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Abstract

In this paper we focus on the construction of numerical schemes for nonlinear
Fokker-Planck equations that preserve the structural properties, like non negativity
of the solution, entropy dissipation and large time behavior. The methods here
developed are second order accurate, they do not require any restriction on the
mesh size and are capable to capture the asymptotic steady states with arbitrary
accuracy. These properties are essential for a correct description of the underlying
physical problem. Applications of the schemes to several nonlinear Fokker-Planck
equations with nonlocal terms describing emerging collective behavior in socio-
economic and life sciences are presented.
Keywords: structure preserving methods, finite difference schemes, Fokker-Planck
equations, emerging collective behavior.

1 Introduction
In this paper we construct and discuss a steady-state preserving method for a wide class
of nonlinear Fokker-Planck equations of the form{

∂t f (w, t) = ∇w ·
[
B[ f ](w, t) f (w, t)+∇w(D(w) f (w, t))

]
,

f (w,0) = f0(w),
(1)

where t ≥ 0, w ∈ Ω ⊆ Rd , d ≥ 1, f (w, t) ≥ 0 is the unknown distribution function,
B[·] is a bounded operator which describes aggregation dynamics and D(·) ≥ 0 is a
diffusion function.

A typical example is given by mean-field models of collective behavior where the
nonlocal operator B[·] has the form

B[ f ](w, t) = S(w)+
∫
Rd

P(w,w∗)(w−w∗) f (w∗, t)dw∗, (2)
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with P : Rd×d → R+ and S : Rd → Rd . With the choice (2) equation (1) describes
typical features of the collective behavior in multiagent systems with nonlocal type
interactions. These models of collective behavior has been extensively discussed in
the last decades at the particle, kinetic and hydrodynamic level [2, 3, 4, 5, 11, 12, 13,
17, 19, 30]. In particular, many heterogeneous phenomena like swarming behaviors,
human crowds motion and formation of wealth distributions are described by these type
of PDEs under special assumptions. We refer to [26, 27], and the references therein,
for a recent overview of such models.

In the following, we focus on the construction of numerical methods for such prob-
lems which are able to preserve the structural properties of the PDE, like non negativity
of the solution, entropy dissipation and large time behavior. The methods here devel-
oped are second order accurate, they do not require any restriction on the mesh size
and are capable to capture the asymptotic steady states with arbitrary accuracy. These
properties are essential for a correct description of the underlying physical problem.

The derivation of the schemes follows the main lines of the seminal work of Chang–
Cooper for the linear Fokker-Planck equation [9, 16, 25, 29]. However, in the nonlinear
case, the exact stationary solution is unknown and a more advanced treatment is needed
in order to find a good approximation to the problem. Similar approaches for nonlinear
Fokker-Planck equations were previously derived in [8, 24]. Related methods for the
case of nonlinear degenerate diffusions equations were proposed in [6, 15] and with
nonlocal terms in [10, 11]. We refer also to [1] for the development of methods based
on stochastic approximations and to [21] for a recent survey on schemes which preserve
steady states of balance laws and related problems.

Although we derive the schemes in the case of Fokker-Planck equations, the meth-
ods can be easily applied to more general problems where the solution depends on ad-
ditional parameters and the PDE is of Vlasov-Fokker-Planck type. In this case, preser-
vation of the steady states is of fundamental importance in order to develop asymptotic-
preserving methods [18].

The rest of the paper is organized as follows. In the next Section we first derive the
Chang-Cooper type schemes in one-dimension with a particular attention to the steady
state preserving properties. We then prove non negativity of solutions for explicit and
semi-implicit schemes and entropy inequality for a class of one dimensional Fokker-
Planck models. In Section 3 we introduce a modification of the schemes based on a
more general entropy dissipation principle. We show that these entropic schemes pre-
serve stationary solutions and derive sufficient conditions for non negativity of explicit
and semi-implicit schemes. Several applications of the schemes are finally presented
in Section 4 for various nonlinear Fokker-Planck problems describing collective be-
haviors in socio-economic and life sciences. Some conclusions are reported at the
end of the manuscript. Extension to high order semi-implicit methods and the multi-
dimensional case are considered in separate appendices.

2 Chang-Cooper type schemes
In the following we focus on the design of numerical schemes for (1) which we rewrite
in divergence form as

∂t f (w, t) = ∇w · [(B[ f ](w, t)+∇wD(w)) f (w, t)+D(w)∇w f (w, t)]. (3)

We can define the d-dimensional flux

F [ f ](w, t) = (B[ f ](w, t)+∇wD(w)) f (w, t)+D(w)∇w f (w, t),
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therefore (3) reads
∂t f (w, t) = ∇w ·F (w, t). (4)

2.1 Derivation of the schemes
In the one-dimensional case d = 1 equation (4) becomes

∂t f (w, t) = ∂wF [ f ](w, t), w ∈Ω⊆ R, (5)

where now

F [ f ](w, t) = (B[ f ](w, t)+D′(w)) f (w, t)+D(w)∂w f (w, t) (6)

using the compact notation D′(w) = ∂wD(w). Typically, when Ω is a finite size set the
problem is complemented with no-flux boundary conditions at the extremal points. In
the sequel we assume D(w)≥ α > 0 in the internal points of Ω.

We introduce an uniform spatial grid wi ∈Ω, such that wi+1−wi = ∆w. We denote
as usual wi±1/2 = wi±∆w/2 and consider the conservative discretization

d
dt

fi(t) =
Fi+1/2(t)−Fi−1/2(t)

∆w
, (7)

where for each t ≥ 0, fi(t) is an approximation of f (wi, t) and Fi±1/2[ f ](t) is the
numerical flux function characterizing the discretization.

Let us set C [ f ](w, t)=B[ f ](w, t)+D′(w) and adopt the notations Di+1/2 =D(wi+1/2),
D′i+1/2 = D′(wi+1/2). We will consider a general flux function which is combination of
the grid points i+1 and i

Fi+1/2 = C̃i+1/2 f̃i+1/2 +Di+1/2
fi+1− fi

∆w
, (8)

where
f̃i+1/2 = (1−δi+1/2) fi+1 +δi+1/2 fi. (9)

Here, we aim at deriving suitable expressions for δi+1/2 and C̃i+1/2 in such a way that
the method yields nonnegative solutions, without restriction on ∆w, and preserves the
steady state of the system with arbitrary order of accuracy.

For example, the standard approach based on central difference is obtained by con-
sidering for all i the quantities

δi+1/2 = 1/2, C̃i+1/2 = C [ f ](wi+1/2, t).

It is well-known, however, that such a discretization method is subject to restrictive
conditions over the mesh size ∆w in order to keep non negativity of the solution.

First, observe that when the numerical flux vanishes from (8) we get

fi+1

fi
=
−δi+1/2C̃i+1/2 +

Di+1/2

∆w

(1−δi+1/2)C̃i+1/2 +
Di+1/2

∆w

.

Similarly, if we consider the analytical flux imposing F [ f ](w, t)≡ 0, we have

D(w)∂w f (w, t) =−(B[ f ](w, t)+D′(w)) f (w, t), (10)
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which is in general not solvable, except in some special cases due to the nonlinear-
ity on the right hand side. We may overcome this difficulty in the quasi steady-state
approximation integrating equation (10) on the cell [wi,wi+1]∫ wi+1

wi

1
f (w, t)

∂w f (w, t)dw =−
∫ wi+1

wi

1
D(w)

(B[ f ](w, t)+D′(w))dw,

which gives

f (wi+1, t)
f (wi, t)

= exp
{
−
∫ wi+1

wi

1
D(w)

(B[ f ](w, t)+D′(w))dw
}
. (11)

The terminology quasi steady-state was introduced originally by Chang and Cooper in
[16], the ”quasi” coming from the fact that, with general time-dependent coefficients,
no time-stabilization can be expected.

Now, by equating the ratio fi+1/ fi and f (wi+1, t)/ f (wi, t) of the numerical and
exact flux, and setting

C̃i+1/2 =
Di+1/2

∆w

∫ wi+1

wi

B[ f ](w, t)+D′(w)
D(w)

dw (12)

we recover
δi+1/2 =

1
λi+1/2

+
1

1− exp(λi+1/2)
, (13)

where

λi+1/2 =
∫ wi+1

wi

B[ f ](w, t)+D′(w)
D(w)

dw =
∆w C̃i+1/2

Di+1/2
. (14)

We can state the following

Proposition 1. The numerical flux function (8)-(9) with C̃i+1/2 and δi+1/2 defined by
(12) and (13)-(14) vanishes when the corresponding flux (6) is equal to zero over the
cell [wi,wi+1]. Moreover the nonlinear weight functions δi+1/2 defined by (13)-(14) are
such that δi+1/2 ∈ (0,1).

The latter result follows from the simple inequality exp(x)≥ 1+x. We refer to this
type of schemes as structure preserving Chang-Cooper (SP-CC) type schemes.

By discretizing (14) through the midpoint rule∫ wi+1

wi

B[ f ](w, t)+D′(w)
D(w)

dw =
∆w(Bi+1/2 +D′i+1/2)

Di+1/2
+O(∆w3),

we obtain the second order method defined by

λ
mid
i+1/2 =

∆w(Bi+1/2 +D′i+1/2)

Di+1/2
(15)

and

δ
mid
i+1/2 =

Di+1/2

∆w(Bi+1/2 +D′i+1/2)
+

1
1− exp(λ mid

i+1/2)
. (16)

Higher order accuracy of the steady state solution can be obtained using suitable higher
order quadrature formulas for the integral (12). We refer to Section 4 for examples
and more details. For linear problems of the form B[ f ](w, t) = B(w) with constant
diffusion D′= 0, the above scheme (15)-(16) is usually referred to as the Chang-Cooper
method [16, 25]. In particular, if B(w) is a first order polynomial in w as in [9] the
midpoint rule is equivalent to the exact evaluation of the integral (12).
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Table 1: Different expressions of the weights in (9)

Scheme δi+1/2 λi+1/2

SP-CC
1

λi+1/2
+

1
1− exp(λi+1/2)

∫ wi+1

wi

B[ f ](w, t)+D′(w)
D(w)

dw

SP-CC2 (midpoint)
1

λi+1/2
+

1
1− exp(λi+1/2)

∆w(Bi+1/2 +D′i+1/2)

Di+1/2

SP-CCE (exact)
1

log( f ∞
i )− log( f ∞

i+1)
+

f ∞
i+1

f ∞
i+1− f ∞

i
log
(

f ∞
i

f ∞
i+1

)

Remark 1.

• If we consider the limit case Di+1/2→ 0, D′i+1/2→ 0 in (15)-(16) we obtain the
weights

δi+1/2 =

{
0, Bi+1/2 > 0,
1, Bi+1/2 < 0

and the scheme locally reduces to a first order upwind scheme for the corre-
sponding continuity equation.

• For linear problems of the form B[ f ](w, t) = B(w) the exact stationary state
f ∞(w) can be directly computed from the solution of

D(w)∂w f ∞(w) =−(B(w)+D′(w)) f ∞(w), (17)

together with the boundary conditions. Explicit examples of stationary states
will be reported in Section 4.

Using the knowledge of the stationary state we have

f ∞
i+1

f ∞
i

= exp
{
−
∫ wi+1

wi

1
D(w)

(B(w)+D′(w))dw
}
= exp

(
−λ

∞

i+1/2

)
, (18)

therefore

λ
∞

i+1/2 = log
(

f ∞
i

f ∞
i+1

)
(19)

and

δ
∞

i+1/2 =
1

log( f ∞
i )− log( f ∞

i+1)
+

f ∞
i+1

f ∞
i+1− f ∞

i
. (20)

In this case, the numerical scheme preserves the steady state exactly. Finally, in
Table 1 we summarize the different expressions of the weight functions.
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2.2 Main properties
In order to study the structural properties of the numerical schemes, like conservations,
non negativity and entropy property, we restrict to the one-dimensional case. To start
with we consider the following simple result.

Lemma 1. Let us consider the scheme (7)-(8) for i = 0, . . . ,N with no flux boundary
conditions FN+1/2 = F−1/2 = 0. We have

N

∑
i=0

d
dt

fi(t) = 0, ∀ t > 0.

The proof is a simple consequence of the telescopic summation property and the
no flux boundary conditions.

2.2.1 Positivity preservation

Concerning non negativity, first we prove a result for the explicit scheme. We introduce
a time discretization tn = n∆t with ∆t > 0 and n = 0, . . . ,T and consider the simple
forward Euler method

f n+1
i = f n

i +∆t
F n

i+1/2−F n
i−1/2

∆w
. (21)

Proposition 2. Under the time step restriction

∆t ≤ ∆w2

2(M∆w+D)
, M = max

i
|C̃ n

i+1/2|, D = max
i

Di+1/2, (22)

the explicit scheme (21) with flux defined by (13)-(14) preserves nonnegativity, i.e
f n+1
i ≥ 0 if f n

i ≥ 0, i = 0, . . . ,N.

Proof. The scheme reads

f n+1
i = f n

i +
∆t
∆w

[(
(1−δ

n
i+1/2)C̃

n
i+1/2 +

Di+1/2

∆w

)
f n
i+1

+

(
C̃ n

i+1/2δ
n
i+1/2− C̃ n

i−1/2(1−δ
n
i−1/2)−

1
∆w

(Di+1/2 +Di−1/2)

)
f n
i

−
(

C̃ n
i−1/2δ

n
i−1/2−

Di−1/2

∆w

)
f n
i−1

]
.

(23)

From (23) we have a convex combination if the coefficients of f n
i+1 and f n

i−1 satisfy

(1−δi+1/2)C̃
n
i+1/2 +

Di+1/2

∆w
≥ 0, −δi−1/2C̃

n
i−1/2 +

Di−1/2

∆w
≥ 0,

or equivalently

λi+1/2

(
1− 1

1− exp(λi+1/2)

)
≥ 0,

λi−1/2

exp(λi−1/2)−1
≥ 0,
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which holds true thanks to the properties of the exponential function. In order to ensure
the non negativity of the scheme the time step should satisfy the restriction ∆t ≤ ∆w/ν ,
with

ν = max
0≤i≤N

{
− C̃ n

i+1/2δ
n
i+1/2 + C̃ n

i−1/2(1−δ
n
i−1/2)+

Di+1/2 +Di−1/2

∆w

}
.

Being M and D defined in (22), and 0≤ δi±1/2≤ 1, we obtain the prescribed bound.

Remark 2. Higher order SSP methods [22] are obtained by considering a convex com-
bination of forward Euler methods. Therefore, the non negativity result can be extended
to general SSP methods.

In practical applications, it is desirable to avoid the parabolic restriction ∆t =
O(∆w2) of explicit schemes. Unfortunately, fully implicit methods originate a non-
linear system of equations due to the nonlinearity of B[ f ] and the dependence of the
weights δi±1/2 from the solution. However, we can prove that nonnegativity of the
solution holds true also for the semi-implicit case

f n+1
i = f n

i +∆t
F̂ n+1

i+1/2− F̂ n+1
i−1/2

∆w
, (24)

where

F̂ n+1
i+1/2 = C̃ n

i+1/2

[
(1−δ

n
i+1/2) f n+1

i+1 +δ
n
i+1/2 f n+1

i

]
+Di+1/2

f n+1
i+1 − f n+1

i

∆w
. (25)

We have

Proposition 3. Under the time step restriction

∆t <
∆w
2M

, M = max
i
|C̃ n

i+1/2| (26)

the semi-implicit scheme (24) preserves nonnegativity, i.e f n+1
i ≥ 0 if f n

i ≥ 0, i =
0, . . . ,N.

Proof. Equation (24) corresponds to

f n+1
i

{
1− ∆t

∆w

[
C̃ n

i+1/2δ
n
i+1/2− C̃ n

i−1/2(1−δ
n
i−1/2)−

1
∆w

(Di+1/2 +Di−1/2)

]}
+ f n+1

i+1

{
− ∆t

∆w

[
(1−δ

n
i+1/2)C̃

n
i+1/2 +

Di+1/2

∆w

]}
+ f n+1

i−1

{
− ∆t

∆w

[
−C̃ n

i−1/2δ
n
i−1/2 +

Di−1/2

∆w

]}
= f n

i

thanks to the definition of the flux function introduced in (8)-(9). Using the indentity
λ n

i+1/2 = ∆wC̃ n
i+1/2/Di+1/2 we obtain

f n+1
i

{
1+

∆t
∆w2

[
Di+1/2

λ n
i+1/2

exp(λ n
i+1/2)−1

+Di−1/2

λ n
i−1/2

exp(λ n
i−1/2)−1

exp(λ n
i−1/2)

]}

+ f n+1
i+1

{
− ∆t

∆w2 Di+1/2

λ n
i+1/2

exp(λ n
i+1/2)−1

exp(λ n
i+1/2)

}

+ f n
i−1

{
− ∆t

∆w2 Di−1/2

λ n
i−1/2

exp(λ n
i−1/2)−1

}
= f n

i .
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Let us denote αn
i+1/2 =

λ n
i+1/2

exp(λ n
i+1/2)−1

≥ 0 and

Rn
i = 1+

∆t
∆w2

[
Di+1/2α

n
i+1/2 +Di−1/2α

n
i−1/2 exp(λ n

i−1/2)
]

Qn
i =−

∆t
∆w2 Di+1/2α

n
i+1/2 exp(λ n

i+1/2)

Pn
i =− ∆t

∆w2 Di−1/2α
n
i−1/2,

(27)

we can write
Rn

i f n+1
i −Qn

i f n+1
i+1 −Pn

i f n+1
i−1 = f n

i . (28)

If we introduce the matrix

(A [ f n])i j =


Rn

i , j = i
−Qn

i , j = i+1, 0≤ i≤ N−1
−Pn

i , j = i−1, 1≤ i≤ N,

(29)

with Rn
i > 0, Qn

i ≥ 0, Pn
i ≥ 0 defined in (27) the semi-implicit scheme may be expressed

in matrix form as follows
A [fn]fn+1 = fn, (30)

with fn =
(

f n
0 , . . . , f n

N
)
. Since fn ≥ 0, in order to prove that fn+1 ≥ 0 it is sufficient to

show A [ f n]−1 ≥ 0. Now, A [·] is a tridiagonal matrix with positive diagonal elements
and if A is strictly diagonally dominant we can conclude that A −1 ≥ 0.

The matrix A is strictly diagonally dominant if and only if

|Rn
i |> |Qn

i |+ |Pn
i |, i = 0,1 . . . ,N,

condition which holds true if

1 >
∆t

∆w2

[
Di+1/2α

n
i+1/2

(
exp(λ n

i+1/2)−1
)
−Di−1/2α

n
i−1/2

(
exp(λ n

i−1/2)−1
)]

=
∆t

∆w2

[
Di+1/2λ

n
i+1/2−Di−1/2λ

n
i−1/2

]
=

∆t
∆w

[
C̃ n

i+1/2− C̃ n
i−1/2

]
.

Remark 3.

• Higher order semi-implicit approximations can be constructed following [7]. An
example of second order semi-implicit IMEX scheme is given in Appendix A.
We mention also [25] where a second order semi-implicit BDF method has been
considered. Note, however, that the determination of nonnegative semi-implicit
schemes with optimal stability regions is an open problem which goes beyond
the purpose of the present manuscript.

• Although fully implicit schemes originate a nonlinear system of equations, we
remark that the same argument used in Proposition 3 permits to prove nonnega-
tivity of the scheme even with the fully implicit fluxes

F n+1
i+1/2 = C̃ n+1

i+1/2

[
(1−δ

n+1
i+1/2) f n+1

i+1 +δi+1/2 f n+1
i

]
+Di+1/2

f n+1
i+1 − f n+1

i

∆w
, (31)

8



with
∆t <

∆w
2M

, M = max
0≤i≤N

|C̃ n+1
i+1/2|. (32)

In fact, we obtain the nonlinear system

A [fn+1]fn+1 = fn, (33)

where the matrix A [fn+1] has the same structure (29) with the entries evaluated
at time n+1. The above system can be solved iteratively at each time step

fn+1
0 = fn,

fn+1
k+1 = A −1[fn+1

k ]fn, k = 0,1, . . .
(34)

where now each iteration step is explicit and can be made non negative under
a stability restriction analogous to (26). Therefore, if fn+1

k → fn+1 as k→+∞

we can infer the nonnegativity of the scheme under the condition (32), being
A [fn+1] ≥ 0 strictly diagonally dominant and then A [fn+1]−1 ≥ 0. In general,
the convergence properties of the above iterative method depend on the nonlinear
flux function B[ f ] which defines the coefficients in A [f]. For example, since by
nonnegativity and mass conservation ‖ f n+1

k+1 ‖1 = ‖ f n+1
k ‖1, k ≥ 0, where ‖ · ‖1

denotes the discrete L1 norm, convergence is guaranteed for any choice of the
initial value f n+1

0 if A −1[·]fn is a contraction [23].

2.2.2 Relative entropy dissipation

In order to discuss the entropy property we consider the prototype equation

∂t f (w, t) = ∂w [(w−u) f (w, t)+∂w(D(w) f (w, t))] , w ∈ I = [−1,1], (35)

with −1 < u < 1 a given constant and boundary conditions

∂w(D(w) f (w, t))+(w−u) f (w, t) = 0, w =±1. (36)

If the stationary state f ∞ exists equation (35) may be written in the Landau form as

∂t f (w, t) = ∂w

[
D(w) f (w, t)∂w log

(
f (w, t)
f ∞(w)

)]
, (37)

or in the non logarithmic Landau form as

∂t f (w, t) = ∂w

[
D(w) f ∞(w)∂w

(
f (w, t)
f ∞(w)

)]
. (38)

We define the relative entropy for all positive functions f (w, t),g(w, t) as follows

H ( f ,g) =
∫

I
f (w, t) log

(
f (w, t)
g(w, t)

)
, (39)

we have [20]
d
dt

H ( f , f ∞) =−ID( f , f ∞), (40)

9



where the dissipation functional ID(·, ·) is defined as

ID( f , f ∞) =
∫

I
D(w) f (w, t)

(
∂w log

(
f (w, t)
f ∞(w)

))2

dw,

=
∫

I
D(w) f ∞(w, t)∂w log

(
f (w, t)
f ∞(w)

)
∂w

(
f

f ∞

)
dw.

(41)

Of course we might consider other entropies like the L2 entropy which is defined as

L2( f , f ∞) =
∫

I

( f (w, t)− f ∞(w))2

f ∞(w)
dw,

d
dt

L2( f , f ∞) =−JD( f , f ∞),

(42)

with

JD( f , f ∞) = 2
∫

I
D(w) f ∞

(
∂w

(
f (w, t)
f ∞(w)

)2
)
, (43)

see [20] for further examples.
Note that, since the definition of relative entropy implies the existence of a steady

state f ∞ then the considerations of the second part of Remark 1 apply. Therefore, the
weights in the Chang-Cooper type method can be evaluated exactly and are given by
(19)-(20). This property is used to prove the following results.

Lemma 2. In the case B[ f ](w, t) = B(w) the numerical flux function (8)-(9) with
C̃i+1/2 and δi+1/2 given by (12)-(13) can be written in the form (38) and reads

F n
i+1/2 =

Di+1/2

∆w
f̂ ∞

i+1/2

(
f n
i+1

f ∞
i+1
−

f n
i

f ∞
i

)
, (44)

with

f̂ ∞

i+1/2 =
f ∞
i+1 f ∞

i

f ∞
i+1− f ∞

i
log
(

f ∞
i+1

f ∞
i

)
.

Proof. In the hypothesis B[ f ](w, t) = B(w) the definition of λi+1/2 does not depends
on time, i.e. λi+1/2 = λ ∞

i+1/2 and if a steady state exists we may write

log f ∞
i − log f ∞

i+1 = λi+1/2.

Furthermore, the flux function F n
i+1/2 assumes the following form

F n
i+1/2 =

Di+1/2

∆w

[
λi+1/2 f̃ n

i+1/2 +( f n
i+1− f n

i )
]

=
Di+1/2

∆w

[
λi+1/2( f n

i+1 +δi+1/2( f n
i − f n

i+1))+( f n
i+1− f n

i )
]
,

(45)

where

δi+1/2 =
1

log f ∞
i − log f ∞

i+1
+

f ∞
i+1

f ∞
i+1− f ∞

i
. (46)
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Hence we have

F n
i+1/2 =

Di+1/2

∆w
log
(

f ∞
i

f ∞
i+1

)[
fi+1 +

(
fi− fi+1

log f ∞
i − log f ∞

i+1
+

f ∞
i+1( fi− fi+1)

f ∞
i+1− f ∞

i

)
+

fi+1− fi

log f ∞
i − log f ∞

i+1

]
,

=
Di+1/2

∆w
log
(

f ∞
i

f ∞
i+1

)(
f ∞
i+1 fi− f ∞

i fi+1

f ∞
i+1− f ∞

i

) (47)

which gives (44).

Theorem 1. Let us consider B[ f ](w, t) = w− u as in equation (35). The numeri-
cal flux (8)-(9) with C̃i+1/2 and δi+1/2 given by (12)-(13) satisfies the discrete entropy
dissipation

d
dt

H∆( f , f ∞) =−I∆( f , f ∞), (48)

where

H∆w( f , f ∞) = ∆w
N

∑
i=0

fi log
(

fi

f ∞
i

)
(49)

and I∆ is the positive discrete dissipation function

I∆( f , f ∞) =
N

∑
i=0

[
log
(

fi+1

f ∞
i+1

)
− log

(
fi

f ∞
i

)]
·
(

fi+1

f ∞
i+1
− fi

f ∞
i

)
f̂ ∞

i+1/2Di+1/2 ≥ 0. (50)

Proof. From the definition of relative entropy we have

d
dt

H ( f , f ∞) = ∆w
N

∑
i=0

d fi

dt

(
log
(

fi

f ∞
i

)
+1
)

= ∆w
N

∑
i=0

(
log
(

fi

f ∞
i

)
+1
)
(Fi+1/2−Fi−1/2),

and after summation by parts we get

d
dt

H ( f , f ∞) =−∆w
N

∑
i=0

[
log
(

fi+1

f ∞
i+1

)
− log

(
fi

f ∞
i

)]
Fi+1/2. (51)

Thanks to the identity of Lemma 2 we may conclude since the function (x−y) log(x/y)
is non-negative for all x,y≥ 0.

3 Entropic schemes for gradient flow problems
In this section we introduce a second class of structure preserving numerical scheme
based on the entropy dissipation principle. To this aim, let us consider the general class
of nonlinear Fokker-Planck equation with gradient flow structure [5, 11, 14]

∂t f (w, t) = ∇w · [ f (w, t)∇wξ (w, t)], w ∈Ω⊆ Rd , (52)

and no-flux boundary conditions. In the case of equation (1) with constant diffusion D
we have

∇wξ (w, t) = B[ f ](w, t)+D∇w log f (w, t). (53)
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We focus on the following prototype of function ξ (w, t), w ∈ Rd

ξ = (U ∗ f )(w, t)+D log f (w, t), (54)

which in our case corresponds to

B[ f ](w, t) = ∇w(U ∗ f )(w, t),

with U =U(|w|) an interaction potential.
The corresponding free energy is given by

E (t) =
1
2

∫
Rd
(U ∗ f )(w, t) f (w, t)dw+D

∫
Rd

log f (w, t) f (w, t)dw. (55)

Using the fact that U is an even function we can write

d
dt

E (t) =
∫
Rd

∂t f (w, t)dw+
∫
Rd
((U ∗ f )(w, t)+D log f (w, t))∂t f (w, t)dw

=
∫
Rd

∇w · [ f (w, t)∇wξ (w, t)](1+ξ )dw.
(56)

Hence, upon integration by parts we obtain the dissipation of the free energy E (t) along
solutions

d
dt

E (t) =−
∫
Rd
|∇wξ |2 f (w, t)dw =−I (t), (57)

where I (·) is the entropy dissipation function.

3.1 Derivation of the schemes
In the one-dimensional case d = 1 equation (52) reads

∂t f (w, t) = ∂w[ f (w, t)∂wξ (w, t)], w ∈Ω⊆ R, (58)

where
∂wξ (w, t) = B[ f ](w, t)+D∂w log f (w, t), (59)

and we assume B[ f ](w, t) = ∂w(U ∗ f )(w, t).
In order to derive schemes which satisfy the entropy dissipation property (57) we

consider the semi-discrete version of the entropy (55)

E∆(t) = ∆w
N

∑
j=0

[
1
2

∆w
N

∑
i=0

U j−i fi f j +D f j log f j

]
. (60)

Therefore, we have

d
dt

E∆ = ∆w
N

∑
j=0

[
∆w

N

∑
i=0

U j−i fi
d f j

dt
+D(log f j +1)

d f j

dt

]

= ∆w
N

∑
j=0

[
∆w

N

∑
i=0

U j−i fi +D log f j +1

]
d f j

dt
.

12



Now using the general discrete conservative formulation (7) and the fact that ξi =
U ∗ fi +D log fi we get

d
dt

E∆ =
N

∑
j=0

(ξ j +1)(F j+1/2−F j−1/2).

Furthermore, after summation by parts we can write the last term as follows

d
dt

E∆ =−
N

∑
j=0

(ξ j+1−ξ j)F j+1/2. (61)

Now, integrating (53) over the cell [wi,wi+1] we obtain

ξi+1−ξi = ∆wB̃i+1/2 +D log
(

fi+1

fi

)
, (62)

where
B̃i+1/2 =

1
∆w

∫ wi+1

wi

B[ f ](w, t)dw.

Let us now consider a general scheme in the Chang-Cooper form (8), which in our case
can be rewritten as

Fi+1/2 =

(
B̃ j+1/2 +

D
∆w

log
(

f j+1

f j

)
K j+1/2

)
f̃ j+1/2 (63)

with
K j+1/2 =

1
f̃ j+1/2

f j+1− f j

(log f j+1− log f j)
, f j+1 6= f j. (64)

Therefore, we have

d
dt

E∆ =−∆w
N

∑
j=0

(
B̃ j+1/2 +

D
∆w

log
(

f j+1

f j

))
(

B̃ j+1/2 +
D

∆w
log
(

f j+1

f j

)
K j+1/2

)
f̃ j+1/2.

(65)

Thus we cannot prove that the discrete entropy functional (60) is dissipated by the
Chang-Cooper type scheme developed in the previous sections, unless K j+1/2 ≡ 1.
This latter requirement is satisfied if we consider the new entropic flux function

f̃ E
i+1/2 =


fi+1− fi

log fi+1− log fi
fi+1 6= fi,

fi+1 fi+1 = fi.
(66)

We will refer to the above approximation of the solution at the grid point i+ 1/2 as
entropic average of the grid points i and i+1. In the general case of the flux function
(6) with non constant diffusion the resulting numerical flux reads

F E
i+1/2 = Di+1/2

(
C̃i+1/2

Di+1/2
+

log fi+1− log fi

∆w

)
f̃ E
i+1/2. (67)
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Finally, concerning the stationary state, we obtain immediately imposing the numerical
flux equal to zero

C̃i+1/2

Di+1/2
+

log fi+1− log fi

∆w
= 0,

and therefore we get
fi+1

fi
= exp

(
−

∆w C̃i+1/2

Di+1/2

)
.

By equating the above ratio with the quasi-stationary approximation (11) we get the
same expression for C̃i+1/2 as in (12)

C̃i+1/2 =
Di+1/2

∆w

∫ wi+1

wi

B[ f ](w, t)+D′(w)
D(w)

dw. (68)

We can state the following

Proposition 4. The numerical flux function (67) with C̃i+1/2 defined by (68) vanishes
when the corresponding flux (59) is equal to zero over the cell [wi,wi+1].

3.2 Main properties
A fundamental result concerning the entropic average (66) is the following Lemma.

Lemma 3. The entropy average defined in (66) may be written as a convex combination
with nonlinear weights

f̃ E
i+1/2 = δ

E
i+1/2 fi +(1−δ

E
i+1/2) fi+1, (69)

where
δ

E
i+1/2 =

fi+1

fi+1− fi
+

1
log fi− log fi+1

∈ (0,1). (70)

Proof. From (70) we have

f̃ E
i+1/2 = fi+1 +δ

E
i+1/2( fi− fi+1)

= fi+1− fi+1 +
fi− fi+1

log fi− log fi+1

=
fi+1− fi

log fi+1− log fi
,

that is (67). It is a easy computation to verify that δ E
i+1/2 lies in the interval (0,1).

Remark 4. As a consequence the Chang-Cooper type average (9) and the entropic
average (66) define the same quantity at the steady state when fi = f ∞

i . In fact, in this
case (70) are the same as (20).

We can summarize our findings of Section 3.1 as follows.

Theorem 2. The numerical flux (67)-(66) for a constant diffusion D satisfies the dis-
crete entropy dissipation

d
dt

E∆ =−I∆(t), (71)
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where E∆ is given by (60) and I∆ is the discrete entropy dissipation function

I∆ = ∆w
N

∑
j=0

(ξ j+1−ξ j)
2 f̃ E

i+1/2 ≥ 0, (72)

with ξ j+1−ξ j defined as in (62).

Remark 5. On the contrary to the Chang-Cooper average the restrictions for the non
negativity property of the solution are stronger. In fact, by the same arguments we used
in the previous section, non negativity of the explicit scheme requires

(1−δ
E
i+1/2)C̃

n
i+1/2 +

Di+1/2

∆w
≥ 0, −δ

E
i−1/2C̃

n
i−1/2 +

Di−1/2

∆w
≥ 0. (73)

However, the weights do not possess any special structure that permits to avoid a con-
straint of the mesh size ∆w which now must satisfy

∆w≤min
i

{
Di+1/2

|C̃ n
i+1/2|

,
Di−1/2

|C̃ n
i−1/2|

}
. (74)

Therefore, similar to central differences, we have a restriction on the mesh size which
becomes prohibitive for small values of the diffusion function D(w). It is easy to
verify that the same condition is necessary also for the non negativity of semi-implicit
approximations.

3.2.1 The case B[ f ](w, t) = B(w)

Next we consider the case of linear flux B[ f ](w, t) = B(w). The following Lemma
holds true.

Lemma 4. In the case B[ f ](w, t) = B(w) the numerical flux (67)-(66) corresponds to
the form (37) and reads

F̃ E
i+1/2 =

Di+1/2

∆w
f̃ E
i+1/2

(
log
(

fi+1

f ∞
i+1

)
− log

(
fi

f ∞
i

))
. (75)

Proof. If a stationary f ∞(w) state exists it nullify the flux and we have

C̃i+1/2 =−
Di+1/2

∆w

(
log f ∞

i+1− log f ∞
i
)
.

From the definition of the entropic flux (67) we obtain

F̃ E
i+1/2 =C̃i+1/2 f̃ E

i+1/2 +
Di+1/2

∆w
log

fi+1

fi
f̃ E
i+1/2

=
Di+1/2

∆w
f̃ E
i+1/2

[
(log fi+1− log fi)− (log f ∞

i+1− log f ∞
i )
]
,

from which we conclude.

We can now state the following entropy dissipation results for problem (35) in the
nonlogarithmic Landau form (38).
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Theorem 3. Let us consider B[ f ](w, t) = w− u as in equation (35). The numerical
flux (67)-(66) with C̃i+1/2 given by (12) satisfies the discrete entropy dissipation

d
dt

H∆( f , f ∞) =−I E
∆ ( f , f ∞), (76)

where H∆w( f , f ∞) is given by (49) and IE
∆

is the positive discrete dissipation function

I E
∆ ( f , f ∞) =

N

∑
i=0

[
log
(

fi+1

f ∞
i+1

)
− log

(
fi

f ∞
i

)]2

Di+1/2 f̃ E
i+1/2 ≥ 0. (77)

Proof. From

d
dt

H ( f , f ∞) =−∆w
N

∑
i=0

[
log
(

fi+1

f ∞
i+1

)
− log

(
fi

f ∞
i

)]
F E

i+1/2

and being

F E
i+1/2 =

Di+1/2

∆w

[
log
(

fi+1

f ∞
i+1

)
− log

(
fi

f ∞
i

)]
f̃ E
i+1/2

we have

d
dt

H ( f , f ∞) =−
N

∑
i=0

[
log
(

fi+1

f ∞
i+1

)
− log

(
fi

f ∞
i

)]2

Di+1/2 f̃ E
i+1/2.

4 Applications
In this section we present several numerical examples of Fokker-Planck equations
solved with the structure-preserving schemes here introduced. An essential aspect for
the accurate description of the steady state is the approximation of the integral defining
the quasi-stationary solution

λi+1/2 =
∫ wi+1

wi

B[ f ](w, t)+D′(w)
D(w)

dw. (78)

Except for simple linear cases, a suitable quadrature formula is required. In the follow-
ing numerical examples we consider open Newton-Cotes formulas up to order 6 and
Gauss-Legendre quadrature with 6 points. In the sequel, we will adopt the notation
SP–CCk and SP–EAk, k = 2,4,6,G to denote the structure preserving schemes with
Chang-Cooper (CC) and entropic average (EA) flux and when (78) is approximated
with second, fourth, sixth order Newton–Cotes quadrature or Gaussian quadrature, re-
spectively. Singularities at the boundaries in the integration of (78) can be avoided
using open Newton–Cotes rules.

4.1 Example 1: Opinion dynamics in bounded domains
Let us consider the evolution of a distribution function described by (1), with w ∈ I,
where I = [−1,1], and

B[ f ](w, t) =
∫

I
P(w,w∗)(w−w∗) f (w∗, t)dw∗, D(w) =

σ2

2
(1−w2)2. (79)
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Figure 1: Example 1. Left: evolution of the relative L1 error with respect to the sta-
tionary solution (80) for the SP–CC scheme with different quadrature methods. So-
lution for the initial data (81) over the time interval [0,10], σ2/2 = 0.1, N = 80,
∆t = ∆w2/2σ2. Right: dissipation of the numerical entropy for SP–CC scheme with
Gaussian quadrature for two coarse grids with N = 10 and N = 20 points.

The model describes the evolution of the distribution functions of agents having opin-
ion w at time t (see [27, 30] for more details).

In the simplified case P≡ 1 the corresponding stationary distribution reads

f∞(w) =
C

(1−w2)2

(
1+w
1−w

)u/(2σ2)

exp
{
− (1−uw)

σ2(1−w2)

}
, (80)

with σ ∈R a given parameter, C > 0 is a normalization constant and u=
∫

I w f (w, t)dw,.
We consider as initial distribution

f (w,0) = β
[
exp
(
−c(w+1/2)2)+ exp

(
−c(w−1/2)2)] , c = 30, (81)

with β > 0 a normalization constant. Since diffusion vanishes at the boundaries we
present results for the Chang-Cooper type numerical schemes SP–CC only.

In Figure 1 we compute the relative L1 error of the numerical solution with respect
to the exact (80) stationary state using N = 80 points for the SP–CC scheme with
various quadrature rules. It is possible to observe how the different integration methods
capture the steady state with different accuracy. In particular low order quadrature rules
achieve the numerical steady state faster than high order quadratures, with the Gaussian
quadrature that essentially reach machine precision. In the same figure we illustrate
how SP–CC scheme dissipates the relative entropy (49) in the case of two coarse grids
with N = 10 and N = 20 points.

In Table 2 we estimate the overall order of convergence of explicit SP–CC schemes
for several integration methods. Here we used N = 40,80, with reference solutions
computed with N = 640 points. For comparison, the time integration has been per-
formed with the explicit Euler and RK4 methods and the time step chosen in such a way
that the CFL condition for the positivity of the scheme is satisfied, i.e. ∆t = O(∆w2).
As expected the two methods are essentially equivalent and both schemes are second
order accurate in the transient regimes and assume the order of the quadrature method
close to the steady state.

In Table 3 we estimate the order of convergence of SP–CC schemes with first and
second order semi–implicit methods (see Appendix A for a detailed description of the
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SP−CCk SP−CCk
Time 2 4 6 G 2 4 6 G

1 1.9456 1.9751 1.9740 1.9740 1.9470 1.9773 1.9762 1.9762
5 1.9700 3.2328 2.3690 2.3487 1.9700 3.2323 2.3724 2.3522

10 1.9695 3.9156 6.8498 7.3299 1.9695 3.9156 6.8517 7.3252
15 1.9695 3.9156 6.8715 7.3304 1.9695 3.9156 6.8761 7.3223

Table 2: Example 1. Estimation of the order of convergence toward the reference
stationary state for SP–CC scheme with explicit Euler (left) and RK4 (right) methods.
Rates have been computed using N = 40,80 and a reference solution with N = 640,
σ2/2 = 0.1, ∆t = ∆w2/2σ2.

SP−CCk SP−CCk
Time 2 4 6 G 2 4 6 G

1 1.0681 1.0648 1.0648 1.0648 2.0991 2.0931 2.0932 2.0932
5 2.0093 1.9760 1.9648 1.9648 2.0700 2.8755 2.6082 2.6092

10 2.0155 3.9714 3.4966 3.2983 2.0700 4.0006 6.0768 7.4096
15 2.0155 3.9776 5.3045 7.3283 2.0700 3.9982 5.8780 9.0173

Table 3: Example 1. Estimation of the order of convergence toward the reference sta-
tionary state for SP–CC scheme with first (left) and second order (right) semi–implicit
methods. Rates have been computed using N = 40,80 and a reference solution with
N = 640, σ2/2 = 0.1, ∆t = ∆w/2σ2.

methods). In this case the CFL condition is ∆t = O(∆w) and a second order method
is necessary to achieve second order accuracy in the transient regime, whereas both
schemes achieve higher order accordingly to the quadrature used for large times.

In the general case P(w,w∗) 6= 1 and it is not possible to give an analytical formu-
lation of the steady state solution f ∞(w, t). In Figure 2 we represent a typical evolution
of an aggregation model in the bounded confidence case [27]

P(w,w∗) = χ(|w−w∗| ≤ ∆), (82)

where χ(·) is the indicator function, for ∆ = 0.4, ∆ = 0.8. Here, the evolution has been
computed through a SP–CC with Gauss quadrature, the integral B[ f ](w, t) has been
evaluated through a trapezoidal method.

4.2 Example 2: Wealth evolution in unbounded domains
Let us consider equation (1) with w ∈ R+ and

B[ f ](w, t) =
∫
R+

a(w,w∗)(w−w∗) f (w∗, t)dw∗, D(w) =
σ2

2
w2. (83)

With the above choice, the Fokker-Planck equation describes the evolution of the
wealth distribution w at time t in a large set of interacting economic agents (see [26, 27]
for details).
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Figure 2: Example 1. Opinion model in the bounded confidence case with (a) ∆ = 0.4,
(b) ∆ = 0.8. In both cases we considered ∆w = 0.05, σ2/2 = 0.01, ∆t = ∆w2/2σ2.
The reference stationary solution has been computed with N = 640 gridpoints.

In the case of constant interaction a(w,w∗) ≡ 1 the steady state of the equation is
analytically computable

f ∞(w) =
(µ−1)µ

Γ(µ)w1+µ
exp
{
−µ−1

w

}
, (84)

where µ = 1+2/σ2 is the so-called Pareto exponent. In the numerical test we consider
the initial distribution

f (w,0) = β
[
exp
(
−c(w−u)2)] , c = 20, (85)

with β > 0 a normalization constant.
Again, due to degeneracy of the diffusion on the left boundary we report results

only for SP–CC schemes. In Figure 4.2 we present the solution with u = 1 in the
domain [0,L], L = 10. In both figures a(·, ·) = 1 whereas the diffusion constant as-
sumes different values. We report the evolution of the solution and the relative L1 error
with respect to the stationary state using N = 201 points for the semi–implicit SP–CC
scheme (SISP–CC). We observe how the introduced methods describe the stationary
state with different levels of accuracy. Note that, at the right boundary we must intro-
duce an artificial boundary condition in order to truncate the computational domain. In
our numerical results we impose the quasi stationary condition (11) in order to evaluate
fN+1(t), that is

fN+1(t)
fN(t)

= exp
{
−
∫ wN+1

wN

B[ f ]+D(w)
D(w)

dw
}
.

In Table 4 we estimate the overall order of convergence of the semi–implicit SP–CC
scheme for several integration methods with N = 51,101 for the domain [0,L], L = 10,
with reference solutions computed with N = 1601 gridpoints. The time step is chosen
in such a way that the CFL condition for the positivity of the scheme is satisfied, i.e.
∆t = O(∆w). We can observe that for short times the order of accuracy is limited by
the semi–implicit method, which is first order accurate, whereas as we approach to the
stationary solution the order depends on the quadrature formula used.
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Figure 3: Example 2. Left: evolution of the density f (w, t) for (83) with P(·, ·) = 1,
u = 1, σ2/2 = 0.1, L = 10. In green we report the analytical steady state solution (84).
Right: evolution of the relative L1 error for the different quadratures methods for the
semi–implicit SP–CC scheme in the case a(·, ·) = 1, σ2/2 = 0.1 and ∆w = 0.05

SP−CCk
Time 2 4 6 G

1 1.3047 1.5010 1.5021 1.5021
10 1.9893 4.0634 2.8122 2.8682
20 1.9894 3.9842 6.0784 10.0422

Table 4: Example 2. Estimation of the order of convergence toward the reference
stationary state for the semi–implicit SP-CC scheme, N = 51,101, reference solution
computed with N = 1601, σ2/2 = 0.1.
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4.3 Example 3: 2D model of swarming
Let us consider a self-propelled swarming model of Cucker-Smale type [5] with dif-
fusion. In this model the evolving distribution f (x,w, t) represents the density of indi-
viduals (birds, fishes, . . .) in position x ∈ Rd having velocity w ∈ Rd at time t > 0. We
have the following dynamics

∂t f (x,w, t)+w∇x f (x,w, t) =∇w ·
[
αw(|w|2−1) f (x,w, t)

+(w−u f ) f (x,w, t)+D∇w f (x,w, t)
]
,

(86)

with

u f (x, t) =
∫
R2d K(x,y)w f (y,w, t)dwdy∫
R2d K(x,y) f (y,w, t)dwdy

, (87)

and K(w,y)> 0 a localization kernel, α > 0 a self-propulsion term and D> 0 a constant
noise intensity.

The space homogeneous version of the model (86) may be formulated in terms of
the nonlinear Fokker–Planck equation (1) with

B[ f ](w, t) = αw(|w|2−1)+
∫
R2

P(w,w∗)(w−w∗) f (w∗, t)dw∗,

D(w) = D,
(88)

with α a positive constant and P(w,w∗) ≡ 1. The above equation can be written as a
gradient flow. In fact, if we define

ξ (w, t) = Φ(w)+(U ∗ f )(w, t)+D log f (w, t), (89)

with U(w) a Coloumb potential and Φ(w) a confining potential given by

Φ(w) = α

(
|w|4

4
− |w|

2

2

)
, (90)

the equation reads

∂t f (w, t) = ∇w · ( f (w, t)∇wξ (w, t)) , w ∈ R2. (91)

A free energy functional which dissipates along solutions is defined by

E (t) =
∫
R2

(
α
|w|4

4
+(1−α)

|w|2

2

)
f (w, t)dw− 1

2
|u f |2 +D

∫
R2

f (w, t) log f (w, t)dw,

with

u f (t) =
∫
R2 w f (w, t)dw∫
R2 f (w, t)dw

.

Stationary solutions should satisfy the identity ∇wξ = 0 and have the form

f ∞(w) =C exp

{
− 1

D

[
α
|w|4

4
+(1−α)

|w|2

2
−u f ∞ ·w

]}
, (92)

with C > 0 a normalization constant. It is possible to prove the following result (see
[5] for more details).
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α = 0 SP−CCk SP−EAk
Time 2 4 6 G 2 4 6 G

1 2.1387 2.1387 2.1387 2.1387 2.4142 2.4142 2.4142 2.4142
5 6.9430 6.9430 6.9430 6.9430 10.0712 10.0712 10.0712 10.0712
10 20.0127 20.0127 20.0127 20.0127 23.9838 23.9838 23.9838 23.9838

α = 1 SP−CCk SP−EAk
Time 2 4 6 G 2 4 6 G

1 2.5310 2.5310 2.5310 2.5310 2.2614 2.2892 2.2892 2.2892
5 2.0498 7.6659 7.6659 7.6659 2.0635 10.9818 10.9818 10.9818
10 2.0503 18.7697 18.7697 18.7697 2.0613 14.8321 14.8321 14.8321

Table 5: Example 3. Estimation of the order of convergence for the one-dimensional
swarming model for the explicit SP–CC and SP–EA over the domain [−L,L] with
L = 5, N = 21,41,81, D = 0.4, ∆t = ∆w2/L2.
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Figure 4: Example 3. Stationary solution for the one-dimensional swarming model
with α = 1 and D = 0.001, N = 41 (left) and N = 61 (right). As expected the SP–EA
scheme produces instabilities for a vanishing diffusion. The SP–CC scheme remains
stable and first order accurate.

Theorem 4. Let us consider equation (86) in the space-homogeneous case, i.e. (1)
with B[ f ](w, t) and diffusion as in (88), exhibits a phase transition in the following
sense

i) For small enough diffusion coefficient D > 0 there is a function u = u(D) with
limD→0 u(D) = 1, such that f ∞(w) with u = (u(D),0, . . . ,0) is a stationary solu-
tion of the original problem.

ii) For large enough diffusion coefficients D > 0 the only stationary solution is the
symmetric distribution given by (92) with u f ≡ 0.

Since diffusion is constant, we compute the solution both using SP–CC type schemes
and the entropic average schemes SP–EA. In Table 5 we estimate the order of conver-
gence of the SP–CC and SP–EA schemes in the 1D case for several integration meth-
ods. We can observe how each method reach spectral accuracy in the case α = 0, in this
case, in fact, all quadrature methods become exact being the quantity (B[ f ]+D′)/D a
first order polynomial in w.

In Figure 4 we show that, as expected, on a coarse grid the SP–EA method becomes
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Figure 5: Example 3. Stationary state of the two-dimensional swarming model for
several values of the diffusion coefficient D > 0 and fixed self-propulsion α = 0,2,4.
In the case α > 0 for increasing values of D the mean of the stationary distribution
approaches to [0,0]. We considered a discretization (w,v) ∈ [−L,L]× [−L,L], L = 3,
∆w = ∆v = 0.05 and ∆t = dw/L.

unstable for vanishing diffusions, whereas the SP–CC scheme remains stable and re-
duces to first order upwinding. In this case the solution becomes close to a Dirac delta
in the velocity space. Finally, in Figure 5 we present the resulting 2D nonlinear Fokker–
Planck equation for swarming with B[ f ](w, t) and D(w) in (88), for several values of
the diffusion coefficient D = 0.1,0.3,0.5, and of the self-propulsion α = 0,2,4. The
initial distribution is a bivariate normal distribution of the form

f0(w,v,0) =
1

2π
√

σ2
v σ2

w
exp
{
− 1

2

[ (w−µw)
2

σ2
w

+
(v−µv)

2

σ2
v

]}
with µw = µv = 2 and σ2

w = σ2
v = 0.5. The generalization of the schemes to the mul-

tidimensional case is done dimension by dimension and is summarized in Appendix
B. The semi-implicit numerical scheme has been used, with a 6th order open Newton–
Cotes quadrature method. It is possible to observe the threshold phenomenon occurring
for an increasing diffusion prescribed by Theorem 4. The results obtained with the two
different schemes are essentially equivalent in this case.
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Conclusion
The construction of structure–preserving schemes for nonlinear Fokker–Planck equa-
tions has been studied. Two different types of schemes have been constructed. The
first type represents a natural extension of the so–called Chang–Cooper scheme to the
nonlinear case. The second type of schemes represents a modification with better en-
tropy dissipation properties. Both methods are second order accurate and capable to
preserve the stationary state with arbitrary accuracy. However, non negativity restric-
tions are more severe for the second type of schemes. Even if the analysis is performed
in the one-dimensional case, extensions to multidimensional situations are also con-
sidered. Several applications to linear and nonlinear Fokker-Planck equations arising
in socio-economic sciences are presented and show the generality of the present ap-
proach. Extensions of the schemes to include nonlinear diffusion terms and higher
order schemes in the limiting of vanishing diffusion are actually under study and will
be presented elsewhere.
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A High order semi-implicit methods
Here we follow the approach in [7]. We write the semi-discrete scheme (7) in the
equivalent form

d fi

dt
(w, t) = Qi(f,g),

dgi

dt
(w, t) = Qi(f,g),

(93)

where f = ( f0, . . . , fN), g = (g0, . . . ,gN),

Qi(f,g) =
Fi+1/2[f,g]−Fi−1/2[f,g]

∆w
(94)

and

Fi+1/2[f,g] = C̃i+1/2[g]
[
(1−δi+1/2[g]) fi+1 +δi+1/2[g] fi

]
+Di+1/2

fi+1− fi

∆w
, (95)

with initial conditions fi(0) = f0(wi), gi(0) = f0(wi). In the above equations we used
the notation [·] to denote the functional dependence.
System (93) is then solved by an implicit-explicit (IMEX) Runge-Kutta method [28]
where the variables fi are treated implicitly and the variables gi are treated explicitly.
More precisely, using standard notations we can write an implicit-explicit Runge-Kutta
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scheme for (93) as follows. First we set f n
i = gn

i and compute for h = 1, . . . ,s
Fh

i = f n
i +∆t

h

∑
k=1

ahkQi(Fk,Gk),

Gh
i = f n

i +∆t
h−1

∑
k=1

ãhkQi(Fk,Gk),

(96)

where Fk = (Fk
0 , . . . ,F

k
N), Gk = (Gk

0, . . . ,G
k
N) and next we update the numerical solution

f n+1
i = f n

i +∆t
s

∑
k=1

bkQi(Fk,Gk),

gn+1
i = f n

i +∆t
s

∑
k=1

b̃kQi(Fk,Gk).

(97)

In particular, the IMEX scheme is chosen such that bk = b̃k, k = 1, . . . ,s so that f n+1 =
gn+1 and therefore the duplication of the system is only apparent since there is only one
set of numerical solutions. In our numerical tests we coupled the structure preserving
discretizations with the second order semi-implicit scheme obtained as a combination
of Heun method (explicit) and Crank-Nicolson (implicit) characterized by s = 2 and

a11 = 0, a21 = a22 = 1/2, ã21 = 1, bk = b̃k = 1/2, k = 1,2. (98)

As observed in [7] this represents a natural choice when dealing with convection-
diffusion type equations, since the Heun method is an SSP explicit RK method, and
Crank-Nicolson is an A-stable method, widely used for diffusion problems. Higher
order methods can be found in [7, 28].

B The multi-dimensional case
In this section we report for the sake of completeness the details of the numerical
schemes for multi-dimensional situations. We consider the case of Chang-Cooper type
fluxes, and to keep notations simple we restrict to two dimensional problems d = 2. We
introduce a uniform mesh (wi,v j) ∈Ω⊆R2, with ∆w = wi+1−wi and ∆v = v j+1−v j.
We denote by wi+1/2 =wi+∆w/2 and v j+1/2 = v j+∆v/2. Let fi, j(t) be an approxima-
tion of the solution f (wi,v j, t) and consider the following discretization of the nonlinear
Fokker-Planck equation (4)

d
dt

fi, j =
Fi+1/2, j[ f ]−Fi−1/2, j[ f ]

∆w
+

Fi, j+1/2[ f ]−Fi, j−1/2[ f ]
∆v

, (99)

being Fi±1/2, j[ f ], Fi, j±1/2[ f ] flux functions characterizing the numerical discretiza-
tion. The quasi-stationary approximations over the cell [wi,wi+1]× [vi,vi+1] of the two
dimensional problem now read∫ wi+1

wi

1
f (w,v j, t)

∂w f (w,v j, t)dw =−
∫ wi+1

wi

B[ f ](w,v j, t)+∂wD(w,v j)

D(w,v j)
dw,∫ v j+1

v j

1
f (wi,v, t)

∂v f (wi,v, t)dv =−
∫ v j+1

v j

B[ f ](wi,v, t)+∂vD(wi,v)
D(wi,v)

dv.
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Therefore, setting

C̃i+1/2, j =
Di+1/2, j

∆w

∫ wi+1

wi

B[ f ](w,v j, t)+∂wD(w,v j)

D(w,v j)
dw

C̃i, j+1/2 =
Di, j+1/2

∆v

∫ v j+1

v j

B[ f ](wi,v, t)+∂vD(wi,v)
D(wi,v)

dv
(100)

and by considering the natural generalization of the one-dimensional numerical flux

Fi+1/2, j[ f ] = C̃i+1/2, j f̃i+1/2, j +Di+1/2, j
fi+1, j− fi, j

∆w
f̃i+1/2, j = (1−δi+1/2, j) fi+1, j +δi+1/2, j fi, j

Fi, j+1/2[ f ] = C̃i, j+1/2 f̃i, j+1/2 +Di, j+1/2
fi, j+1− fi, j

∆v
f̃i, j+1/2 = (1−δi, j+1/2) fi, j+1 +δi, j+1/2 fi, j,

(101)

we define δi+1/2, j and δi, j+1/2 in such a way that we preserve the steady state solution
for each dimension. The Chang-Cooper type structure preserving methods are then
given by

δi+1/2, j =
1

λi+1/2, j
+

1
1− exp(λi+1/2, j)

,

λi+1/2, j =
∆wC̃i+1/2, j

Di+1/2, j

(102)

and

δi, j+1/2 =
1

λi, j+1/2
+

1
1− exp(λi, j+1/2)

,

λi, j+1/2 =
∆vC̃i, j+1/2

Di, j+1/2
.

(103)

The cases of higher dimension d ≥ 3 and entropic average fluxes may be derived in a
similar way.
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