϕ) ≥ h(ϕ) − c− D(ϕ)g(ϕ)

η(ϕ)
, ϕ ∈ J. (4.6)

The function ω (resp. η) is a strict lower-solution (resp., upper-solution) if (4.5) (resp.,
(4.6)) holds with strict inequality.

Now, we focus on the case z0 < 0 in (4.1) and keep in mind Lemma 4.1. The existence
of a strict lower- or upper-solution for equation (1.6) in either [a, β) ⊆ [0, ρ) or (0, b] ⊆ (0, ρ]
determines an invariant region for the solutions of the initial- and final-value problems in
(4.1), respectively.

Lemma 4.2. Let I ⊆ [0, ρ]; consider a strict lower-solution ω and a strict upper-solution η
in I of (1.6), with ω(ϕ) < 0 and η(ϕ) < 0 in I. Moreover, fix z0 < 0.

(1) If I = [a, b) and z is the solution of (4.1)1 defined in its maximal-existence interval
[a, β) ⊆ [a, b), then:

(1.i) if ω(a) ≤ z0, then ω(ϕ) < z(ϕ) for all ϕ ∈ (a, β);

(1.ii) if η(a) ≥ z0, then β = b and z(ϕ) < η(ϕ) for all ϕ ∈ (a, b).

(2) If I = (0, b] and z is the solution of (4.1)2, then:

(2.i) if ω(b) ≥ z0, then ω(ϕ) > z(ϕ) for all ϕ ∈ (0, b);

(2.ii) if η(b) ≤ z0, then η(ϕ) < z(ϕ) for all ϕ ∈ (0, b).

✲
ϕ✻

z
a b

③

③

③

η(a)

z0

ω(a)

η

z

ω

✲
ϕ✻

z
a b

②

②

②

ω(b)

z0

η(b)

ω

z

η

Figure 3: Lower- and upper-solutions of (4.1)1 (left) and (4.1)2 (right).

Proof. For both problems in (4.1) we only prove case (i) since (ii) is similar; see Figure 3.
First, we deal with (4.1)2. We claim that for some ε > 0 we have z(ϕ) < ω(ϕ) for

ϕ ∈ (b− ε, b). Indeed, this follows by a continuity argument if ω(b) > z0; if ω(b) = z0, then
ω̇(b) < ż(b), because ω(ϕ) is a strict lower-solution. This proves the claim.
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Now, assume that there exists ϕ0 ∈ (0, b) such that z(ϕ0) = ω(ϕ0); without loss of
generality we can assume

z(ϕ) < ω(ϕ), ϕ ∈ (ϕ0, b). (4.7)

As above, we obtain again that ω̇(ϕ0) < ż(ϕ0) and then z(ϕ) > ω(ϕ) in a right neighborhood
of ϕ0, in contradiction with (4.7).

Now, we deal with (4.1)1. If ω(0) < z0, then ω(ϕ) < z(ϕ) in a right neighborhood of 0
by continuity. We reach the same conclusion if ω(0) = z0; indeed, ω is a strict lower-solution
and then ω̇(ϕ) < ż(ϕ) in a right neighborhood of 0. Assume that there exists ϕ0 ∈ (0, b) in
the domain of z such that ω(ϕ0) = z(ϕ0); then, we easily get a contradiction as above.

5 The first-order problem

In this section we first prove Theorem 2.3. Then, we show some properties of the solutions
of problem (2.3).

Proof of Theorem 2.3. We first deal with cases (D1) and (D2), leaving (D0) for the end of
the proof. The existence of c∗ and the case z(0) = 0 were considered in [23, Theorem 2.2]
under the further assumption g(0) = 0. Indeed, the same result straightforwardly extends
to cases (D1) and (D2) because D(0) = 0. This proves the second part of the statement of
the theorem. So, as far as existence is concerned, it remains to consider the case

c < c∗ (5.1)

and then z(0) < 0. The proof splits into three parts, the last one dealing with uniqueness
for c ∈ R.

(a) Non-existence for large negative z(0). This first part does not assume (5.1). We prove
that if z is a solution to (2.3), then necessarily z(0) must satisfy the lower bound

z(0) ≥ −1− ρ(H +M), (5.2)

for
H := max

ϕ∈[0,ρ]
h(ϕ) − c, M := max

ϕ∈[0,ρ]
D(ϕ)g(ϕ). (5.3)

Indeed, fix z0 such that
z0 < −1− ρ(H +M) (5.4)

and consider the function

η(ϕ) = −1 + z0
ρ

ϕ+ z0, (5.5)

i.e. the line connecting (0, z0) to (ρ,−1); see Figure 4. We claim that η(ϕ) is a strict
upper-solution for (1.6) on all [0, ρ]. Indeed, since η(ϕ) ≤ −1 for ϕ ∈ [0, ρ], we have that

D(ϕ)g(ϕ)

−η(ϕ) =
D(ϕ)g(ϕ)
1+z0
ρ ϕ− z0

≤ D(ϕ)g(ϕ) ≤M, ϕ ∈ [0, ρ].

Consequently, by (5.4) we have

η̇(ϕ) = −1 + z0
ρ

> H +M ≥ h(ϕ) − c− D(ϕ)g(ϕ)

η(ϕ)
, ϕ ∈ [0, ρ],
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which proves the claim.
Denote by ẑc the solution of the equation in (2.3) satisfying ẑc(0) = z0, where z0 satisfies

(5.4). By Lemma 4.1(1) we have that ẑc is unique; by Lemma 4.2(1.ii) that ẑc is defined in
[0, ρ] and ẑc(ϕ) < η(ϕ) for all ϕ ∈ (0, ρ). Then, ẑc(ρ) ≤ η(ρ) = −1 and, hence, ẑc is not a
solution of (2.3).

(b) Existence in cases (D1) and (D2). We denote by zc∗(ϕ) the solution of (2.3) correspond-
ing to c∗; the existence of zc∗(ϕ) is guaranteed by the second part of the statement of the
theorem and in particular zc∗(ϕ) < 0 if ϕ ∈ (0, ρ). We also denote with zn(ϕ) the solution
of the problem

{

ż(ϕ) = h(ϕ) − c− D(ϕ)g(ϕ)
z(ϕ) , ϕ ∈ (0, ρ],

z(ρ) = − 1
n ,

(5.6)

for n ∈ N, which exists by Lemma 4.1(2). By Lemma 4.2(2.i) we have

zn(ϕ) < zc∗(ϕ), ϕ ∈ (0, ρ] (5.7)

and then
zn(ϕ) < 0, ϕ ∈ (0, ρ]. (5.8)

✲
ϕ✻z ρ

−1 −1

ẑc
z0

zn
z

ℓ

− 1
n

zc∗

✥✥✥
✥✥✥

✥✥✥
✥✥✥

✥✥η

Figure 4: The solutions zc∗ , zn, z, ẑc and the upper-solution η; here, z0 satisfies (5.4).

Let ẑc(ϕ) be the solution of the equation in (2.3) with ẑc(0) < −1− ρ(H +M) that was
already introduced in item (a). The uniqueness of solutions stated in Lemma 4.1 implies,
on the one hand, that ẑc(ϕ) < zn(ϕ) for all ϕ ∈ [0, ρ] and n ∈ N; on the other hand, that
the sequence {zn}n is increasing on (0, ρ]. Define

z(ϕ) := lim
n→∞

zn(ϕ), ϕ ∈ (0, ρ].

By (5.7) we notice that

z(ρ) = 0 and z(ϕ) < 0, ϕ ∈ (0, ρ). (5.9)

We claim that z is the solution to (2.3) we are looking for. Indeed, by integrating the
equation in (2.3) in [ϕ,ϕ1] ⊂ (0, ρ), we obtain that

zn(ϕ1)− zn(ϕ) =

∫ ϕ1

ϕ

(

h(σ)− c
)

dσ +

∫ ϕ1

ϕ

D(σ)g(σ)

−zn(σ)
dσ. (5.10)
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Since the sequence
{

D(ϕ)g(ϕ)

−zn(ϕ)

}

n

is positive by (5.8) and increasing in (0, ρ), we can pass to the limit in (5.10) by the monotone
convergence Theorem and obtain

z(ϕ1)− z(ϕ) =

∫ ϕ1

ϕ

(

h(σ) − c
)

dσ −
∫ ϕ1

ϕ

D(σ)g(σ)

z(σ)
dσ. (5.11)

This implies that z(ϕ) is a solution of the equation in (2.3) on all (0, ρ); it also satisfies
z(ρ) = 0 and z(ϕ) < 0 on (0, ρ). By (5.9), the function

ϕ 7−→
∫ ϕ1

ϕ

D(σ)g(σ)

z(σ)
dσ, ϕ ∈ (0, ρ),

is increasing. Then, identity (5.11) implies the existence of limϕ→0+z(ϕ) =: ℓ; since z(ϕ) < 0
if ϕ ∈ (0, ρ), we deduce that ℓ ∈ {−∞}∪ (−∞, 0]. The case ℓ = 0 is excluded by the second
part of the statement of the theorem because of (5.1); moreover, we have ẑc(ϕ) < z1(ϕ) ≤
z(ϕ) for all ϕ ∈ (0, ρ) and then ℓ is finite. In conclusion, we have ℓ ∈ (−∞, 0).

(c) Uniqueness in cases (D1) and (D2). Let c ∈ R and assume, by contradiction, that
problem (2.3) has two distinct solutions z1 and z2.

If (5.1) holds, we have zi(0) < 0, i = 1, 2, by the second part of the statement of
the theorem, and z1(0) 6= z2(0) by the unique solvability of (4.1)1. We may assume that
z1(0) < z2(0), which yields z1(ϕ) < z2(ϕ) < 0 for all ϕ ∈ [0, ρ). Therefore

ż2(ϕ) − ż1(ϕ) =
D(ϕ)g(ϕ)

−z2(ϕ)
− D(ϕ)g(ϕ)

−z1(ϕ)
> 0, for all ϕ ∈ [0, ρ),

and then the function z2 − z1 is increasing in [0, ρ). As a consequence,

lim
ϕ→ρ−

(

z2(ϕ)− z1(ϕ)
)

≥ z2(0) − z1(0) > 0,

in contradiction with z1(ρ
−) = z2(ρ

−) = 0. Hence, the uniqueness if proved if c < c∗.
If c ≥ c∗, let z2 be the solution satisfying z2(0

+) = 0 and z1 another solution. By the
uniqueness contained in the second part of the statement of the theorem, we have z1(0) < 0.
Then, the arguments of the previous case apply and uniqueness is proved also in this case.

(d) Existence and uniqueness in case (D0). Now, we are left with case (D0). Let ĥ be the
even extension of h to [−ρ, 0) and extend g to the same interval with a continuous function
ĝ satisfying ĝ(ρ) > 0 if ρ ∈ [−ρ, 0). We extend D to [−ρ, ρ] by a function D̂ ∈ C1[−ρ, ρ]
such that

D̂(−ρ) = ˙̂
D(−ρ) = 0, D̂(ρ) > 0, ρ ∈ (−ρ, 0).

Then, instead of (2.3) we consider the auxiliary problem











ż = ĥ(ϕ) − c− D̂(ϕ)ĝ(ϕ)
z ,

z(ϕ) < 0, ϕ ∈ (−ρ, ρ),
z(−ρ+) =: z0 ≤ 0, z(ρ) = 0.

(5.12)
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Problem (5.12) has a unique solution ẑ for all c ∈ R; this follows by applying items (b) and
(c) in the interval [−ρ, ρ]. It is easy to show that the restriction z of ẑ to [0, ρ] is a solution
of problem (2.3) with z(0+) < 0. This shows that also problem (2.3) is uniquely solvable for
all c ∈ R. In conclusion, problem (2.3) is uniquely solvable for all c ∈ R also under condition
(D0). �

Now, we prove the monotonicity with respect to c of solutions to problem (2.3).

Lemma 5.1. Let z1 and z2 be solutions of problem (2.3) corresponding to c1 and c2,
respectively. If c1 < c2, then we have that

z1(ϕ) < z2(ϕ), ϕ ∈ (0, ρ). (5.13)

Proof. Since c1 < c2, then z1 is a strict upper-solution on (0, ρ) of equation (1.6) with c = c2.
If there exists ϕ0 ∈ (0, ρ) such that z2(ϕ0) ≤ z1(ϕ0), then by Lemma 4.2(1.ii) we deduce
that z2(ϕ) < z1(ϕ) for ϕ ∈ (ϕ0, ρ). Hence,

ż2(ϕ) = h(ϕ) − c2 +
D(ϕ)g(ϕ)

−z2(ϕ)
< h(ϕ)− c1 +

D(ϕ)g(ϕ)

−z1(ϕ)
= ż1(ϕ), ϕ ∈ (ϕ0, ρ),

which contradicts z2(ρ
−) = 0.

We conclude this section with a result about the derivative żc(0) of the solutions zc to
(2.3), under conditions (D1) or (D2) and in the case c ≥ c∗. Indeed, in the case c < c∗ or
when (D0) holds, we have z(0) < 0 by Theorem 2.3; then z ∈ C1[0, 1) and ż(0) = h(0) − c
by (1.6).

The existence of the slope żc(0) was first proved in [23, Lemma 2.1] and the values of
żc(0) were obtained in [23, Theorem 1.1]. However, since in [23] the assumption g(0) = 0
holds, those computations can cover only our case (D2). To the best of our knowledge, the
result of the following proposition in case (D1) is new. Moreover, the proof of Proposition
5.1 unifies both cases (D1) and (D2); we emphasize that it is completely different and simpler
than that in [23] for the latter case.

Proposition 5.1. Assume either (D1) or (D2) and let zc be the solution to problem (2.3)
for c ≥ c∗. Then, żc(0

+) exists and

żc(0
+) =

{

r+(c) if c > c∗,
r−(c) if c = c∗.

(5.14)

In particular, under assumption (D2) we have

żc(0
+) =

{

0 if c > c∗,
h(0) − c∗ if c = c∗.

Proof. Let c ≥ c∗ and assume, by contradiction, that żc(0
+) does not exist. We notice

that neither żc(0
+) = +∞ nor żc(0

+) = −∞ are possible, the latter because of (4.3). By
Theorem 2.3, we know that zc(0

+) = zc∗(0
+) = 0; hence, there exist −∞ ≤ l < L ≤ 0 such

that

l =: lim inf
ϕ→0+

zc(ϕ)

ϕ
< lim sup

ϕ→0+

zc(ϕ)

ϕ
=: L ≤ 0. (5.15)
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Let γ ∈ (l, L) and consider a sequence {σn}n ⊂ (0, ρ) such that σn → 0, zc(σn)
σn

= γ for every
n and also

d

dϕ

(

zc(ϕ)

ϕ

)

∣

∣

∣
ϕ=σn

≥ 0.

Since
d

dϕ

(

zc(ϕ)

ϕ

)

=
1

ϕ

(

żc(ϕ) −
zc(ϕ)

ϕ

)

, (5.16)

we have

γ ≤ żc(σn) = h(σn)− c− D(σn)g(σn)

zc(σn)
= h(σn)− c− D(σn)g(σn)

γσn
, n ∈ N.

When n→ ∞ we obtain

h(0) − c− Ḋ(0)g(0)

γ
≥ γ. (5.17)

In a similar way we can take a sequence {δn}n ⊂ (0, ρ) satisfying δn → 0, zc(δn)
δn

= γ for
every n and

d

dϕ

(

zc(ϕ)

ϕ

)

∣

∣

∣
ϕ=δn

≤ 0.

Since żc(δn) ≤ γ for all n by (5.16), we obtain

γ ≥ żc(δn) = h(δn)− c− D(δn)g(δn)

γδn
, n ∈ N.

Then, by passing to the limit,

h(0) − c− Ḋ(0)g(0)

γ
≤ γ. (5.18)

When combining (5.17) and (5.18) we obtain that γ is a root of the second-order equation
γ2 − (h(0) − c)γ + Ḋ(0)g(0) = 0. This is in contradiction with (5.15) or because of the
arbitrariness of γ; hence, żc(0

+) exists for every c ≥ c∗ and satisfies

żc(0
+) ∈

{

r−(c), r+(c)
}

.

We remark that, according to (2.4), the r.h.s. in the previous formula is always defined in
R. Now, we notice that the function ψ : [c∗,+∞) → R defined by

ψ(c) =
h(0) − c−

√

(h(0) − c)2 − 4Ḋ(0)g(0)

2

is strictly decreasing. So, if we assume that żc(0
+) = r−(c) for some c > c∗, we obtain that

żc∗(0
+) > żc(0

+) both in the case żc∗(0
+) = r−(c

∗) and żc∗(0
+) = r+(c

∗). It implies that
zc∗ > zc in a right neighborhood of 0 in contradiction with Lemma 5.1. Formula (5.14) is
then proved if c > c∗.
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Now, assume c = c∗ and denote for short r∗− = r−(c
∗), r∗+ = r+(c

∗). If r∗− = r∗+, by (2.4)

we have that c∗ = h(0)+2
√

Ḋ(0)g(0) and estimate (5.14) is satisfied. It remains to consider

the case r∗− < r∗+; again by (2.4) we have

c∗ > h(0) + 2

√

Ḋ(0)g(0). (5.19)

Let ∆ > 0 be a positive value satisfying 0 < ∆ < r∗+− r∗−. We have r∗−
(

r∗− +∆
)

> r∗− · r∗+ =

Ḋ(0)g(0) and hence

− Ḋ(0)g(0)

r∗− +∆
+
Ḋ(0)g(0)

r∗−
< ∆. (5.20)

By (5.19) we can consider an increasing sequence {cn}n ⊂
(

h(0) + 2
√

Ḋ(0)g(0), c∗
)

such

that cn → c∗ as n → ∞; let {zn}n be the corresponding sequence of solutions to problem
(2.3) obtained in Theorem 2.3. Notice, in particular, that cn < c∗ implies

zn(0) < 0, for all n ∈ N. (5.21)

By Lemma 5.1 we have that {zn(ϕ)}n is an increasing sequence, for all ϕ ∈ (0, ρ), and
zn(ϕ) < zc∗(ϕ) in (0, ρ) for all n ∈ N. As in the proof of item (b) in Theorem 2.3, it is also
possible to show that

lim
n→∞

zn(ϕ) = zc∗(ϕ), ϕ ∈ [0, ρ]. (5.22)

Because of (5.20), we can introduce a positive value α such that

− Ḋ(0)g(0)

r∗− +∆
+
Ḋ(0)g(0)

r∗−
+ α < ∆. (5.23)

By the continuity of the function k(ϕ, c) = h(ϕ)− c we can find σ1 > 0 and n ∈ N such that

h(ϕ) − cn < h(0) − c∗ +
α

2
, for ϕ ∈ (0, σ1) and n ≥ n. (5.24)

Moreover, conditions (g) and either (D1) or (D2) allow to determine a value σ2 > 0 such
that

− g(ϕ)

r∗− +∆
· D(ϕ)

ϕ
< −Ḋ(0)g(0)

r∗− +∆
+
α

2
, ϕ ∈ (0, σ2). (5.25)

Denote σ := min{σ1, σ2} and introduce the function η : [0, σ] → R defined by η(ϕ) :=
(r∗− +∆)ϕ. By (5.24) and (5.25) we have, for n ≥ n and ϕ ∈ (0, σ),

h(ϕ) − cn − D(ϕ)g(ϕ)
η(ϕ) = h(ϕ) − cn − g(ϕ)

r∗
−
+∆ · D(ϕ)

ϕ

< h(0) − c∗ + α
2 − Ḋ(0)g(0)

r∗
−
+∆ + α

2

= h(0) − c∗ − Ḋ(0)g(0)
r∗
−

+ Ḋ(0)g(0)
r∗
−

− Ḋ(0)g(0)
r∗
−
+∆ + α.

Notice that h(0) − c∗ − Ḋ(0)g(0)
r∗
−

= h(0) − c∗ − r∗+ = r∗−. Hence, by (5.23) we obtain

h(ϕ)− cn − D(ϕ)g(ϕ)

η(ϕ)
< r∗− +∆ = η̇(ϕ),
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which shows that η is a strict upper-solution of the equation in (2.3) with c = cn, n ≥ n, on
all (0, σ]. Since zn(0) < 0 = η(0) by (5.21), a continuity argument shows that there exists
ψn ∈ (0, σ) such that zn(ϕ) < η(ϕ) in [0, ψn) for all n ≥ n. In the remaining interval [ψn, σ]
we can apply Lemma 4.2(1.ii); in conclusion we obtain zn(ϕ) < η(ϕ) in [0, σ). Then,

zn(ϕ)

ϕ
<
η(ϕ)

ϕ
= r∗− +∆, ϕ ∈ (0, σ), n ≥ n.

Finally, by estimate (5.22) we have that

zc∗(ϕ)

ϕ
≤ r∗− +∆ < r∗+, ϕ ∈ (0, σ).

We deduce that żc∗(0
+) < r∗+; then, condition (5.14) holds and the proof is complete.

6 Semi-wavefronts via a first-order analysis

In this section we first show that semi-wavefronts of equation (1.1) are strictly monotone.
Then, by exploiting this result, we prove Theorem 2.2.

Here follows our first result: we recall that by Definition 2.2 a semi-wavefront is neces-
sarily valued in [0, ρ).

Proposition 6.1. Let ϕ be a semi-wavefront of (1.1) from (to) ρ. Then ϕ ′(ξ) < 0 (ϕ ′(ξ) >
0, respectively) for all ξ in the domain of ϕ such that 0 < ϕ(ξ) < ρ.

Proof. We only consider the case of a semi-wavefront ϕ from ρ; the other case is analogous.
Let ϕ be defined on the half-line (−∞,̟), with ̟ ∈ R; we assume that there exists

ξ0 ∈ (−∞,̟) with ϕ(ξ0) ∈ (0, ρ) such that ϕ ′(ξ0) = 0. We denote

T (ξ) := D
(

ϕ(ξ)
)

ϕ ′(ξ), ξ ∈ (−∞,̟).

We have that T (ξ0) = 0; by (1.5), condition (g) and the assumption ϕ(ξ0) < ρ, we deduce
T ′(ξ0) = −g(ϕ(ξ0)) < 0. Hence, we have that (ξ0 − ξ)T (ξ) > 0 for ξ 6= ξ0 in a neighborhood
of ξ0. By condition (D), it follows that ξ0 is a local maximum point of ϕ. The boundary
condition ϕ(−∞) = ρ then implies that there exists a local minimum point ξ1 < ξ0 of ϕ, in
contradiction with the previous discussion. Hence ϕ(ξ) > 0 for ξ ∈ (−∞,̟) and ϕ ′(ξ) < 0
whenever 0 < ϕ(ξ) < ρ.

Remark 6.1. Let ϕ(ξ) be a semi-wavefront for (1.1) from (to) ρ. Proposition 6.1 shows
that there exists an interval I ⊆ (−∞,̟) (resp., I ⊆ (̟,+∞)), such that 0 < ϕ(ξ) < ρ for
ξ ∈ I. By arguing on the smoothness of the terms in (1.5) it is not difficult to show that
ϕ ∈ C2(I).

Remark 6.2. Proposition 6.1 implies that every semi-wavefront ϕ(ξ) has inverse ξ = ξ(ϕ)
defined on [0, ρ) and ξ(0) = ̟. Moreover, if ϕ(ξ) is a wave profile from ρ we have that either
ξ(ρ−) = ξ0 ∈ R or, if ϕ is strictly monotonic, that ξ(ρ−) = −∞; an analogous property
holds if ϕ(ξ) is a wave profile to ρ.

To prove Theorem 2.2 we need the following lemma, which concerns the asymptotic
behavior of semi-wavefronts.
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Lemma 6.1. Let ϕ be a semi-wavefront of (1.1) from ρ defined on the half-line (−∞,̟).
Then

(i) ϕ ′(ξ) → 0 as ξ → −∞;

(ii) D
(

ϕ(ξ)
)

ϕ ′(ξ) → ℓ as ξ → ̟−, for some real value ℓ ≤ 0.

Proof. First, we prove (i). By integrating (1.5) in [ξ0, ξ] ⊂ (−∞,̟) we obtain

D
(

ϕ(ξ0)
)

ϕ ′(ξ0) = (6.1)

= D
(

ϕ(ξ)
)

ϕ ′(ξ) + c
(

ϕ(ξ)− ϕ(ξ0)
)

−H
(

ϕ(ξ)
)

+H
(

ϕ(ξ0)
)

+

∫ ξ

ξ0

g
(

ϕ(s)
)

ds, (6.2)

where H(r) :=
∫ r
0 h(s) ds for r ∈ [0, ρ]. If ξ0 → −∞, then H

(

ϕ(ξ0)
)

→ H(ρ); in addition,
according to (g), the limit

lim
ξ0→−∞

∫ ξ

ξ0

g
(

ϕ(s)
)

ds (6.3)

exists. Since (6.1) is negative by Proposition 6.1(i), the limit (6.3) is surely a real value.
Hence, we proved the existence of

lim
ξ0→−∞

D
(

ϕ(ξ0)
)

ϕ ′(ξ0) =: λ ∈ R.

This implies that limξ0→−∞ ϕ ′(ξ0) = λ/D(ρ) and, since ϕ is bounded, we conclude that
λ = 0. This proves (i).

Now, we prove (ii). By (6.1)-(6.2), it is immediate to see that the limit of D
(

ϕ(ξ)
)

ϕ ′(ξ)
for ξ → ̟− exists and it is a value in (−∞, 0]. The lemma is completely proved.

An analogous result can be easily proved if ϕ is a semi-wavefront to ρ. Now, we can
prove Theorem 2.2.

Proof of Theorem 2.2. Let ϕ be a semi-wavefront of (1.1) with speed c ∈ R from ρ; by
Remark 6.2 we denote by ξ(ϕ) its inverse function, which is defined at least for ϕ ∈ [0, ρ).
The function z(ϕ) = D(ϕ)ϕ ′

(

ξ(ϕ)
)

clearly satisfies the first equation in (2.3) for the same
c; moreover, z(ϕ) < 0 for ϕ ∈ (0, ρ) by Proposition 6.1, z(ρ) = 0 by Lemma 6.1(i) and
z(0+) ≤ 0 by Lemma 6.1(ii). Therefore z satisfies problem (2.3).

Conversely, let z(ϕ) be a solution of (2.3) for some c ∈ R and ϕ(ξ) the solution of the
initial-value problem

{

ϕ ′(ξ) = z(ϕ)
D(ϕ) ,

ϕ(0) = ρ
2 ,

(6.4)

in its maximal existence interval (α,̟); this means that ϕ satisfies

lim
ξ→α+

ϕ(ξ) = ρ, lim
ξ→̟−

ϕ(ξ) = 0.

If there exists α̂ ∈ (α,̟) satisfying ϕ(α̂) = ρ, by condition (D) and (6.4) we deduce

lim
ξ→α̂+

ϕ ′(ξ) = lim
ϕ→ρ−

z(ϕ)

D(ϕ)
= 0.
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Here, we used the assumption D(ρ) > 0, which is contained in (D). Hence, we can continue
ϕ(ξ) to the left of α̂ with ρ in a differentiable way; see what we pointed out below the
statement of Theorem 2.4. Therefore we can assume that α = −∞ and then ϕ(−∞) = ρ.

To complete the proof we need to show that the semi-wavefront is strict, i.e., that ̟ is
finite; the proof depends on the values of c.

In case (D0), we always have z(0+) < 0 for all c; then, by (6.4), we obtain that

lim
ξ→̟−

ϕ ′(ξ) = lim
ϕ→0+

z(ϕ)

D(ϕ)
=
z(0+)

D(0)
< 0. (6.5)

In particular, we have that ̟ ∈ R and the slope of the semi-wavefront never equals −∞.
Then, we focus on cases (D1) and (D2).

(a) c < c∗. In this case Theorem 2.3 implies z(0) < 0; by (6.4) we deduce that, in both cases
(D1) and (D2),

lim
ξ→̟−

ϕ ′(ξ) = lim
ϕ→0+

z(ϕ)

D(ϕ)
= −∞, (6.6)

and hence ̟ ∈ R.

(b) c = c∗ > h(0). In case (D1), by definition of derivative we deduce as above that

lim
ξ→̟−

ϕ′(ξ) =
r−(c

∗)

Ḋ(0)
.

In case (D2) we have z(0) = 0 and ż(0) = h(0) − c∗ < 0 by Theorem 2.3 and Proposition
5.1, respectively. Since Ḋ(0) = 0, we deduce again (6.6) and hence ̟ ∈ R in both cases.

(c) c > c∗. In case (D1) we have

z(0) = 0 and ż(0) = r+(c).

Then,

lim
ξ→̟−

ϕ′(ξ) =
r+(c)

Ḋ(0)

and so ̟ is finite. In case (D2), Theorem 2.3 and Proposition 5.1 imply

z(0) = 0 and ż(0) = 0. (6.7)

The situation is more delicate than in the previous cases, since we need to construct suitable
lower- and upper-solutions of (1.6) in a sharp way.

Fix ε > 0 and denote

η(ϕ) := − g(0)

c− h(0) − εg(0)
D(ϕ).

Since g(0) > 0, the function η(ϕ) is defined and negative on all (0, ρ) for every sufficiently
small ε. Moreover, as ϕ→ 0+ we have both η̇(ϕ) → 0, by Ḋ(0) in (D2), and

h(ϕ) − c− D(ϕ)g(ϕ)

η(ϕ)
= h(ϕ) − c+

c− h(0) − εg(0)

g(0)
g(ϕ) → −εg(0) < 0.
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Then, we can find σ ∈ (0, ρ] such that

η̇(ϕ) > h(ϕ) − c− D(ϕ)g(ϕ)

η(ϕ)
, for ϕ ∈ (0, σ],

i.e. η(ϕ) is a strict upper-solution for (1.6) on (0, σ].
By (6.7) and the mean value Theorem, there is a sequence {ϕn}n ⊂ (0, ρ), with ϕn → 0+,

such that ż(ϕn) → 0; this implies that

D(ϕn)g(ϕn)

z(ϕn)
→ h(0)− c (6.8)

when n→ ∞. Consequently we have

lim
n→∞

η(ϕn)

z(ϕn)
= lim

n→∞
− g(0)

c− h(0) − εg(0)

D(ϕn)

z(ϕn)

= − g(0)

c− h(0) − εg(0)

(

−c− h(0)

g(0)

)

=
c− h(0)

c− h(0) − εg(0)
> 1.

Hence, we can find σ̂ ∈ (0, σ] such that z(σ̂) > η(σ̂) and by Lemma 4.2(2.ii) we conclude
that z(ϕ) > η(ϕ) on all (0, σ̂). Then

D(ϕ)

z(ϕ)
<
D(ϕ)

η(ϕ)
= −c− h(0)

g(0)
+ ε, ϕ ∈ (0, σ̂). (6.9)

We proceed in an analogous way with lower-solutions. Consider the function

ω(ϕ) := − g(0)

c− h(0) + εg(0)
D(ϕ),

which is defined and negative on all (0, ρ). For ϕ→ 0+ we have that ω̇(ϕ) → 0 and

h(ϕ)− c− D(ϕ)g(ϕ)

ω(ϕ)
= h(ϕ)− c+

c− h(0) + εg(0)

g(0)
g(ϕ) → εg(0) > 0.

Then, we can find µ ∈ (0, ρ] such that

ω̇(ϕ) < h(ϕ)− c− D(ϕ)g(ϕ)

ω(ϕ)
, ϕ ∈ (0, µ],

i.e. ω(ϕ) is a strict lower-solution for the equation in (2.3) on (0, µ]. Moreover, if (ϕn)n
satisfies (6.8), we have that

lim
n→∞

ω(ϕn)

z(ϕn)
= lim

n→∞

(

− g(0)

c− h(0) + εg(0)

D(ϕn)

z(ϕn)

)

= − g(0)

c− h(0) + εg(0)

(

−c− h(0)

g(0)

)

=
c− h(0)

c− h(0) + εg(0)
< 1.

Hence we can find µ̂ ∈ (0, µ] such that z(µ̂) < ω(µ̂) and according to Lemma 4.2(2.i) we
conclude that z(ϕ) < ω(ϕ) on all (0, µ̂). Then

D(ϕ)

z(ϕ)
>
D(ϕ)

ω(ϕ)
= −c− h(0)

g(0)
− ε, ϕ ∈ (0, µ̂). (6.10)
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By combining (6.9) with (6.10), and since ε is arbitrary, we conclude that

lim
ϕ→0+

D(ϕ)

z(ϕ)
= −c− h(0)

g(0)
. (6.11)

We notice that the limit in (6.11) is nontrivial since both D(0) = Ḋ(0) = 0 by (D2) and
z(0) = ż(0) = 0 by Theorem 2.3 and (6.7). Formula (6.11) implies that ̟ is finite also in

this case and that ϕ ′(̟−) = − g(0)
c−h(0) .

(d) c = c∗ = h(0). Because of (2.4), this case does not occur under (D1) but only under

(D2). For ε > 0 we denote ω(ϕ) := −D(ϕ)
ε for ϕ ∈ (0, ρ). Reasoning as in (c), it is possible

to find µ ∈ (0, ρ] such that ω(ϕ) is a strict lower-solution for the equation in (2.3) on (0, µ].
Moreover, by using the sequence {ϕn} that we exploited to prove (6.8), we have

0 = lim
n→∞

ż(ϕn) = lim
n→∞

(

h(ϕn)− c∗ − D(ϕn)g(ϕn)

z(ϕn)

)

.

Since h is continuous with h(0) = c∗ and according to (g), we obtain

lim
n→∞

D(ϕn)

z(ϕn)
= 0.

It implies

z(ϕn) < −D(ϕn)

ε
= ω(ϕn),

for sufficiently large n. Since ϕn → 0+, it is then possible to find µ̂ ∈ (0, µ] satisfying
z(µ̂) < ω(µ̂). By Lemma 4.2(2.i), we conclude that z(ϕ) < ω(ϕ) for ϕ ∈ (0, µ̂] and hence

−ε < D(ϕ)

ω(ϕ)
<
D(ϕ)

z(ϕ)
< 0, ϕ ∈ (0, µ̂].

Consequently, we have

lim
ϕ→0+

D(ϕ)

z(ϕ)
= 0. (6.12)

Then, we have again ̟ ∈ R and ϕ′(̟−) = −∞. �

7 Proof of the main results

In this section we finally prove the theorems stated in Section 2.

Proof of Theorem 2.1. Consider the new equation

ρt + f̄(ρ)x =
(

D̄(ρ)ρx
)

x
, (x, t) ∈ R× [0,+∞), (7.1)

for f̄(ρ) = f(ρ− ρ)− f(ρ) and D̄(ρ) = D(ρ− ρ). Notice that

lim
s→0+

f̄(s)

s
= − lim

s→0+
h(ρ− s) = −h(ρ)
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and define H(s) = −f̄(s) − h(ρ)s, for s ∈ [0, ρ]. So, we can apply [15, Theorem 5.1]
and conclude that equation (7.1) has exactly one semi-wavefront (say ψ(ζ), ζ ∈ (ω,+∞))
decreasing to 0 for c > −h(ρ), exactly one such solution for c = −h(ρ), provided that
H(s) > 0 for s in a right neighborhood of 0, and no such solutions for c < −h(ρ). Since
equation (7.1) can be equivalently written as ρt − h(ρ − ρ)ρx =

(

D(ρ− ρ)ρx
)

x
, it is clear

(see equation (1.5)) that the function ψ(ζ) is a solution of

(

D(ρ− ψ)ψ ′
) ′

+
(

c+ h(ρ− ψ)
)

ψ ′ = 0, ′ =
d

dζ
,

for ζ ∈ (ω,+∞). Let ξ := −ζ ∈ (−∞,̟) with ̟ := −ω, and ϕ(ξ) =: ρ−ψ(ζ); the function
the ϕ(ξ) satisfies ϕ(ξ) → ρ as ξ → −∞ and also

(

D(ϕ)ϕ ′
) ′

+
(

−c− h(ϕ)
)

ϕ ′ = 0, ξ ∈ (−∞,̟) with ′ =
d

dξ
.

We obtained that ϕ(ξ) is a semi-wavefront of (2.2) from ρ with wave speed −c and also the
converse is true, i.e. to every semi-wavefront of (2.2) there corresponds one of (7.1). This
proves the statements concerning the existence of semi-wavefronts from ρ as well as their
uniqueness up to shifts. The results about semi-wavefronts to ρ are easily deduced arguing
as above or by a change of variables as in the proof of Theorem 2.4. At last, the smoothness
property follows by Remark 6.1. �

Proof of Theorem 2.4. The existence and uniqueness (up to shifts) of classical semi-
wavefronts from ρ is a direct consequence of Theorems 2.3 and 2.2.

Now, we show the existence of a unique (up to shifts) semi-wavefront to ρ for every c ∈ R.
Given c ∈ R, consider the semi-wavefront from ρ of the equation

ρt − h(ρ)ρx =
(

D(ρ)ρx
)

x
+ g(ρ), (x, t) ∈ R× [0,∞), (7.2)

with speed −c and profile ψ(ξ) satisfying ψ(0) = 0. As already remarked in the Introduction,
the profile ψ(ξ) is a solution of

(

D
(

ψ(ξ)
)

ψ ′(ξ)
) ′

+
(

−c+ h
(

ψ(ξ)
)

)

ψ ′(ξ) + g
(

ψ(ξ)
)

= 0, ξ ∈ (−∞, 0). (7.3)

We define ϕ(ξ) := ψ(−ξ) for ξ ∈ (0,+∞). We notice that ϕ ′(0+) > 0 by (2.7)–(2.9) and
that ϕ(ξ) → ρ as ξ → +∞. Moreover, for ξ ∈ (0,+∞) and ′ = d/dξ, we have that

(

D
(

ϕ(ξ)
)

ϕ ′(ξ)
) ′

= −
(

D
(

ψ(−ξ)
)

ψ ′(−ξ)
) ′

= −
(

−c+ h
(

ψ(−ξ)
)

)

ψ ′(−ξ)− g
(

ψ(−ξ)
)

= −
(

c− h
(

ϕ(ξ)
)

)

ϕ ′(ξ)− g
(

ϕ(ξ)
)

.

Hence the function ϕ satisfies (1.5) on all (0,+∞) and then it is a semi-wavefront of (1.1)
to ρ.

About uniqueness, we argue conversely: starting from a semi-wavefront to ρ of (1.1) and
reasoning as before, we obtain a semi-wavefront from ρ of (7.2) with opposite speed and
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with −h replacing h. Therefore, up to shifts, equation (1.1) has exactly one semi-wavefront
to ρ for every wave speed.

The smoothness of the semi-wavefronts follows by Remark 6.1; formulas (2.7)–(2.9) follow
by (6.5), (6.6), (6.11) and (6.12).

At last, we are left with the proof of (2.10). We claim that

lim
ξ→̟−

(

ϕ ′
1(ξ)− ϕ ′

2(ξ)
)

∈ [−∞, 0). (7.4)

Let us briefly show how (7.4) implies (2.10). Formula (7.4) implies ϕ ′
1 < ϕ ′

2 in a left
neighborhood I of ̟; by applying the Mean Value Theorem to ϕ1 − ϕ2, we get estimate
(2.10) in I. Assume by contradiction that there exists ξ ∈ (−∞,̟) satisfying ϕ1(ξ) =
ϕ2(ξ) =: ϕ ∈ (0, ρ); without loss of generality we can suppose

ϕ2(ξ) < ϕ1(ξ), for ξ ∈ (ξ,̟). (7.5)

By Lemma 5.1 we get

D(ϕ)ϕ ′
1(ξ) = D(ϕ)ϕ ′

1

(

ξ1(ϕ)
)

= z1(ϕ) < z2(ϕ) = D(ϕ)ϕ ′
2

(

ξ2(ϕ)
)

= D(ϕ)ϕ ′
2(ξ),

where ξ1 and ξ2 denote the inverse functions of ϕ1, ϕ2, respectively, see Remark 6.2. We
deduce that ϕ ′

1(ξ) < ϕ ′
2(ξ), which contradicts (7.5). This would prove (2.10).

The proof of (7.4) is split into four parts, see the proof of Theorem 2.2.

(a) Assume (D0). The definition of z(ϕ) implies that

lim
ξ→̟−

(

ϕ ′
1(ξ)− ϕ ′

2(ξ)
)

= lim
ϕ→0+

z1(ϕ)− z2(ϕ)

D(ϕ)
=
z1(0)− z2(0)

D(0)
.

By estimate (5.13) and Theorem 2.3 we get z1(0) ≤ z2(0) < 0. If z1(0) = z2(0), then

ż1(0) = h(0)− c1 − D(0)g(0)
z1(0)

> h(0)− c2 = ż2(0)− D(0)g(0)
z2(0)

, in contradiction with (5.13).

Hence, z1(0) < z2(0) and (7.4) holds.

(b) Assume (D1) or (D2), with c1 < c∗. By Theorem 2.3 we have z1(0) < 0.

If c2 ≤ c∗, by arguing as in case (a), we conclude that

lim
ξ→̟−

(

ϕ ′
1(ξ)− ϕ ′

2(ξ)
)

= lim
ϕ→0+

z1(ϕ) − z2(ϕ)

D(ϕ)
= −∞.

If c2 > c∗, then by (2.8) or (2.9) (in case (D1) or (D2), respectively) we have that ϕ ′
2(ξ)

has a finite limit when ξ → ̟− and then

lim
ξ→̟−

(

ϕ ′
1(ξ)− ϕ ′

2(ξ)
)

= lim
ϕ→0+

z1(ϕ)

D(ϕ)
− lim

ξ→̟−

ϕ ′
2(ξ) = −∞.

(c) Assume (D1), with c1 ≥ c∗. By (2.6), recall that r−(c
∗) < r+(c

∗) and also that r+(c) is
increasing for c ≥ c∗. Then, according to (2.8), we get

lim
ξ→̟−

(

ϕ ′
1(ξ)− ϕ ′

2(ξ)
)

=











r−(c∗)−r+(c2)

Ḋ(0)
< 0, if c1 = c∗,

r+(c1)−r+(c2)

Ḋ(0)
< 0, if c1 > c∗.
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(d) Assume (D2), with c1 ≥ c∗. The estimate (2.4) implies that c1 ≥ h(0); hence, from (2.9)
we have

lim
ξ→̟−

(

ϕ ′
1(ξ)− ϕ ′

2(ξ)
)

=







−∞, if c1 = c∗,
g(0)

(c1−h(0))(c2−h(0))
(c1 − c2) < 0, if c1 > c∗.

This completes the proof of (7.4) and then of Theorem 2.4. �

Proof of Theorem 2.5. We prove the result only in the case of semi-wavefronts from ρ; the
same conclusions can be easily drawn for semi-wavefronts to ρ with the change of variables
exploited in the proof of Theorem 2.4. Moreover, we assume without any loss of generality
that ρ1 = 0 both in (2.11) and (2.12): if ρ1 > 0, it is sufficient either to increase L in (2.11)
or decrease it in (2.12) to a new constant L such that both (2.11) and (2.12) hold in [0, ρ]
with L replaced by L.

Let ϕ be a semi-wavefront in (−∞,̟) with speed c. Denote by z(ϕ), ϕ ∈ [0, ρ], the
solution of (2.3) with the same wave speed c provided by Theorem 2.3. Let ξ(ϕ) be the
inverse function of ϕ, see Remark 6.2, and denote

ξ := lim
ϕ→ρ−

ξ(ϕ). (7.6)

Case (i). For n ∈ N and a > 0, we denote ηn(ϕ) := a(ϕ−ρ)− 1
n , ϕ ∈ [0, ρ]. First, we show

that it is possible to find a, independently from n, such that ηn is a strict upper-solution of
(1.6) on [0, ρ) for all n. Indeed, by (2.11) (with ρ1 = 0), we have that

h(ϕ) − c− D(ϕ)g(ϕ)

ηn(ϕ)
≤ H +K

L(ρ− ϕ)

a(ρ− ϕ) + 1
n

, (7.7)

where H was defined in (5.3) and K := maxϕ∈[0,ρ]D(ϕ). The function

ϕ 7−→ L(ρ− ϕ)

a(ρ− ϕ) + 1
n

, ϕ ∈ [0, ρ],

is strictly decreasing and then, by (7.7),

h(ϕ)− c− D(ϕ)g(ϕ)

ηn(ϕ)
≤ H +

KLρ

aρ+ 1
n

< H +
KL

a
.

We have that H + KL
a < a if we choose

a >
H +

√
H2 + 4KL

2
. (7.8)

With this choice, the function ηn is a strict upper-solution of (1.6) in [0, ρ) for all n. This
proves our claim.

Moreover, since z(ρ−) = 0 > − 1
n = ηn(ρ), we can find ϕ̂n ∈ (0, ρ) satisfying z(ϕ) > ηn(ϕ)

for ϕ ∈ [ϕ̂n, ρ]. If we apply Lemma 4.2(2.ii) in the remaining interval [0, ϕ̂n) we conclude
that

z(ϕ) > ηn(ϕ), for all ϕ ∈ (0, ρ] and n ∈ N. (7.9)
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Since D(ρ) > 0 by (D), then δ := minϕ∈[ρ/2,ρ]D(ϕ) > 0; as a consequence, by (7.6) we have
that

ξ − ξ

(

ρ

2

)

=

∫ ρ

ρ

2

ξ ′(ϕ) dϕ =

∫ ρ

ρ

2

1

ϕ ′(ξ(ϕ))
dϕ =

∫ ρ

ρ

2

D(ϕ)

z(ϕ)
dϕ

<

∫ ρ

ρ

2

D(ϕ)

ηn(ϕ)
dϕ < δ

∫ ρ

ρ

2

1

a(ϕ− ρ)− 1
n

dϕ =
δ

a
ln

2

naρ+ 2
.

If we pass to the limit for n → ∞ in the above lines, we see that the right-hand side tends
to −∞; hence, ξ = −∞.

Case (ii). The proof is similar to that of Case (i) but the choice of a lower-solution (in-
stead of an upper-solution) is more tricky. More precisely, we define h := minϕ∈[ρ/2,ρ]

(

h(ϕ) − c
)

,

fix a value β ∈ (α+1
2 , 1) and take k > 0 satisfying

δL

k
− kβ

(

ρ

2

)2β−(α+1)

> 0, (7.10)

where δ is defined as in case (i). For every n ∈ N with ρ
2 < ρ− 1

n , we introduce the function

ωn(ϕ) : [
ρ
2 , ρ] → R defined by

ωn(ϕ) =

{

−k(ρ− 1
n − ϕ)β ϕ ∈ [ρ2 , ρ− 1

n ],

0 ϕ ∈ (ρ− 1
n , ρ].

We claim that
ωn(ϕ) ≥ z(ϕ), ϕ ∈ [ρ/2, ρ]. (7.11)

Indeed, since z(ϕ) < 0 in the interval (0, ρ), by a continuity argument we can find ψn ∈
(ρ2 , ρ− 1

n) such that ωn(ϕ) ≥ z(ϕ) on [ψn, ρ]. If we show that ωn is a strict lower-solution of

(1.6) on [ρ2 , ψn], then we can apply Lemma 4.2(2.i) in the interval (ρ2 , ψn] and prove (7.11).

According to (2.12) (with ρ1 = 0), we obtain, for ϕ ∈ [ρ2 , ψn],

h(ϕ) − c− D(ϕ)g(ϕ)

ωn(ϕ)
= h(ϕ) − c+

D(ϕ)g(ϕ)

k(ρ− 1
n − ϕ)β

≥ h+
δL(ρ − ϕ)α

k(ρ− 1
n − ϕ)β

= h+
δL(ρ− ϕ)α

k(ρ− 1
n − ϕ)α

· 1

(ρ− 1
n − ϕ)β−α

≥ h+
δL

k

1

(ρ− 1
n − ϕ)β−α

. (7.12)

Now, we introduce the function ηn : [
ρ
2 , ψn] → R defined by

ηn(ϕ) = h+
δL

k

1

(ρ− 1
n − ϕ)β−α

− ω̇n(ϕ)

and notice that ρ− 1
n − ϕ < ρ

2 for ϕ ∈ [ρ2 , ρ− 1
n ]; we deduce, for ϕ ∈ [ρ2 , ψn],

δL

k
− kβ

(

ρ− 1

n
− ϕ

)2β−(1+α)

>
δL

k
− kβ

(

ρ

2

)2β−(1+α)

, (7.13)

1

(ρ− 1
n − ϕ)β−α

>
1

(

ρ
2

)β−α
. (7.14)
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By means of the definition of ωn and (7.13), (7.14), (7.10), we have that, for ϕ ∈ [ρ2 , ψn],

ηn(ϕ) = h+
δL

k

1

(ρ− 1
n − ϕ)β−α

− kβ

(ρ− 1
n − ϕ)1−β

= h+
1

(ρ− 1
n − ϕ)β−α

[

δL

k
− kβ

(

ρ− 1

n
− ϕ

)2β−(1+α)
]

> h+
1

(

ρ
2

)β−α

[

δL

k
− kβ

(

ρ

2

)2β−(1+α)
]

> 0,

if k is sufficiently small. Hence,

h+
δL

k

1

(ρ− 1
n − ϕ)β−α

> ω̇n(ϕ), ϕ ∈
[

ρ

2
, ψn

]

.

Then, by (7.12), ωn is a strict lower-solution of (1.6) on (ρ2 , ψn] and (7.11) is proved.
The sequence {ωn}n is monotone and

lim
n→∞

ωn(ϕ) = −k(ρ− ϕ)β := ω(ϕ), ϕ ∈ [ρ/2, ρ].

By (7.11) we have ω(ϕ) ≥ z(ϕ) for ϕ ∈ [ρ2 , ρ] and, as in Case (i), by (7.6) we get

ξ − ξ(
ρ

2
) =

∫ ρ

ρ

2

ξ ′(ϕ) dϕ =

∫ ρ

ρ

2

1

ϕ ′(ξ(ϕ))
dϕ =

∫ ρ

ρ

2

D(ϕ)

z(ϕ)
dϕ

≥
∫ ρ

ρ

2

D(ϕ)

ω(ϕ)
dϕ ≥ −K

k

∫ ρ

ρ

2

1

(ρ− ϕ)β
dϕ = − K

k(1− β)

(

ρ

2

)1−β

,

where K was defined below (7.7). Therefore ξ ∈ R and so ϕ(ξ) ≡ ρ for ξ ≤ ξ. �

8 On the existence of global traveling-wave solutions

As we noticed in Section 3, the existence of a semi-wavefront solution is a notable theoretical
result but global solutions can be more interesting in some applications. The existence of
semi-wavefront profiles for any c ∈ R is a motivation to the following construction. An
analogous procedure is well known and fully characterized for some dispersive equations
[18, 19, 20].

We fix a wave speed c and ̟ ∈ R. Theorem 2.4, together with a shift argument,
provides us of a semi-wavefront solution ρ1 from ρ with wave profile ϕ1 and a semi-wavefront
solution ρ2 to ρ with wave profile ϕ2, both of them with the same speed c and satisfying
ϕ1(̟) = ϕ2(̟) = 0. Such wave profiles are unique by the same theorem. We define, see
Figure 5,

ϕ(ξ) =

{

ϕ1(ξ) if ξ ≤ ̟,
ϕ2(ξ) if ξ > ̟.

(8.1)
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✲ξ

✻ϕ

ρ

ϕ1 ϕ2

ϕ(ξ)

̟

Figure 5: Pasting two wave profiles ϕ1 and ϕ2 to get a global profile ϕ.

Clearly ϕ is a classical solution for ξ 6= ̟; however, because of the discontinuity of ϕ′

at ̟, notice that the pasting (8.1) has possibly a meaning only if the pasting occurs at the
point (̟, 0) in the (ξ, ϕ)-plane and under (D1) or (D2). Indeed, either in the case (D0) or
in the case of a pasting at a point (ξ0, ρ0), with ξ0 ∈ R and ρ0 ∈ (0, ρ], the term D(ϕ)ϕ′

produces a Dirac mass at ξ0 because D(ρ0) > 0; this does not make ϕ a (weak) solution to
(1.5).

We denote by c∗1 the threshold introduced in Theorem 2.3 for profiles from ρ. By the
proof of Theorem 2.4, we deduce that ϕ2(ξ) = ϕ̃1(−ξ), where ϕ̃1 is the profile from ρ
corresponding to speed −c and flux −f . If we denote by c∗2 the threshold analogous to c∗1
but for profiles to ρ, then c∗2 satisfies (2.4) with −c and −h replacing c and h, respectively.

Proposition 8.1. Assume either (D1) or (D2) and let ϕ be as in (8.1). Then ϕ is a solution
to (1.5) if and only if c ∈ [c∗1,−c∗2].

Proof. In order to prove that ϕ is a weak solution to (1.5) we must verify Definition 2.1 when
I = R; indeed, we only have to focus on a neighborhood of the pasting point ̟. Therefore,
let ψ ∈ C∞

0 (R) with ψ(̟) 6= 0; without loss of generality we can assume that ψ(̟) = 1.
We split the integral

∫

R

{

(

D
(

ϕ(ξ)
)

ϕ′(ξ)− f
(

ϕ(ξ)
)

+ cϕ(ξ)
)

ψ′(ξ)− g
(

ϕ(ξ)
)

ψ(ξ)

}

dξ (8.2)

into two parts, integrating separately in (−∞,̟) and in (̟,∞).
A simple integration by parts shows that

∫ ̟

−∞

{

(

D(ϕ)ϕ′ − f(ϕ) + cϕ
)

ψ′ − g(ϕ)ψ
}

dξ = lim
ξ→̟−

D
(

ϕ1(ξ)
)

ϕ′
1(ξ)

= lim
ϕ→0−

z1(ϕ).

By Theorem 2.2 we conclude

∫ ̟

−∞

{

(

D (ϕ)ϕ′ − f (ϕ) + cϕ
)

ψ′ − g (ϕ)ψ
}

dξ =

{

0 if c ≥ c∗1,
z1(0) < 0 if c < c∗1.

Now, we consider the integration in (̟,∞). We argue as above but also recall the proof
of Theorem 2.4, see what we pointed out just above the statement of this proposition. We
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deduce

∫

∞

̟

{

(

D (ϕ)ϕ′ − f (ϕ) + cϕ
)

ψ′ − g (ϕ)ψ
}

dξ =

{

0 if − c ≥ c∗2,
−z2(0) < 0 if − c < c∗2.

Therefore, the integral (8.2) vanishes if and only if c∗1 ≤ c ≤ −c∗2.

From the proof of the above proposition and (2.8), (2.9), we deduce that, in case (D1),
the condition c ∈ [c∗1,−c∗2] is equivalent to require that both ϕ′

1(̟
−) and ϕ′

2(̟
+) are real

numbers.
The thresholds c∗1 and c∗2 have not an explicit expression but are estimated in (2.4). In

order that there exists c in the range [c∗1,−c∗2] we need that c∗1 + c∗2 ≤ 0. However, by (2.4)
we see that

c∗1 + c∗2 ≥ 4

√

Ḋ(0)g(0) ≥ 0,

which shows that the reverse inequality holds. This leaves open only the eventuality

condition (D2) holds and c
∗
1 = −c∗2. (8.3)

In this case we are led to the unique choice c = c∗1 = −c∗2. As we noted above, we cannot
establish whether the case c∗1 = −c∗2 can occur. Apart from this (possible) case, the con-
struction in (8.1) never leads to a solution of (2.1). In other words and apart from case
(8.3): for any fixed c, if a semi-wavefront profile has finite slope when it reaches zero, then
the other one has infinite slope. This is equivalent to say that D(ϕ)ϕ′ is discontinuous at ̟
and then its derivative produces a Dirac mass at that point.

A comparison with the special dispersive equations considered in [19] is interesting. With
reference to the Camassa-Holmes equation, the third-order equation for the profile is reduced
to a second-order equation, which is somewhat analogous to (1.5) with D(ϕ) = 2(ϕ−c). For
the corresponding profile, it is possible to prove that 2(ϕ − c)ϕ′ ∈ W 1,1

loc (R), i.e. 2(ϕ − c)ϕ′

is absolutely continuous [18, Lemma 5]; this makes possible the pasting.

9 Diffusion with infinite slope at 0

In this last section we only require D ∈ C[0, ρ] ∩C1(0, ρ) and assume (D̂). This means that
we allow D to have infinite slope at 0; the differentiability of D at ρ plays no role in the
discussion below. Most of the previous results still hold under (D̂): indeed, the comparison-
type techniques in Section 4 only depend on the continuity of D and this is also the case for
Lemma 6.1, while Proposition 6.1 simply involves the values of Ḋ in the open interval (0, ρ).
As a consequence, we only need to focus on problem (2.3) and the equivalence discussed in
Theorem 2.2.

Proof of Theorem 2.6. Fix c ∈ R. The proof depends on the properties of D.

I. Assume condition (D̂0). In this case it is possible to find real values a1, a2 and strictly
positive numbers b1, b2 in such a way that, if we denote Di(ϕ) =: aiϕ + bi for i = 1, 2, then
D1(ϕ) < D(ϕ) < D2(ϕ) for ϕ ∈ [0, ρ]. Problem (2.3), when replacing D with D1 and D2, is
uniquely solvable by Theorem 2.3, because condition (D0) holds for both D1 and D2. Let z1
and z2 be these solutions, respectively; see Figure 6(a). In particular, Theorem 2.3 implies
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z1(0) < 0. Notice that z1 is a strict lower-solution and z2 is a strict upper-solution of (1.6)
on [0, ρ); we claim that

z1(ϕ) > z2(ϕ), ϕ ∈ [0, ρ). (9.1)

Indeed, since D1 < D2 in [0, ρ] we deduce that z1 is a strict lower-solution of

ż(ϕ) = h(ϕ)− c− D2(ϕ)g(ϕ)

z(ϕ)
, ϕ ∈ [0, ρ). (9.2)

Let γ(ϕ) be the solution of (9.2) satisfying γ(0) = z1(0) and assume that γ is defined in
[0, β), with β ≤ ρ. By Lemma 4.2(1.i) we have γ(ϕ) > z1(ϕ) for ϕ ∈ (0, β). Notice that

γ̇(ϕ) − ż1(ϕ) = g(ϕ)

[

D2(ϕ)

−γ(ϕ) −
D1(ϕ)

−z1(ϕ)

]

> 0, ϕ ∈ [0, β),

which makes impossible the case β = ρ. Hence β < ρ and this implies z2(0) < z1(0).
Moreover, if there exists ϕ0 ∈ (0, ρ) such that z1(ϕ0) = z2(ϕ0), we deduce as above z2(ϕ̂) = 0
for some ϕ̂ < ρ, i.e., a contradiction. Claim (9.1) is then proved.

Since z1(ρ) = 0, we can find an increasing sequence {ψn} ⊂ (0, ρ), which converges to ρ
and such that {z1(ψn)} is also increasing. Denote with ζn the solution of final-value problem

{

ż(ϕ) = h(ϕ) − c− D(ϕ)g(ϕ)
z(ϕ) , ϕ < ψn,

z(ψn) = z1(ψn).

By means of Lemma 4.1(2), the solution ζn is unique and it is defined on (0, ψn]. Fur-
thermore, the sequence

{

ζn(ϕ)
}

n
is increasing for all ϕ and, by Lemma 4.2(2), it satisfies

z2(ϕ) < ζn(ϕ) < z1(ϕ) for ϕ ∈ (0, ψn). Since ζn is bounded away from 0, we can extend it
to 0 by continuity. We define

z(ϕ) = lim
n→∞

ζn(ϕ), ϕ ∈ [0, ρ).

As in the proof of Theorem 2.3(b), we can prove that z(ϕ) is the required solution of problem
(2.3) with z(0) ≤ z1(0) < 0.

II. Assume condition (D̂1). The proof splits into three parts.

(a) Existence of a lower-solution. We show that there exist ϕ0 ∈ (0, ρ) and a strict lower-
solution ω : [0, ϕ0] → R for (1.6), such that ω(ϕ) < 0 for ϕ ∈ [0, ϕ0) and ω(ϕ0) = 0. This
means that

ω̇ < h(ϕ) − c− D(ϕ)g(ϕ)

ω(ϕ)
, ϕ ∈ (0, ϕ0). (9.3)

Let 0 < M < N be two constants such that h(ϕ) − c > −M for ϕ ∈ [0, ρ]. By (g) and (D̂1)

there is ε > 0 such that D(ϕ)g(ϕ) > N2ϕ
4 for ϕ ∈ (0, ε]. Therefore we shall prove (9.3) if we

find ϕ0 and ω solving

ω̇ = −M − N2ϕ

4ω(ϕ)
, ϕ ∈ (0, ϕ0). (9.4)

It is not easy to solve directly this equation; so, we exploit the second-order equation which
corresponds to it, in the same way that (1.5) corresponds to (1.6).
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Figure 6: (a): Case (D̂0). The lower-solution z1, the upper-solution z2 and the solution z.
(b): Case (D̂1). The solutions zα, z1, z2, the upper-solution η and the lower-solution ω;
here, z0 < −1 satisfies (5.4).

Consider the equation u′′ +Mu′ + N2

4 u = 0 and the solution

ϕ(t) = εe−
Mt
2

(

cos(αt) +
M

2α
sin(αt)

)

, α =

√
N2 −M2

2
.

We denote t = 1
α

[

arctg(−2α
M ) + π

]

and notice that

ϕ′(t) = −εe−Mt
2

(

M2

4α
+ α

)

sin(αt), t ∈ R.

We have that ϕ(0) = ε and ϕ(t) = 0, ϕ(t) is positive and decreasing in [0, t), ϕ′(0) = 0.
Hence, the function ϕ is invertible and we denote by t = t(ϕ), ϕ ∈ [0, ε], its inverse function.
If we define ω(ϕ) := ϕ′

(

t(ϕ)
)

for ϕ ∈ [0, ε] and ϕ0 := ε, see Figure 6(b), then it is not
difficult to show that ω(ϕ) is a solution of (9.4). Our claim is proved.

(b) Solution of problem (2.3). Consider the linear function η(ϕ) defined in (5.5) with
z0 < ϕ′(t), see Figure 6. We showed in the proof of Theorem 2.3, part (a), that η(ϕ) is
a strict upper-solution of (1.6) in [0, ρ]; the proof does not depend on Ḋ(0). By Lemma
4.2(1.ii), the solution z1 of the initial-value problem

{

ż = h(ϕ) − c− D(ϕ)g(ϕ)
z(ϕ) ,

z(0) = η(0),

satisfies z1(ϕ) < η(ϕ) for ϕ ∈ (0, ρ). In particular z1(ρ) ≤ −1. Similarly, by Lemma 4.2(1.i),
the solution z2 of the initial-value problem

{

ż = h(ϕ) − c− D(ϕ)g(ϕ)
z(ϕ) ,

z(0) = ω(0),

with ω(ϕ) defined in step (a), satisfies z2(ϕ) > ω(ϕ) for ϕ ∈ (0, ϕ1), where [0, ϕ1) is the
maximal-existence interval of z2. This implies that [0, ϕ1) ⊂ [0, c1).
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Now, consider the family zα of solutions of (1.6) with zα(0) = α, for α ∈ [z1(0), z2(0)],
and apply a shooting argument. It is not difficult to find α ∈

(

z1(0), z2(0)
)

such that the
corresponding function zα is a solution of problem (2.3), hence with zα(0) < z2(0) < 0.

(c) Uniqueness. The reasoning in the proof of Theorem 2.3(c) applies also here.

III. The equivalence between semi-wavefront solutions ϕ and solutions z of (2.3) can be
proved as in Theorem 2.2. In particular, with reference to that proof, in case (D̂0) inequality
(6.5) still holds, while in case (D̂1) we are in case (a) because z(0) < 0 for every c. This
proves (2.13). �

We also point out that the negative results of Section 8, concerning the impossibility of
pasting semi-wavefronts, still hold under (D̂).
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tion. Birkhäuser Verlag, Basel, 2004.

[16] B. H. Gilding and R. Kersner. A Fisher/KPP-type equation with density-dependent
diffusion and convection: travelling-wave solutions. J. Phys. A, 38(15):3367–3379, 2005.

[17] A. S. Kalashnikov. Some problems of the qualitative theory of second-order nonlinear
degenerate parabolic equations. Russian Mat. Surveys, 42 (1987), 169–222.

[18] J. Lenells. Traveling wave solutions of the Camassa-Holm equation. J. Differential
Equations, 217 (2005), 393–430.

[19] J. Lenells. Classification of traveling waves for a class of nonlinear wave equations. J.
Dynam. Differential Equations, 18 (2006), 381–391.

[20] J. Lenells. Traveling waves in compressible elastic rods. Discrete Contin. Dyn. Syst.
Ser. B, 6 (2006), 151–167.

[21] M. J. Lighthill and G. B. Whitham. On kinematic waves. II. A theory of traffic flow on
long crowded roads. Proc. Roy. Soc. London. Ser. A., 229 (1955), 317–345.

[22] P. K. Maini, L. Malaguti, C. Marcelli, and S. Matucci. Diffusion-aggregation processes
with mono-stable reaction terms. Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1175–
1189.

[23] L. Malaguti and C. Marcelli. Finite speed of propagation in monostable degenerate
reaction-diffusion-convection equations. Adv. Nonlinear Stud., 5 (2005), 223–252.

[24] J. D. Murray. Mathematical biology. II. Springer-Verlag, New York, third edition, 2003.

36



[25] P. Nelson. Synchronized traffic flow from a modified Lighthill-Whitham model. Phys.
Review E, 61 (2000), R6052–R6055.

[26] P. Nelson. Traveling-wave solutions of the diffusively corrected kinematic-wave model.
Math. Comput. Modelling, 35 (2002), 561–579. Traffic flow—modelling and simulation.

[27] H. J. Payne. Models of freeway traffic and control. Simulation Council Proc., 1 (1971),
51–61.

[28] P. I. Richards. Shock waves on the highway. Oper. Res., 4 (1956), 42–51.

[29] M. D. Rosini. Macroscopic models for vehicular flows and crowd dynamics: theory and
applications. Springer, Heidelberg, 2013.

[30] F. Sánchez-Garduño and P. K. Maini. Travelling wave phenomena in some degenerate
reaction-diffusion equations. J. Differential Equations, 117 (1995), 281–319.

[31] J. L. Vázquez. The porous medium equation. The Clarendon Press, Oxford University
Press, Oxford, 2007.

[32] F. Venuti and L. Bruno. An interpretative model of the pedestrian fundamental relation.
C. R. Mech., 335 (2007), 194–200.

37


	1 Introduction
	2 Main results
	3 An example
	4 Comparison-type techniques
	5 The first-order problem
	6 Semi-wavefronts via a first-order analysis
	7 Proof of the main results
	8 On the existence of global traveling-wave solutions
	9 Diffusion with infinite slope at 0

