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Abstract

In this paper we investigate numerically the model for pedestrian traffic proposed in [B. Andreianov, C. Donadello,
M.D. Rosini, Crowd dynamics and conservation laws with nonlocal constraints and capacity drop, Mathematical Models
and Methods in Applied Sciences 24 (13) (2014) 2685-2722] . We prove the convergenceof a scheme based on a constraint
finite volume method and validate it with an explicit solution obtained in the above reference. We then performad hoc
simulations to qualitatively validate the model under consideration by proving its ability to reproduce typical phenomena
at the bottlenecks, such as Faster Is Slower effect and the Braess’ paradox.
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1. Introduction

Andreianov, Donadello and Rosini developed in [1] a macroscopic model, called here ADR, aiming at describing the
behaviour of pedestrians at bottlenecks. The model is givenby the Cauchy problem for a scalar hyperbolic conservation
law in one space dimension with non-local point constraint of the form

∂tρ + ∂x f (ρ) = 0 (t, x) ∈ R+ × R, (1a)

ρ(0, x) = ρ̄(x) x ∈ R, (1b)

f (ρ(t, 0±)) ≤ p

(∫

R−

w(x) ρ(t, x) dx

)

t ∈ R+, (1c)

whereρ(t, x) ∈ [0,R] is the (mean) density of pedestrians inx ∈ R at timet ∈ R+ andρ̄ : R → [0,R] is the initial (mean)
density, withR > 0 being the maximal density. Then,f : [0,R] → R+ is the flow considered to be bell-shaped, which is
an assumption commonly used in crowd dynamics. A typical example of such flow is the so-called Lighthill-Whitham-
Richards (LWR) flux [2, 3, 4] defined by

f (ρ) = ρ vmax

(

1−
ρ

ρmax

)

,

wherevmax andρmax are the maximal velocity and the maximal density of pedestrians respectively. Throughout this paper
the LWR flux will be used. Nextp: R+ → R+ prescribes the maximal flow allowed through a bottleneck located atx = 0
as a function of the weighted average density in a left neighbourhood of the bottleneck andw: R− → R+ is the weight
function used to average the density.

Finally in (1c),ρ(t, 0−) denotes the left measure theoretic trace along the constraint, implicitly defined by

lim
ε↓0

1
ε

∫ +∞

0

∫ 0

−ε

|ρ(t, x) − ρ(t, 0−)| φ(t, x) dx dt = 0 for all φ ∈ C∞c (R2;R).
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The right measure theoretic trace,ρ(t, 0+), is defined analogously.

In the last few decades, the study of the pedestrian behaviour through bottlenecks, namely at locations with reduced
capacity, such as doors, stairs or narrowings, drawn a considerable attention. The papers [5, 6, 7, 8, 9, 10, 11] present
results of empirical experiments. However, for safety reasons, experiments reproducing extremal conditions such as
evacuation and stampede are not available. In fact, the unique experimental study of a crowd disaster is proposed in [12].
The available data show that the capacity of the bottleneck (i.e. the maximum number of pedestrians that can flow through
the bottleneck in a given time interval) can drop when high-density conditions occur upstream of the bottleneck. This
phenomenon is calledcapacity dropand can lead to extremely serious consequences in escape situations. In fact, the
crowd pressure before an exit can reach very high values, theefficiency of the exit dramatically reduces and accidents
become more probable due to the overcrowding and the increase of the evacuation time (i.e. the temporal gap between the
times in which the first and the last pedestrian pass through the bottleneck). A linked phenomenon is the so-calledFaster
Is Slower(FIS) effect, first described in [13]. FIS effect refers to the jamming and clogging at the bottlenecks, that result
in an increase of the evacuation time when the degree of hurryof a crowd is high. We recall that the capacity drop and the
FIS effect are both experimentally reproduced in [6, 14]. A furtherrelated (partly counter-intuitive) phenomenon is the
so-calledBraess’ paradoxfor pedestrian flows [15]. It is well known that placing a small obstacle before an exit door can
mitigate the inter-pedestrian pressure and, under particular circumstances, it reduces the evacuation time by improving
the outflow of people.

Note that as it happens for any first order model, see for instance [16, Part III] and the references therein, ADR can not
explain the capacity drop and collective behaviours at the bottlenecks. Therefore one of the difficulties we have to face is
that the constraintp has to be deduced together with the fundamental diagram fromthe empirical observations.

The aim of this paper is to validate ADR by performing simulations in order to show the ability of the model to
reproduce the main effects described above and related to capacity drop that are FIS and Braess’ paradox. To this end
we propose a numerical scheme for the model and prove its convergence. The scheme is obtained by adapting the local
constrained finite volume method introduced in [17] to the non-local case considered in ADR, using a splitting strategy.

The paper is organized as follows. In Section 2 we briefly recall the main theoretical results for ADR. In Section 3
we introduce the numerical scheme, prove its convergence and validate it with an explicit solution obtained in [1]. In
Section 4 we perform simulations to show that ADR is able to reproduce the Braess’ paradox and the FIS effect. In
Subsection 4.3 we combine local and non-local constraints to model a slow zone placed before the exit. Conclusions and
perspectives are outlined in Section 5.

2. Well-posedness for the ADR model

Existence, uniqueness and stability for the general Cauchyproblem (1) are established in [1] under the following
assumptions:

(F) f belongs toLip ([0,R]; [0,+∞[) and is supposed to be bell-shaped, that isf (0) = 0 = f (R) and there exists
σ ∈ ]0,R[ such thatf ′(ρ) (σ − ρ) > 0 for a.e.ρ ∈ [0,R].

(W) w belongs toL∞(R−;R+), is an increasing map,‖w‖L1(R−) = 1 and there exists iw > 0 such thatw(x) = 0 for
anyx ≤ −iw.

(P) p belongs toLip
(

[0,R] ;
]

0, f (σ)
])

and is a non-increasing map.

The regularityw ∈ L∞(R−;R+) is the minimal requirement needed in order to prove existence and uniqueness of (1).
In this paper, we shall consider continuousw.

The existence of solutions for the Riemann problem for (1) isproved in [18] for piecewise constantp. However, such
hypothesis onp is not sufficient to ensure uniqueness of solutions, unless the fluxf and the efficiencyp satisfy a simple
geometric condition, see [18] for details. In the present paper, we consider either continuous nonlinearp or a piecewise
constantp that satisfies such geometric condition.

The definition of entropy solution for a Cauchy problem (1a),(1b) with a fixeda priori time dependent constraint
condition

f (ρ(t, 0±)) ≤ q(t) t ∈ R+ (2)

was introduced in [19, Definition 3.2] and then reformulatedin [17, Definition 2.1], see also [17, Proposition 2.6] and [20,
Definition 2.2]. Such definitions are obtained by adding a term that accounts for the constraint in the classical definition
of entropy solution given by Kruzkov in [21, Definition 1]. The definition of entropy solution given in [1, Definition 2.1]
is obtained by extending these definitions to the framework of non-local constraints.

The following theorem on existence, uniqueness and stability of entropy solutions of the constrained Cauchy prob-
lem (1) is achieved under the hypotheses(F), (W) and(P).
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Theorem 2.1 (Theorem 3.1 in [1]). Let (F), (W), (P) hold. Then, for any initial datum̄ρ ∈ L∞(R; [0,R]), the Cauchy
problem(1) admits a unique entropy solutionρ. Moreover, ifρ′ = ρ′(t, x) is the entropy solution corresponding to the
initial datumρ̄′ ∈ L∞(R; [0,R]), then for all T> 0 and L> iw, the following inequality holds

∥

∥

∥ρ(T) − ρ′(T)
∥

∥

∥

L1([−L,L])
≤ eCT

∥

∥

∥ρ̄ − ρ̄′
∥

∥

∥

L1({|x|≤L+MT})
, (3)

where M= Lip( f ) and C= 2Lip(p)‖w‖L∞(R−).

The total variation of the solution may in general increase due to the presence of the constraint. In [1] the authors
provide an invariant domainD ⊂ L1 (R; [0,R]) such that if ¯ρ belongs toD, then one obtains a Lipschitz estimate with
respect to time of theL1 norm and an a priori estimate of the total variation of

Ψ(ρ) = sign(ρ − σ)[ f (σ) − f (ρ)] =
∫ ρ

σ

∣

∣

∣ ḟ (r)
∣

∣

∣ dr.

3. Numerical method for approximation of ADR

In this section we describe the numerical scheme based on finite volume method that we use to solve (1). Then we
prove the convergence of our scheme and validate it by comparison with an explicit solution of (1). In what follows, we
assume that(F), (W) and(P) hold.

3.1. Non-local constrained finite volume method

Let ∆x and∆t be the constant space and time steps respectively. We define the pointsx j+1/2 = j∆x, the cellsK j =

[x j−1/2, x j+1/2[ and the cell centersx j = ( j − 1/2)∆x for j ∈ Z. We define the time discretizationtn = n∆t. We introduce
the indexjc such thatx jc+1/2 is the location of the constraint (a door or an obstacle). Forn ∈ N and j ∈ Z, we denote by
ρn

j the approximation of the average ofρ(tn, · ) on the cellK j , namely

ρ0
j =

1
∆x

∫ x j+1/2

x j−1/2

ρ(x) dx and ρn
j ≃

1
∆x

∫ x j+1/2

x j−1/2

ρ(tn, x) dx if n > 0.

We recall that for the classical conservation law (1a)-(1b), a standard finite volume method can be written into the form

ρn+1
j = ρn

j −
∆t
∆x

(

F n
j+1/2 − F

n
j−1/2

)

, (4)

whereF n
j+1/2 = F

(

ρn
j , ρ

n
j+1

)

is a monotone, consistent numerical flux, that is,F satisfies the following assumptions:

• F is Lipschitz continuous from [0,R]2 to R with Lipschitz constant Lip(F),

• F(a, a) = f (a) for anya ∈ [0,R],

• (a, b) ∈ [0,R]2 7→ F(a, b) ∈ R is non-decreasing with respect toa and non-increasing with respect tob.

We also recall that in [17] the numerical flux for the time dependent constraint (2) is modified as follow in order to take
into account the constraint condition

F n
j+1/2 =



















F
(

ρn
j , ρ

n
j+1

)

if j , jc,

min
{

F
(

ρn
j , ρ

n
j+1

)

, qn
}

if j = jc,
(5)

whereqn is an approximation ofq(tn). In the present paper, when dealing with a Cauchy problem subject to a non-local
constraint of the form (1c) we will use the approximation

qn = p

















∆x
∑

j≤ jc

w(x j) ρn
j

















. (6)

Roughly speaking

• we apply the numerical scheme (4) for the problem (1a)-(1b),

• we apply the numerical scheme (4)-(5) for the problem (1a)-(1b)-(2),

• we apply the numerical scheme (4)-(5)-(6) for the problem (1).
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3.2. Convergence of the scheme

Let us introduce the finite volume approximate solutionρ∆ defined by

ρ∆(t, x) = ρn
j for x ∈ K j andt ∈ [tn, tn+1[, (7)

where the sequence (ρn
j ) j∈Z,n∈N is obtained by the numerical scheme (4)-(5). Analogously, we also define the approximate

constraint function

q∆(t) = qn for t ∈ [tn, tn+1[. (8)

First, we prove a discrete stability estimate valid for any domainQ = [0,T] × R with T > 0, for the scheme (4)-(5)
applied to problem (1a)-(1b)-(2). This estimate can be seenas the equivalent, in this framework, of the stability result
established in [17, Proposition 2.10].

Proposition 3.1. Let ρ be inL∞(R; [0,R]) and q∆, q̂∆ be piecewise constant functions of the form(8). If ρ∆ and ρ̂∆ are
the approximate solutions of(1a)-(1b)-(2) corresponding, respectively, to q∆ and q̂∆ and constructed by applying the
scheme(4)-(5), then we have

‖ρ∆ − ρ̂∆‖L1(Q) ≤ 2T‖q∆ − q̂∆‖L1([0,T]) .

Proof. For notational simplicity, letN = ⌊T/∆t⌋. Let us also introduce ( ˜ρn
j ) j∈Z,n∈N defined by,

ρ̃n+1
j = ρn

j −
∆t
∆x

(

F̃ n
j+1/2 − F̃

n
j−1/2

)

, for any j ∈ Z, n ∈ N,

whereF̃ n
j+1/2 is defined by

F̃ n
j+1/2 =



















F
(

ρn
j , ρ

n
j+1

)

if j , jc,

min
{

F
(

ρn
j , ρ

n
j+1

)

, q̂n
}

if j = jc.

Then using the definitions of (ρn
j ) j∈Z,n∈N and (ρ̃n

j ) j∈Z,n∈N, we have for anyn = 1, . . . ,N,

ρn
j = ρ̃

n
j if j < { jc, jc + 1}

and

ρn
jc
− ρ̃n

jc
= −
∆t
∆x

(

min
{

F
(

ρn−1
jc
, ρn−1

jc+1

)

, qn−1
}

+min
{

F
(

ρn−1
jc
, ρn−1

jc+1

)

, q̂n−1
})

,

ρn
jc+1 − ρ̃

n
jc+1 =

∆t
∆x

(

min
{

F
(

ρn−1
jc
, ρn−1

jc+1

)

, qn−1
}

−min
{

F
(

ρn−1
jc
, ρn−1

jc+1

)

, q̂n−1
})

,

which implies that

∣

∣

∣ρn
jc
− ρ̃n

jc

∣

∣

∣ ≤
∆t
∆x

∣

∣

∣qn−1 − q̂n−1
∣

∣

∣,
∣

∣

∣ρn
jc+1 − ρ̃

n
jc+1

∣

∣

∣ ≤
∆t
∆x

∣

∣

∣qn−1 − q̂n−1
∣

∣

∣.

Therefore we deduce that, for anyn = 1, . . . ,N,

∑

j∈Z

∣

∣

∣ρn
j − ρ̃

n
j

∣

∣

∣ ≤ 2
∆t
∆x

∣

∣

∣qn−1 − q̂n−1
∣

∣

∣. (9)

Besides, observe that the modification of the numerical flux at the interfacex jc+1/2 introduced in (5) does not affect the
monotonicity of the scheme (4)-(5) (see [17, Proposition 4.2]). Therefore, for anyn = 1, . . . ,N, we have

∑

j∈Z

∣

∣

∣ρ̃n
j − ρ̂

n
j

∣

∣

∣ ≤
∑

j∈Z

∣

∣

∣ρn−1
j − ρ̂n−1

j

∣

∣

∣. (10)

Hence thanks to (9) and (10), we can write

∑

j∈Z

|ρ1
j − ρ̂

1
j | ≤

∑

j∈Z

|ρ1
j − ρ̃

1
j | +

∑

j∈Z

|ρ̃1
j − ρ̂

1
j | ≤ 2

∆t
∆x

∣

∣

∣q0 − q̂0
∣

∣

∣ +
∑

j∈Z

|ρ0
j − ρ̂

0
j | = 2

∆t
∆x

∣

∣

∣q0 − q̂0
∣

∣

∣.

Then an induction argument shows that for anyn = 1, . . . ,N,

∑

j∈Z

∣

∣

∣ρn
j − ρ̂

n
j

∣

∣

∣ ≤ 2
∆t
∆x

n−1
∑

k=0

|qk − q̂k| ≤
2
∆x
‖q∆ − q̂∆‖L1([0,tn]) .
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In conclusion, we find that

‖ρ∆ − ρ̂∆‖L1(Q) = ∆t∆x
N

∑

n=1

∑

j∈Z

|ρn
j − ρ̂

n
j | ≤ 2‖q∆ − q̂∆‖L1([0,T])

N
∑

n=1

∆t ≤ 2T‖q∆ − q̂∆‖L1([0,T])

and this ends the proof.

Let us now notice that as in [17, Proposition 4.2], under the CFL condition

Lip(F)
∆t
∆x
≤

1
2
, (11)

we have theL∞ stability of the scheme (4)-(5)-(6) that is

0 ≤ ρ∆(t, x) ≤ R for a.e. (t, x) ∈ Q. (12)

This stability result allows to prove the statement below.

Proposition 3.2. Let q∆ be defined by(6)-(8). Then under the CFL condition(11), for any T> 0, there exists C> 0 only
depending on T, f , F, p, w and R such that:

|q∆|BV([0,T]) ≤ C. (13)

Proof. Let N = ⌊T/∆t⌋ and jw be an integer such that supp(w) ⊂ ∪
jw≤ j≤ jc

K j . Then for anyn = 0, . . . ,N − 1, we have

∣

∣

∣qn+1 − qn
∣

∣

∣ =

∣

∣

∣

∣

∣

∣

∣

∣

p

















∆x
∑

jw≤ j≤ jc

w(x j)ρn+1
j

















− p

















∆x
∑

jw≤ j≤ jc

w(x j)ρn
j

















∣

∣

∣

∣

∣

∣

∣

∣

≤ ∆xLip(p)

∣

∣

∣

∣

∣

∣

∣

∣

∑

jw≤ j≤ jc

w(x j)(ρ
n+1
j − ρn

j )

∣

∣

∣

∣

∣

∣

∣

∣

= ∆t Lip(p)

∣

∣

∣

∣

∣

∣

∣

∣

∑

jw≤ j≤ jc

w(x j)
(

F n
j+1/2 − F

n
j−1/2

)

∣

∣

∣

∣

∣

∣

∣

∣

.

Now, using a summation by part, we have
∑

jw≤ j≤ jc

w(x j)
(

F n
j+1/2 − F

n
j−1/2

)

= w(x jc)F
n
jc+1/2 − w(x jw)F jw−1/2 −

∑

jw≤ j≤ jc−1

(

w(x j+1) − w(x j)
)

F n
j+1/2.

Then, it follows that
|qn+1 − qn| ≤ ∆t Lip(p) ‖w‖L∞(R−;R)

∑

jw−1≤ j≤ jc

|F n
j+1/2|.

Now, from (5), for anyj ∈ Z we have the estimate
∣

∣

∣F n
j+1/2

∣

∣

∣ ≤
∣

∣

∣F(ρn
j , ρ

n
j+1)

∣

∣

∣ ≤
∣

∣

∣F(ρn
j , ρ

n
j+1) − F(ρn

j , ρ
n
j )
∣

∣

∣ +
∣

∣

∣ f (ρn
j )
∣

∣

∣ ≤ Lip(F)
∣

∣

∣ρn
j+1 − ρ

n
j

∣

∣

∣ + Lip( f )
∣

∣

∣ρn
j

∣

∣

∣ ≤ R
(

Lip(F) + Lip( f )
)

.

Hence we deduce that

|q∆|BV([0,T]) =

N−1
∑

n=0

∣

∣

∣qn+1 − qn
∣

∣

∣ ≤ C,

whereC = ( jc − jw + 2)T RLip(p) ‖w‖L∞(R−;R)
(

Lip(F) + Lip( f )
)

.

We are now in a position to prove a convergence result for the scheme (4)-(5)-(6).

Theorem 3.1. Under the CFL condition(11), the constrainted finite volume scheme(4)-(5)-(6) converges inL1(Q) to the
unique entropy solution to(1).

Proof. Let (ρ∆, q∆) be constructed by the scheme (4)-(5)-(6). Proposition 3.2and Helly’s lemma give the existence of a
subsequence, still denotedq∆ and a constraint functionq ∈ L∞([0,T]) such thatq∆ converges toq strongly inL1([0,T])
as∆t → 0. Letρ ∈ L∞(R+ ×R; [0,R]) be the unique entropy solution to (1a)-(1b)-(2) associated toq. It remains to prove
that the subsequenceρ∆ converges toρ strongly inL1(Q) as∆t, ∆x→ 0. The uniqueness of the entropy solution to (1a)-
(1b)-(2) will then imply that the full sequenceρ∆ converges toρ and, as a consequence, the full sequenceq∆ converges to
q = p

(∫

R−
w(x) ρ(t, x) dx

)

.

Let q̂∆ be a piecewise constant approximation ofq such that ˆq∆ converges toq strongly inL1([0,T]). Furthermore, we
also introduce ˆρ∆ constructed by the scheme (4)-(5) and associated to ˆq∆. Now we have

‖ρ − ρ∆‖L1(Q) ≤ ‖ρ − ρ̂∆‖L1(Q) + ‖ρ∆ − ρ̂∆‖L1(Q).

But, thanks to [17, Theorem 4.9], under the CFL condition (11), ‖ρ − ρ̂∆‖L1(Q) tends to 0 as∆t, ∆x → 0. Furthermore,
thanks to Proposition 3.1, we have

‖ρ∆ − ρ̂∆‖L1(Q) ≤ 2 T ‖q∆ − q̂∆‖L1([0,T])

which also shows that‖ρ∆ − ρ̂∆‖L1(Q) tends to 0 as∆t, ∆x→ 0.
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3.3. Validation of the numerical scheme

0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

0.20

0.25

Figure 1: The functions [ρ 7→ f (ρ)] and [ξ 7→ p(ξ)] as in Section 3.3.

We propose here to validate the numerical scheme (4)-(5)-(6) using the Godounov numerical flux (see e.g. [22, 23])
which will be used in the remaining of this paper:

F(a, b) =



















min
[a,b]

f if a ≤ b,

max
[b,a]

f if a > b.

We consider the explicit solution to (1) constructed in [1, Section 6] by applying the wave front tracking algorithm. The
set up for the simulation is as follows. Consider the domain of computation [−6, 1], take a normalized fluxf (ρ) = ρ(1−ρ)
(namely the maximal velocity and the maximal density are assumed to be equal to one) and a linear weight function
w(x) = 2(1+ x) χ[−1,0](x). Assume a uniform distribution of maximal density in [xA, xB] at timet = 0, namely ¯ρ = χ[xA,xB].
The efficiency of the exit,p, see Figure 1, is of the form

p(ξ) =



















p0 if 0 ≤ ξ < ξ1,
p1 if ξ1 ≤ ξ < ξ2,
p2 if ξ2 ≤ ξ ≤ 1.

The explicit solutionρ corresponding to the values

p0 = 0.21, p1 = 0.168, p2 = 0.021, ξ1 ∼ 0.566, xA = −5.75, xB = −2, ξ2 ∼ 0.731,

is represented in Figure 2. The above choices for the fluxf and the efficiencyp ensure that the solution to each Riemann
problem is unique, see [18]. We defer to [1, Section 6] for thedetails of the construction of the solutionρ and its physical
interpretation.
A qualitative comparison between the numerically computedsolutionx 7→ ρ∆(t, x) and the explicitly computed solution
x 7→ ρ(t, x) at different fixed timest is in Figure 3. We observe good agreements betweenx 7→ ρ(t, x) andx 7→ ρ∆(t, x).
The parameters for the numerically computed solution are∆x = 3.5× 10−4 and∆t = 7× 10−5.
A convergence analysis is also performed for this test. We introduce the relativeL1-error for the densityρ, at a given time
tn, defined by

En
L1 =

















∑

j

∣

∣

∣ρ(tn, x j) − ρ
n
j

∣

∣

∣

















/

















∑

j

∣

∣

∣ρ(tn, x j)
∣

∣

∣

















.

In Table 1, we computed the relativeL1-errors for different numbers of space cells at the fixed timet = 10. We deduce
that the order of convergence is approximatively 0.906. As in [17], we observe that the modification (5) of the numerical
flux does not affect the accuracy of the scheme.

4. Numerical simulations

This section is devoted to the phenomenological description of some collective effects in crowd dynamics related to
capacity drop, namely the Braess’ paradox and the Faster Is Slower (FIS) effect.

4.1. Faster is Slower effect

The FIS effect was first described in [13, 24] in the context of the room evacuation problem. The authors studied the
evolution of the evacuation time as a function of the maximalvelocity reached by the pedestrians, and they shown that
there exists an optimal velocity for which the evacuation time attains a minimum. Therefore, any acceleration beyond the
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(a) The solution in the (t, x, ρ)-coordinates. (b) The solution in the (x, t)-coordinates.

(c) The solution in the (t, x, ρ)-coordinates for 0≤ t ≤ 15. (d) The solution in the (t, x, ρ)-coordinates for 85≤ t ≤ 87.5.

Figure 2: Representation of the solution constructed in [1,Section 6] and described in Subsection 3.3.
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Figure 3: With reference to Subsection 3.3: The numericallycomputed solutionx 7→ ρ∆(t, x) and the explicitly computed solutionx 7→ ρ(t, x) at different
fixed timest.
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Number of cells L1-error
625 9.6843× 10−3

1250 6.2514× 10−3

2500 3.4143× 10−3

5000 1.3172× 10−3

10000 1.03× 10−3

20000 4.2544× 10−4

Order 0.906

Table 1: RelativeL1-error at timet = 10.

optimal velocity worses the evacuation time. Following thestudies above, the curve representing the evacuation time as a
function of the average velocity takes a characteristic shape [24, Figure 1c].

The first numerical tests we performed aim to verify if such shape is obtained starting from the ADR model. To this end,
we consider the corridor modeled by the segment [-6,1], withan exit atx = 0. We consider the fluxf (ρ) = ρ vmax(1− ρ)
wherevmax is the maximal velocity of the pedestrians and the maximal density is equal to one. We use the same weight
function as for the validation of the scheme,w(x) = 2(1+ x)χ[−1,0](x) and, the same initial density, ¯ρ = χ[−5.75,−2]. The
efficiency of the exitp is now given by the following continuous function

p(ξ) =







































p0 if 0 ≤ ξ < ξ1,

(p0 − p1)ξ + p1ξ1 − p0ξ2

ξ1 − ξ2
if ξ1 ≤ ξ < ξ2,

p1 if ξ2 ≤ ξ ≤ 1,

(14)

where

p0 = 0.24, p1 = 0.05, ξ1 = 0.5, ξ2 = 0.9.

The space and time steps are fixed to∆x = 5× 10−3 and∆t = 5× 10−4. In Figure 4 are plotted the fluxf corresponding
to the maximal velocityvmax = 1 and the above efficiency of the exit.
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Figure 4: The normalized fluxρ→ f (ρ) and the constraintξ → p(ξ) defined in (14).

Figure 5 represents the evacuation time as a function of the maximal velocityvmax, asvmax varies in the interval [0.1, 5].
As we can observe, the general shape described above is recovered. The numerical minimal evacuation time is 19.007
and is obtained forvmax = 1.

In addition, we reported in Figure 6 the density at the exit asa function of time for different values of the maximal
velocityvmax around the optimal one. We notice that the maximal density atthe exit and the time length where the density
is maximal increase with the velocity. This expresses the jamming at the exit that leads to the FIS effect.

Then we performed some series of tests to see how the general shape obtained in Figure 5 changes with respect to
variations of the parameters of the model. In Figure 8 (a), weshow this variation when we consider different initial
densities, namely, ¯ρ, ρ̄1 andρ̄2 with ρ̄1(x) = 0.8χ[−5.75,−2] andρ̄2(x) = 0.6χ[−5.75,−2]. The general shape of the curves is
conserved. We observe that the evacuation time increases with the initial amount of pedestrians while the optimal velocity
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Figure 5: With reference to Subsection 4.1: Evacuation timeas a function of the velocityvmax.
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Figure 6: With reference to Subsection 4.1: Densities at theexit as a function of time for different velocities.

decreases as the initial amount of pedestrians increases. The minimal evacuation time and the corresponding optimal
maximal velocity are 12.259 and 1.07 for ρ̄2 and 15.691 and 1.03 for ρ̄1.

Next we explore the case where the efficiency of the exit varies. We consider the functionp defined in (14) and the
modificationpβ such thatpβ(ξ) = p(βξ). In Figure 7, we plotted the functionsp, pβ for β = 0.8 andβ = 0.9. Then,
in Figure 8 (b) are plotted the evacuation time curves corresponding to these three efficiencies of the exit. As minimum
evacuation times, we obtain 18.586 and 18.827 forβ = 0.8, 0.9 respectively. As expected, the minimal evacuation time
increases with lower efficiency of the exit. The corresponding velocities are approximatively 1.06 and 1.02 respectively.

Finally, we change the location of the initial density. In addition to the corridor [−6, 1], we consider two other corridors
modeled by the segments [−12, 1] and [−20, 1]. In these two corridors we take as initial densities ¯ρ3(x) = χ[−11.75,−8] and
ρ̄4(x) = χ[−19.75,−16] respectively. We have reported the obtained evacuation time curves in Figure 8 (c). As expected, the
minimal evacuation time increases with the distance between the exit and the initial density location.

4.2. Braess’ paradox

The presence of obstacles, such as columns upstream from theexit, may prevent the crowd density from reaching
dangerous values and may actually help to minimize the evacuation time, since in a moderate density regime the full
capacity of the exit can be exploited. From a microscopic point of view, the decrease of the evacuation time may seem
unexpected, as some of the pedestrians are forced to chose a longer path to reach the exit.

The ADR model is able to reproduce the Braess’ paradox for pedestrians, as we show in the following simulations. We
consider, as in the previous subsection, the corridor modeled by the segment [−6, 1] with an exit atx = 0. We compute
the solution corresponding to the fluxf (ρ) = ρ(1− ρ), the initial density ¯ρ(x) = χ[−5.75,−2](x), the efficiency of the exitp
of the form (14) with the parameters

p0 = 0.21, p1 = 0.1, ξ1 = 0.566, ξ2 = 0.731
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and the same weight functionw(x) = 2(1 + x)χ[−1,0](x). The space and time steps are fixed to∆x = 5 × 10−3 and
∆t = 5× 10−4. Without any obstacle, the numerical evacuation time is 29.496. In these following simulations we place an
obstacle atx = d, with −2 < d < 0. The obstacle reduces the capacity of the corridor and can be seen as a door, which we
assume larger than the one atx = 0. Following these ideas we define an efficiency functionpd(ξ) = 1.15p(ξ) and a weight
functionwd(x) = 2(x− d+ 1)χ[d−1,d](x) associated to the obstacle.

In Figure 9 we have reported the evolution of the evacuation time when the position of the obstacle varies in the interval
[−1.9,−0.01] with a step of 0.01. We observe that for−1.8 ≤ d ≤ −1.72, the evacuation time is lower than in the absence
of the obstacle. The optimal position of the obstacle is obtained ford = −1.72 and the corresponding evacuation time
is 24.246. We compare in Figure 10 five snapshots of the solution without obstacle and the solutions with an obstacle
placed atd = −1.72 andd = −1.85. This latter location corresponds to a case where the evacuation time is greater than
the one without an obstacle. In these snapshots, we see that the obstacle placed atd = −1.85 becomes congested very
soon. This is due to the fact that the obstacle is too close to the location of the initial density. When the obstacle is placed
at d = −1.72, it delays the congestion at the exit.

4.3. Zone of low velocity

In this section, we perform a series of simulations where theobstacle introduced in Subsection 4.2 is now replaced by
a zone where the velocity of pedestrians is lower than elsewhere in the domain. The effect we want to observe here is
similar to the one we see in Braess’ Paradox. Namely we prevent an high concentration of pedestrians in front of the
exit by constraining their flow in an upstream portion of the corridor. In this case however the constraint is local, as the
maximal value allowed for the flow only depends on the position in the corridor.

We consider again the corridor modeled by the segment [−6, 1] with an exit atx = 0. The efficiency of the exit and the
initial density are the same as in the previous subsection. Assume that the slow zone is of size one and is centred atx = d,
where−1.9 ≤ d ≤ 0. Define the following function

k(x) =



















































1 if x ≤ d− 0.5,

−2(x− d) if d− 0.5 ≤ x ≤ d,

2(x− d) if d ≤ x ≤ d+ 0.5,

1 if x ≥ d+ 0.5,

(15)

and the following velocityv(x, ρ) = [λ + (1− λ) k(x)] vmax(1− ρ), whereλ ∈ [0, 1] andvmax ≥ 1 is the maximal velocity.
With such velocity, the maximal velocity of pedestrians decreases in the interval [d − 0.5, d], reaching its minimal value
λ vmax at x = d. Then the velocity increases in the interval [d, d+ 0.5] reaching the maximum valuevmax, that corresponds
to the maximal velocity away from the slow zone. Finally we consider the fluxf (x, ρ) = ρ v(x, ρ) and the space and time
steps are fixed to∆x = 5× 10−3 and∆t = 5× 10−4.
Figure 11 (a) shows the evolution of the evacuation time as a function of the parameterλ varying in the interval [0.1, 1]
when the center of the slow zone is fixed atd = −1.5. We observe that the optimal minimal velocity in the slow zone is
for λ = 0.88 and the corresponding evacuation time is 20.945. Recalling that without the slow zone the evacuation time is
29.496, we see that the introduction of the slow zone allows to reduce the evacuation time. In Figure 11 (b), we show the
evolution of the evacuation time when varying the center of the slow zoned in the interval [−1.9, 0] and when the minimal
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(b) Evacuation time as a function ofvmax for different efficiencies of the
exit.
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Figure 8: With reference to Subsection 4.1: Evacuation timeas a function ofvmax for different parameters of the model.

and the maximal velocities are fixed and correspond toλ = 0.88 andvmax = 1. We observe here that, unlike in the Braess
paradox tests case, the evacuation time does not depend on the location of the slow zone, except when this latter is close
enough to the exit. Indeed, when the slow zone gets too close to the exit, the evacuation time grows. This is due to the
fact that pedestrians do not have time to speed up before reaching the exit.

Fix now d = −1.5 andλ = 0.88 and assume thatvmax varies in the interval [0.1, 5]. The evolution of the evacuation
time as a function ofvmax is reported in Figure 11 (c). We observe that we get the characteristic shape already obtained in
the FIS effect.

Finally we present in Figure 12 five snapshots for three different solutions. The first two solutions are the ones computed
in Subsection 4.2, without obstacle and with an obstacle located atd = −1.72 respectively. The third solution is computed
with a zone of low velocity centered atd = −1.72,λ = 0.88 andvmax = 1. In order to have a good resolution of this third
solution, the space and time steps where fixed to∆x = 3.5× 10−4 and∆t = 7× 10−5.We note that in the case where a zone
of low velocity is placed in the domain, we do not see the capacity drop, as the density of pedestrians never attains very
high values in the region next to the exit.

5. Conclusions

Qualitative features that are characteristic of pedestrians’ macroscopic behaviour at bottlenecks (Faster is Slower,
Braess’ paradox) are reproduced in the setting of the simplescalar model with non-local point constraint introduced in[1].
These effects are shown to be persistent for large intervals of valuesof parameters. The validation is done by means of a
simple and robust time-explicit splitting finite volume scheme which is proved to be convergent, with experimental rate
close to one.

The results presented in this paper allow to consider more complex models. Indeed, as ADR is a first order model,
it is not able to capture more complicated effects related to crowd dynamics. Typically, ADR fails to reproduce the
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Figure 9: With reference to Subsection 4.2: Evacuation timeas a function of the position of the obstacle.

amplification of small perturbations. This leads to consider second order model such as the model proposed by Aw,
Rascle and Zhang [25, 26] in the framework of vehicular traffic.

Another extension of this work is to consider the ADR model with constraints that are non-local in time. Such con-
straints allow to tackle optimal management problems in thespirit of [27, 28].

Finally, this work can also be extended to two-dimensional models where experimental validations may be possible.
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Figure 10: With reference to Subsection 4.2: Braess paradoxsimulations: density profiles at timest = 1 (first line), t = 7 (second line),t = 15 (third
line), t = 19 (fourth line) andt = 24.246 (last line).
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Figure 11: With reference to Subection 4.3: Evacuation timeas a function of different parameters of the model.
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Figure 12: With reference to Subsection 4.3: Braess’ paradox and zone of low velocity simulations: density profiles at timest = 1 (first line), t = 7
(second line),t = 15 (third line),t = 19 (fourth line) andt = 20.945 (last line).
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