A restriction theorem for stable rank two vector bundles on \mathbb{P}^{3}

Philippe Ellia ${ }^{\mathrm{a}, *}$, Laurent Gruson ${ }^{\text {b }}$
a Dipartimento di Matematica, 35 via Machiavelli, 44100 Ferrara, Italy
b L.M.V., Université de Versailles-St Quentin, 45 Av. des Etats-Unis, 78035 Versailles, France

A R T I C L E I N F O

Article history:

Received 4 September 2014
Available online 19 May 2015
Communicated by Steven Dale
Cutkosky

MSC:

14J60
Keywords:
Rank two vector bundles
Projective space
Restriction
Plane

A B S T R A C T

Let E be a normalized, rank two vector bundle on \mathbb{P}^{3}. Let H be a general plane. If E is stable with $c_{2} \geq 4$, we show that $h^{0}\left(E_{H}(1)\right) \leq 2+c_{1}$. It follows that $h^{0}(E(1)) \leq 2+c_{1}$. We also show that if E is properly semi-stable and indecomposable, $h^{0}\left(E_{H}(1)\right)=3$.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

We work over an algebraically closed field of characteristic zero. Let E denote a stable, normalized $\left(-1 \leq c_{1}(E) \leq 0\right)$ rank two vector bundle on \mathbb{P}^{3}. By Barth's restriction theorem [1] if H is a general plane, then E_{H} is stable (i.e. $h^{0}\left(E_{H}\right)=0$) except if E is a null-correlation bundle $\left(c_{1}=0, c_{2}=1\right)$. In this note we prove:

[^0]Theorem 1. Let E be a stable, normalized, rank two vector bundle on \mathbb{P}^{3}. Assume $c_{2}(E) \geq 4$. Let H be a general plane, then:
(a) $h^{0}\left(E_{H}(1)\right) \leq 1$ if $c_{1}=-1$ and
(b) $h^{0}\left(E_{H}(1)\right) \leq 2$ if $c_{1}=0$.

In particular it follows that $h^{0}(E(1)) \leq 2+c_{1}$.

The idea of the proof is as follows: if the theorem is not true then every general plane contains a unique line, L, such that E_{L} has splitting type $\left(r,-r+c_{1}\right), r \geq c_{2}-1$. We call such a line a "super-jumping line". Then we show that these super jumping lines are all contained in a same plane, H. The plane H is very unstable for E. Performing a reduction step with H, we get a contradiction.

We observe (Remark 6) that the assumptions (and conclusions) of the theorem are sharp.

For sake of completeness we show (Proposition 7) that if E is properly semi-stable, indecomposable, then $h^{0}\left(E_{H}(1)\right)=3$ for H a general plane.

2. Proof of the theorem

We need some definitions:

Definition 2. Let E be a stable, normalized rank two vector bundle on \mathbb{P}^{3}. A plane H is stable if E_{H} is stable; it is semi-stable if $h^{0}\left(E_{H}\right) \neq 0$ but $h^{0}\left(E_{H}(-1)\right)=0$. A plane is special if $h^{0}\left(E_{H}(-m)\right) \neq 0$ with $m>1$.

A line is general if the splitting type of E_{L} is $\left(0, c_{1}\right)$. A line L is a super jumping line (s.j.l.) if the splitting type of E_{L} is $\left(r,-r+c_{1}\right)$, with $r \geq c_{2}-1$.

Lemma 3. Let E be a stable, normalized rank two vector bundle on \mathbb{P}^{3}. Assume $c_{2}(E) \geq 4$ and $h^{0}\left(E_{H}(1)\right)>2+c_{1}$ if H is a general plane. Then:
(i) Every stable plane contains a unique s.j.l., all the other lines are general or, if $c_{1}=0$, of type $(1,-1)$.
(ii) A semi-stable plane contains at most one s.j.l.
(iii) There is at most one special plane.

Proof. (i) If H is a stable plane every section of $E_{H}(1)$ vanishes in codimension two:

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{H} \rightarrow E_{H}(1) \rightarrow \mathcal{I}_{Z, H}\left(2+c_{1}\right) \rightarrow 0 \tag{*}
\end{equation*}
$$

We have $h^{0}\left(\mathcal{I}_{Z, H}\left(2+c_{1}\right)\right) \geq 2+c_{1}$ by the assumption. If $c_{1}=-1, Z$ has degree c_{2} and is contained in a line L_{H}. If $c_{1}=0$, we have $h^{0}\left(\mathcal{I}_{Z, H}(2)\right) \geq 2$. Since $\operatorname{deg}(Z)=c_{2}+1>4$,
the conics have a fixed line, L_{H}, and there is left a pencil of lines to contain the residual scheme of Z with respect to L_{H}. It follows that the residual scheme is one point and that length $\left(Z \cap L_{H}\right)=c_{2}$. So in both cases there is a line, L_{H}, containing a subscheme of Z of length c_{2}. Restricting ($*$) to L_{H} we get $E_{L_{H}} \rightarrow \mathcal{O}_{L_{H}}\left(1+c_{1}-c_{2}\right)$. It follows that the splitting type of $E_{L_{H}}$ is $\left(c_{2}-1, c_{1}-c_{2}+1\right)$, hence L_{H} is a s.j.l. If $L \neq L_{H}$ is another line in H, let s be the length of $L \cap Z$. Restricting (*) to L we get

$$
0 \rightarrow \mathcal{O}_{L}(s-1) \rightarrow E_{L} \rightarrow \mathcal{O}_{L}\left(c_{1}-s+1\right) \rightarrow 0
$$

This sequence splits except maybe if $c_{1}=s=0$ (in this case the splitting type is $(0,0)$ or $(1,-1)$). If L is a s.j.l. then $s \geq c_{2}$, hence $L=L_{H}$. This shows that a stable plane contains a unique s.j.l. Since $s \leq 1$ (resp. $s \leq 2$) if $c_{1}=-1$ (resp. $c_{1}=0$), a line different from L_{H} is general or has splitting type $(1,-1)$.
(ii) If H is semi-stable then we have

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{H} \rightarrow E_{H} \rightarrow \mathcal{I}_{T, H}\left(c_{1}\right) \rightarrow 0 \tag{**}
\end{equation*}
$$

Here $\operatorname{deg}(T)=c_{2}$. If L is a line in H let s denote the length of $L \cap T$. From (**) we get $0 \rightarrow \mathcal{O}_{L}(s) \rightarrow E_{L} \rightarrow \mathcal{O}_{L}\left(c_{1}-s\right) \rightarrow 0$. This sequence splits, so the splitting type of E_{L} is $\left(s,-s+c_{1}\right)$. If L is a s.j.l. then $s \geq c_{2}-1$ and L contains a subscheme of length at least $\operatorname{deg}(T)-1$ of T. Since $c_{2} \geq 4$, such a s.j.l. is uniquely defined. This shows that an unstable plane contains at most one s.j.l.
(iii) We may assume $h^{0}\left(E_{H}(-m-1)\right)=0$. We have

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{H} \rightarrow E_{H}(-m) \rightarrow \mathcal{I}_{X, H}\left(c_{1}-2 m\right) \rightarrow 0 \tag{***}
\end{equation*}
$$

If L is a general line of $H(L \cap X=\emptyset)$ then E_{L} has splitting type $\left(m,-m+c_{1}\right)$, with $m>1$.

Let's show that such a special plane, if it exists, is unique. Assume H_{1}, H_{2} are two special planes. Let H be a general stable plane. If $L_{i}=H \cap H_{i}$, then L_{1}, L_{2} are two lines of H with splitting type $\left(k_{i},-k_{i}+c_{1}\right), k_{i}>1$. By (i) this is impossible.

Remark 4. The referee points out that part (ii) of Lemma 3 follows also from Lemma 4 of [3].

We are ready for the proof of the theorem.

Proof of Theorem 1. Let $U \subset \mathbb{P}_{3}^{*}$ be the dense open subset of stable planes. We have a map $\varphi: U \rightarrow G(1,3)$ defined by $\varphi(H)=L_{H}$ where L_{H} is the unique s.j.l. contained in H. So φ gives a rational map $\varphi: \mathbb{P}_{3}^{*}--->G(1,3)$. We claim that φ doesn't extend as a morphism to \mathbb{P}_{3}^{*}. Indeed in the contrary case we would have a section of the incidence variety $I=\{(H, L) \mid L \subset H\} \rightarrow \mathbb{P}_{3}^{*}$. Since $I \simeq \operatorname{Proj}\left(\Omega_{\mathbb{P}_{3}^{*}}(1)\right)$ (indeed the fiber at H of $\Omega_{\mathbb{P}_{3}^{*}}(1)$ is the hyperplane corresponding to H), such a section corresponds to
an injective morphism of vector bundles $\mathcal{O}_{\mathbb{P}_{3}^{*}} \hookrightarrow T_{\mathbb{P}_{3}^{*}}(k)$, for some k. But there is no twist of $T_{\mathbb{P}_{3}^{*}}$ with a non-vanishing section. This can be seen by looking at $c_{3}\left(T_{\mathbb{P}_{3}^{*}}(k)\right)$ or with the following argument: the quotient would be a rank two vector bundle with $H_{*}^{1}=0$, hence, by Horrocks' theorem, a direct sum of line bundles which is absurd.

If H is a singular point of the "true" rational map φ, then, by Zariski's Main Theorem, H contains infinitely many s.j.l. This implies that H is the unique special plane (and that φ has a single singular point). We claim that every s.j.l. is contained in H. Indeed let R be a s.j.l. not contained in H. Let $z=R \cap H$. There exists a s.j.l. $L \subset H$ through z. The plane $\langle R, L\rangle$ contains two s.j.l. hence it is special: a contradiction.

Since there are ∞^{2} s.j.l. we conclude that the general splitting type on the special plane H is $\left(c_{2}-1,-c_{2}+c_{1}+1\right)$. So $m=c_{2}-1$ i.e. $h^{0}\left(E_{H}\left(-c_{2}+1\right)\right) \neq 0$ (and this is the least twist having a section). Now we perform a reduction step (see [8, Proposition 9.1]).

If $c_{1}=0$ we get

$$
0 \rightarrow E^{\prime} \rightarrow E \rightarrow \mathcal{I}_{W, H}\left(-c_{2}+1\right) \rightarrow 0
$$

where E^{\prime} is a rank two reflexive sheaf with Chern classes $c_{1}^{\prime}=-1, c_{2}^{\prime}=1, c_{3}^{\prime}=c_{2}^{2}-c_{2}+1$. Since E is stable, E^{\prime} is stable too. By [8, Theorem 8.2] we get a contradiction.

If $c_{1}=-1$, since $E_{H}^{*}=E_{H}(1)$ we get

$$
0 \rightarrow E^{\prime}(-1) \rightarrow E \rightarrow \mathcal{I}_{R, H}\left(-c_{2}\right) \rightarrow 0
$$

where the Chern classes of E^{\prime} are $c_{1}^{\prime}=0, c_{2}^{\prime}=0, c_{3}^{\prime}=c_{2}^{2}$. Since E is stable E^{\prime} is semi-stable. By [8, Theorem 8.2] we get, again, a contradiction.

Remark 5. The argument to show that φ doesn't extend to a morphism is taken from [6]. Another way to prove this is to consider the surfaces S_{L} defined in the following way: if L is a general line every plane through L is (semi-)stable, the general one being stable. So almost every plane of the pencil contains a unique s.j.l. taking the closure yields a ruled surface S_{L}. Then one shows that $S_{L} \neq S_{D}$ if L, D are general and then concludes by looking at $S_{L} \cap S_{D}$ (see [5]).

Remark 6. The assumption $c_{2} \geq 4$ cannot be weakened in Theorem 1. If $c_{1}=-1$ every stable rank vector bundle, E, with $c_{1}=-1, c_{2}=2$ is such that $h^{0}\left(E_{H}(1)\right)=2$ for a general plane H (see [9]). If $E(1)$ is associated to four skew lines, then $h^{0}\left(E_{H}(1)\right)=3$ for H general and $c_{i}(E)=(0,3)$.

On the other hand a special t'Hooft bundle ($E(1)$ associated to $c_{2}+1$ disjoint lines on a quadric) is stable with $c_{1}(E)=0$ and, if $c_{2} \geq 4$, satisfies $h^{0}\left(E_{H}(1)\right)=2$ for H general.

By the way, Theorem 1 gives back $h^{0}(E(1)) \leq 2$ for an instanton, a result first proved by Boehmer and Trautmann (see [2] and also [10]).

Finally let $E(1)$ be associated to the disjoint union of $c_{2} / 2$ double lines of arithmetic genus -2 . Then E is stable with $c_{1}=-1$ and, if $c_{2}>2, h^{0}\left(E_{H}(1)\right)=1$ for H general.

Concerning properly semi-stable bundles $\left(c_{1}(E)=0, h^{0}(E) \neq 0, h^{0}(E(-1))=0\right)$ we have:

Proposition 7. Let E be a properly semi-stable rank two vector bundle on \mathbb{P}^{3}. Assume E is indecomposable. If H is a general plane then $h^{0}\left(E_{H}(1)\right)=3$.

Proof. We have $0 \rightarrow \mathcal{O} \rightarrow E \rightarrow \mathcal{I}_{C} \rightarrow 0$, where C is a curve (E doesn't split) with $\omega_{C}(4) \simeq \mathcal{O}_{C}$. Twisting and restricting to a general plane: $0 \rightarrow \mathcal{O}_{H}(1) \rightarrow E_{H}(1) \rightarrow$ $\mathcal{I}_{C \cap H, H}(1) \rightarrow 0$. If $h^{0}\left(\mathcal{I}_{C \cap H, H}(1)\right) \neq 0$ it follows from a theorem of Strano [11,4] that C is a plane curve, but this is impossible $\left(\omega_{C}(4) \nsucceq \mathcal{O}_{C}\right.$ for a plane curve).

Remark 8. To apply Strano's theorem we need $\operatorname{ch}(k)=0$ (see [7]). The previous argument gives a quick proof of Theorem 1 in case $c_{1}=-1, h^{0}(E(1)) \neq 0$. In fact this remark has been the starting point of this note.

Remark 9. Let C be a plane curve of degree d. A non-zero section of $\omega_{C}(3) \simeq \mathcal{O}_{C}(d)$ yields $0 \rightarrow \mathcal{O} \rightarrow \mathcal{F}(1) \rightarrow \mathcal{I}_{C}(1) \rightarrow 0$, where \mathcal{F} is a stable rank two reflexive sheaf with Chern classes $\left(-1, d, d^{2}\right)$. If H is a general plane, $h^{0}\left(\mathcal{F}_{H}(1)\right)=2$ if $d>1$ (resp. 3 if $d=1$). Similarly, considering the disjoint union of a plane curve and of a line, we get stable reflexive sheaf with $c_{1}(\mathcal{F})=0$ and $h^{0}\left(\mathcal{F}_{H}(1)\right)=3$. So Theorem 1 doesn't hold for stable reflexive sheaves. The interested reader can try to classify the exceptions.

References

[1] W. Barth, Some properties of stable rank-2 vector bundles on \mathbb{P}^{n}, Math. Ann. 226 (1977) 125-150.
[2] W. Boehmer, G. Trautmann, Special instanton bundles and Poncelet curves, in: Lecture Notes in Math., vol. 1273, Springer, Berlin, 1987, pp. 325-336.
[3] I. Coanda, On Barth's restriction theorem, J. Reine Angew. Math. 428 (1992) 97-110.
[4] Ph. Ellia, Sur les lacunes d'Halphen, in: Lecture Notes in Math., vol. 1389, Springer, 1989, pp. 43-65.
[5] Ph. Ellia, Some vanishing for the cohomology of stable rank two vector bundles on \mathbb{P}^{3}, J. Reine Angew. Math. 451 (1981) 1-14.
[6] D. Franco, Some vanishings for the cohomology of rank 2 stable reflexive sheaves on \mathbb{P}^{3} and for their restriction to a general plane, Comm. Algebra 23 (6) (1995) 2281-2289.
[7] R. Hartshorne, The genus of space curves, Ann. Univ. Ferrara Sez. VII Sci. Mat. XL (1994) 207-223.
[8] R. Hartshorne, Stable reflexive sheaves, Math. Ann. 254 (1980) 121-176.
[9] R. Hartshorne, I. Sols, Stable rank two vector bundles on \mathbb{P}^{3} with $c_{1}=-1, c_{2}=2$, J. Reine Angew. Math. 325 (1981) 145-152.
[10] T. Nuessler, G. Trautmann, Multiple Koszul structures and instanton bundles, Internat. J. Math. 5 (3) (1994) 373-388.
[11] R. Strano, A characterization of complete intersection curves in \mathbb{P}^{3}, Proc. Amer. Math. Soc. 104 (1988) 711-715.

[^0]: * Corresponding author.

 E-mail addresses: phe@unife.it (Ph. Ellia), Laurent.Gruson@uvsq.fr (L. Gruson).

