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EFFICIENT STOCHASTIC ASYMPTOTIC-PRESERVING
IMPLICIT-EXPLICIT METHODS FOR TRANSPORT EQUATIONS

WITH DIFFUSIVE SCALINGS AND RANDOM INPUTS∗

SHI JIN† , HANQING LU‡ , AND LORENZO PARESCHI§

Abstract. For linear transport and radiative heat transfer equations with random inputs, we
develop new generalized polynomial chaos based asymptotic-preserving stochastic Galerkin schemes
that allow efficient computation for the problems that contain both uncertainties and multiple scales.
Compared with previous methods for these problems, our new method uses the implicit-explicit
time discretization to gain higher order accuracy, and by using a modified diffusion operator based
penalty method, a more relaxed stability condition—a hyperbolic, rather than parabolic, CFL stabil-
ity condition—is achieved in the case of a small mean free path in the diffusive regime. The stochastic
asymptotic-preserving property of these methods will be shown asymptotically and demonstrated nu-
merically, along with a computational cost comparison with previous methods.
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1. Introduction. Transport equations, for example, linear transport equations
and radiative transfer equations, arise in many important physical applications, from
the microscopic neutron transport to large-scale astrophysical problems [10]. As in
general kinetic theory, one of the main challenges is its high dimensionality, since
these equations describe particle density distributions defined in the phase space,
with independent variables time, space, and particle velocity. Another challenge is
the multiscale nature, since the Knudsen number, the dimensionless mean free path,
could vary in different orders of magnitude in the computational problems. When the
Knudsen number is O(1), we are in the kinetic regime. When it is small, usually one
can approximate the kinetic equations by hydrodynamic or diffusion type equations
which are macroscopic equations defined in physical space and therefore allow more
efficient numerical computations. Asymptotic-preserving (AP) schemes, which mimic
the asymptotic transition from the kinetic to the macroscopic equation at the discrete
level, have been proven to be an effective computational paradigm for such multiscale
kinetic or transport equations and have found many applications in kinetic theory
[11, 12, 13, 16]. For those relevant to the equations to be studied in this article, see,
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for example, in neutron transport equations [2, 6, 14, 20, 22, 24, 26, 27, 28, 30] and
nonlinear radiative transfer [5, 23, 34].

In this article, we are interested in addressing the third challenge in kinetic mod-
eling: the uncertainty for transport and radiative transfer equations. Since kinetic
equations often arise from microscopic equations, for example, Newton’s second law
or particle dynamics, taking mean-field limits [4, 33], one often encounters difficulties
in determining precisely or accurately terms such as collision kernels or scattering co-
efficients. In addition, initial, boundary data or forcing or source terms could also be
measured inaccurately. Thus uncertainty is intrinsic in kinetic models that must be
studied in order to assess the accuracy and validate and enhance the computational
reliability of kinetic modelings.

Although uncertainty quantification has been a popular field of scientific comput-
ing in many areas of scientific and engineering research, its study for kinetic equations
has been scarce. Only recently one sees some development of efficient numerical meth-
ods for kinetic equations with uncertainties [7, 15, 18, 19, 21, 36]. In particular, in
[21], the notion of stochastic asymptotic-preserving (sAP) was introduced. For gener-
alized polynomial chaos (gPC) based stochastic Galerkin (SG) methods, which are the
methods used in this article to study the uncertainties, it requires that an SG method
for kinetic equations with uncertainty, as the Knudsen number goes to zero, becomes
an SG method for the macroscopic hydrodynamic or diffusion equations. This is the
stochastic extension of the deterministic AP schemes. Moreover, as realized in [21],
and subsequently in other kinetic equations [18, 19, 36], under the SG framework,
one obtains a vectorized system of deterministic kinetic equations based on which the
deterministic AP machinery can be easily utilized to develop sAP schemes for random
kinetic equations. The gPC approach for uncertain kinetic equations is natural, and
efficient, since kinetic equations typically preserve the regularity of the initial data
in the random space [15, 17, 18, 29]; thus one indeed obtains spectral accuracy in
the random space, and then the sAP property allows one to use Knudsen number
independent time step, mesh sizes, and the order of polynomial degrees in the gPC
method.

While sAP schemes have been developed for the linear transport equation [17, 21]
and radiative heat transfer equations [19] with uncertainties, in this article we aim
to improve the accuracy and efficiency of these methods. Since the gPC-SG based
numerical methods lead to much larger system of equations (compared to the original
kinetic equations which are scalar equations), and the random variables that describe
the uncertainties often live in high dimension, more efficient numerical methods can
help to significantly reduce the computational cost. To this aim, we will make two
improvements. First, we utilize the implicit-explicit (IMEX) Runge–Kutta (RK) time
marching methods (see [2, 3, 31] and the references therein) in order to gain high
order of accuracy in time discretization. Second, since these equations, due to high
scattering rates, encounter diffusive regimes, a typical AP scheme based on explicit
discretization of the convection term needs a parabolic type CFL stability condition
∆t = O(∆x2), where ∆t is the time step and ∆x is the spatial mesh size. A fully
implicit scheme will overcome this constraint but will introduce algebraic difficulties
when inverting the entire transport operator numerically. We use a diffusion operator
penalized method introduced in [2], which allows us to improve the CFL condition
to a hyperbolic one ∆t = O(∆x). We modify the approach of [2] by replacing the
microscopic probability density distribution in the penalty term by the macroscopic
density, which further simplifies the inversion of the implicit terms.
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The rest of the paper is organized as follows. We develop the gPC-SG based
IMEX-RK sAP schemes for the random linear transport equation in section 2 and
for the random radiative heat transfer equations in section 3. Numerical tests can be
found in section 4 that verify the efficiency and sAP property of these methods. Some
final considerations are reported in section 5.

2. The linear neutron transport equation with random inputs. In this
section we consider a one-dimensional linear neutron transport equation with random
inputs. The randomness may come from the cross section, initial data, and boundary
data. Let f(t, x, v, z) be the probability density distribution of particles at position
x ∈ D ⊂ R, time t ∈ R+, and depending on v ∈ (−1, 1), which is the cosine of the
angle between the particle velocity and position. z ∈ Iz ⊂ Rd(d ≥ 1) is the random
variable with finite support Iz. Then the one-dimensional transport equation is

(1) ε∂tf + v∂xf =
1

ε

(
σs
2

∫ 1

−1

f(v′)dv′ − σf
)

+ εQ,

where σ = σ(x, z) is the total cross section and σs = σs(x, z) is the scattering cross
section. The absorption coefficient σA = σA(x, z) is defined by σA = σ−σs

ε2 , Q =
Q(x, z) is the source term, and the small parameter ε is the Knusden number, the
dimensionless mean free path. In what follows σA and Q are neglected since they do
not increase any numerical difficulty for the numerical approximations.

The well-known diffusion limit ε→ 0 of the one-dimensional deterministic trans-
port equation is of the following form [1, 25]:

(2) ∂tρ = ∂x

(
1

3σs
∂xρ

)
,

where

ρ =
1

2

∫ 1

−1

fdv.

One can understand the diffusion limit of the transport equation with random
inputs through the following even-odd decomposition [20]. First write (1) for v > 0:

ε∂tf(v) + v∂xf(v) =
1

ε

(
σs
2

∫ 1

−1

f(v′)dv′ − σf(v)

)
,(3a)

ε∂tf(−v)− v∂xf(−v) =
1

ε

(
σs
2

∫ 1

−1

f(v′)dv′ − σf(−v)

)
.(3b)

Now denote the even and odd parities

r(t, x, v, z) =
1

2
(f(t, x, v, z) + f(t, x,−v, z)),(4a)

j(t, x, v, z) =
1

2ε
(f(t, x, v, z)− f(t, x,−v, z)).(4b)

Then (3) becomes

∂tr + v∂xj = −σs
ε2

(r − ρ),(5a)

∂tj +
1

ε2
v∂xr = − 1

ε2
σsj.(5b)

As ε→ 0+, (5) yields

r = ρ, j = − v

σs(x, z)
∂xr.(6)
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Substituting (6) into the first equation of (5) and integrating over v ∈ [0, 1], one
gets the limiting diffusion equation with random inputs (2).

Based on this even-odd decomposition, Jin, Xiu, and Zhu [21] proposed a gPC-SG
formulation for the linear transport equation (1) with random cross section σs(x, z).
The sAP property is also introduced for this problem and shown both asymptotically
and numerically for this framework [21]. See also [17] for a sharp regularity and sAP
proof. However, a parabolic CFL condition ∆t = O(∆x2) has to be satisfied for the
fully discretized scheme in (5) since the scheme will become an explicit scheme for the
limiting diffusion equation (2) as ε goes to 0.

Now we propose an efficient sAP method for system (5) by applying the IMEX-RK
scheme [2] to the gPC Galerkin formulation to get rid of the parabolic CFL condition.
Our scheme will fasten the algorithm significantly especially for the vectorized system
after the Galerkin projection and can be shown to be sAP.

2.1. The gPC-SG formulation. To approximate the solution, we use the gPC
expansion via an orthogonal polynomials series. That is, for random variable z ∈ Rd,
one seeks

r(t, x, v, z) ≈ rN (t, x, v, z) =

K∑
k=1

r̂k(t, x, v)Φk(z),(7a)

j(t, x, v, z) ≈ jN (t, x, v, z) =

K∑
k=1

ĵk(t, x, v)Φk(z),(7b)

where {Φk(z), 1 ≤ k ≤ K,K = ( d+N
d

)} are from PdN , the d-variate orthogonal poly-
nomials of degree up to N ≥ 1, and orthonormal

(8)

∫
Iz

Φi(z)Φj(z)π(z)dz = δij , 1 ≤ i, j ≤ K = dim(PdN ).

Here π(z) is the probability density function of z and δi,j the Kronecker delta func-
tion. For example, if π(z) is the uniform distribution, then {Φk(z)} are the Legen-
dre polynomials; if π(z) is the Gaussian distribution, then {Φk(z)} are the Hermite
polynomials; if π(z) is the Gamma distribution, then {Φk(z)} are the Laguerre poly-
nomials. We refer to [35] for the study of different probability density functions with
corresponding orthogonal polynomials.

Now one inserts the approximation (7) into the governing equation (5) and en-
forces the residue to be orthogonal to the polynomial space spanned by{Φ1, . . . ,ΦK}.
Then, one obtains a set of vectorized deterministic equations for r̂ = (r̂1, . . . , r̂K)T

and ĵ = (ĵ1, . . . , ĵK)T :

∂tr̂ + v∂xĵ = − 1

ε2
S(x)(r̂− ρ̂),(9a)

∂tĵ +
v

ε2
∂xr̂ = − 1

ε2
S(x)̂j,(9b)

where

ρ̂(x, t) = 〈r̂〉 =

∫ 1

0

r̂dv,

and S(x) = (sij(x))1≤i,j≤K is K × K symmetric and positive definite matrix with
entries

(10) sij(x) =

∫
Iz

σs(x, z)Φi(z)Φj(z)π(z)dz.
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As ε→ 0+,

(11) r̂ = ρ̂, ĵ = −vS−1∂xr̂.

Inserting the above into (9a) and integrating over v, one obtains

(12) ∂tρ̂ =
1

3
∂x[S−1(x)∂xρ̂].

Remark 2.1. If one applies the gPC-SG formulation for the limiting diffusion
equation (2) directly, one gets

(13) ∂tρ̃ =
1

3
∂x[Σ(x)∂xρ̃],

where Σ(x) = (Σij(x))1≤i,j≤K is a K × K symmetric and positive definite matrix
with entries

(14) Σij(x) =

∫
Iz

1

σs(x, z)
Φi(z)Φj(z)π(z)dz.

Though S̃ and S−1 are different matrices, one can follow Theorem 4.2 in [32] to show
that the difference between S̃∂xρ̂ and S−1∂xρ̂ in L2 norm is spectrally small.

2.2. An efficient IMEX-RK scheme with an improved CFL condition.

2.2.1. A new penalization method. Following [2], we consider a penalization
approach to avoid the parabolic CFL condition of a standard AP scheme in the
diffusion limit. By adding and subtracting the term µ

3 ∂x(S−1∂xρ̂) in (9a) and the
term φv∂xr̂ in (9b), we reformulate the problem into an equivalent form

∂tr̂ =
[
−v∂xĵ−

µ

3
∂x(S−1∂xρ̂)

]
+

[
− 1

ε2
S(r̂− ρ̂) +

µ

3
∂x(S−1∂xρ̂)

]
= ξ1(r̂, ĵ) + ξ2(r̂),(15a)

∂tĵ = −φv∂xr̂−
1

ε2

(
Sĵ + (1− ε2φ)v∂xr̂

)
= η1(r̂) + η2(r̂, ĵ),(15b)

where

ξ1(r̂, ĵ) = −v∂xĵ−
µ

3
∂x(S−1∂xρ̂),(16a)

ξ2(r̂) = − 1

ε2
S(x)(r̂− ρ̂) +

µ

3
∂x(S−1∂xρ̂),(16b)

η1(r̂) = −φv∂xr̂,(16c)

η2(r̂, ĵ) = − 1

ε2

(
Sĵ + (1− ε2φ)v∂xr̂

)
.(16d)

Here we choose µ = µ(ε) such that

(17)
lim
ε→0

µ = 1,

µ = 0 if ε = O(1),

and φ = φ(ε) such that

(18) min

{
1,

1

ε

}
≤ φ ≤ max

{
1,

1

ε

}
.
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One possible choice of µ is given in (32), whereas the restriction on φ guarantees the
positivity of φ(ε) and (1− ε2φ(ε)) so the problem remains well-posed uniformly in ε.
We make the same simple choice of φ as in [20]:

(19) φ(ε) = min

{
1,

1

ε2

}
.

Remark 2.2. Compared to the penalty term µv2∂x(S−1∂xr̂) used in [2], our choice
of the penalty term in (9a) is independent of v. So only one large tridiagonal matrix
needs to be inverted later at each stage of the IMEX-RK scheme for the full dis-
cretization instead of a series of large tridiagonal matrices (the number depends on
the number of discrete v used in the velocity discretization). This accelerates the
algorithm in practice with the same order of consistency error, already for the deter-
ministic problems, more so for uncertain problems.

2.2.2. The IMEX implementation. Now we apply an IMEX-RK scheme to
system (15), where (ξ1,η1)T is evaluated explicitly and (ξ2,η2)T implicitly; then we
obtain

r̂n+1 = r̂n + ∆t

s∑
k=1

b̃kξ1(R̂k, Ĵk) + ∆t

s∑
k=1

bkξ2(R̂k),(20a)

ĵn+1 = ĵn + ∆t

s∑
k=1

b̃kη1(R̂k) + ∆t

s∑
k=1

bkη2(R̂k, Ĵk),(20b)

where the internal stages are

R̂k = r̂n + ∆t

k−1∑
l=1

ãklξ1(R̂l, Ĵl) + ∆t

k∑
l=1

aklξ2(R̂l),(21a)

Ĵk = ĵn + ∆t

k−1∑
l=1

ãklη1(R̂l) + ∆t

k∑
l=1

aklη2(R̂l, Ĵl).(21b)

It is obvious that the scheme is characterized by the s× s matrices

(22) Ã = (ãij), A = (aij)

and the vectors b̃, b ∈ Rs, which can be represented by a double table tableau in the
usual Butcher notation

c̃ Ã

b̃T ,

c A

bT .

The coefficients c̃ and c depend on the explicit part of the scheme

(23) c̃i =

i−1∑
j=1

ãij , ci =

i∑
j=1

aij .

In the literature, there are two main different types of IMEX-RK schemes (type
A and type CK) characterized by the structure of the matrix A. We are interested
in the IMEX-RK method of type A (see [2]) where the matrix A is invertible, which
is not sensitive to the initial data. Of course, IMEX-RK of type CK may be used as
well, where A = ( 0 0

a Â
) with a ∈ R(s−1) and the submatrix Â ∈ R(s−1)×(s−1) invertible.

However, schemes of type A are more amenable to a theoretic analysis compared to
type CK since the matrix A of the implicit scheme is invertible. We refer to [2] for
further details.
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As an example, we list the SSP(3, 3, 2) scheme, which is the second order IMEX
scheme we are going to use in the numerical results

(24)

0 0 0 0
1/2 1/2 0 0
1 1/2 1/2 0

1/3 1/3 1/3

,

1/4 1/4 0 0
1/4 0 1/4 0
1 1/3 1/3 1/3

1/3 1/3 1/3

.

To obtain R̂k in each internal stage of (21), one needs the quantity P̂
k

= 〈R̂k〉 =∫ 1

0
R̂kdv in the implicit part ξ2(R̂k). This quantity can be implemented by the

following procedure. Suppose one has computed R̂l for l = 1, . . . , k−1; then according
to (21a)

R̂k = r̂n + ∆t

k−1∑
l=1

[
ãklξ1(R̂l, Ĵl) + aklξ2(R̂l)

]
+ ∆t akk

(
− 1

ε2
S(x)(R̂k − P̂

k
) +

µ

3
∂x(S−1∂xP̂

k
)

)
= R̂

k−1

+ ∆t akk

(
− 1

ε2
S(x)(R̂k − P̂

k
) +

µ

3
∂x(S−1∂xP̂

k
)

)
.

(25)

Here R̂
k−1

represents all contributions in (25) from the first k − 1 stages. Now one

takes 〈·〉 on both sides of (25) so that (R̂k − P̂
k
) is cancelled out on the right-hand

side and one can obtain P̂
k

from the following diffusion equation in implicit form:

(26) P̂
k
−∆takk

µ

3
∂x(S−1∂xP̂

k
) = 〈R̂

k−1

〉.

Then it is plugged back into (21a) in order to compute R̂k.

2.3. The space discretization. To obtain the second order accuracy, we apply
the upwind TVD scheme in the explicit transport part and center difference for other
second derivatives. For the convenience of readers, we give the details of the spatial
discretizations. During each internal stage (21),

R̂k
i = r̂ni + ∆t

k−1∑
l=1

ãkl

{
− v

2∆x
(Ĵli+1 − Ĵli−1) +

vφ1/2

2∆x
(R̂l

i+1 − 2R̂l
i + R̂l

i−1)

− vφ1/2

4
(γli − γli−1 + βli+1 − β

l
i)

− µ

3∆x2

[
S−1
i+1/2(P̂

l

i+1 − P̂
l

i)− S−1
i−1/2(P̂

l

i − P̂
l

i−1)
]}

+ ∆t

k∑
l=1

akl

{
− 1

ε2
Si(R̂

l
i − P̂

l

i)

+
µ

3∆x2

[
S−1
i+1/2(P̂

l

i+1 − P̂
l

i)− S−1
i−1/2(P̂

l

i − P̂
l

i−1)
]}

,(27a)
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Ĵki = ĵni + ∆t

k−1∑
l=1

ãkl

{
− vφ

2∆x
(R̂l

i+1 − R̂l
i−1) +

vφ1/2

2∆x
(Ĵli+1 − 2Ĵli + Ĵli−1)

−vφ
4

(γli − γli−1 − β
l
i+1 + βli)

}
−∆t

k∑
l=1

akl
1

ε2

{
SiĴ

l
i + (1− ε2φ)v

R̂l
i+1 − R̂l

i−1

2∆x

}
,(27b)

where

γli =
1

∆x
minmod

(
R̂l
i+1 + φ−1/2Ĵli+1 − R̂l

i − φ−1/2Ĵli,

R̂l
i + φ−1/2Ĵli − R̂l

i−1 − φ−1/2Ĵli−1

)
,(28a)

βli =
1

∆x
minmod

(
R̂l
i+1 − φ−1/2Ĵli+1 − R̂l

i + φ−1/2Ĵli,

R̂l
i − φ−1/2Ĵli − R̂l

i−1 + φ−1/2Ĵli−1

)
.(28b)

Since P̂
k

can be obtained by (26), one gets a fully discretized P̂
k

i as follows:

(29) P̂
k

i −∆takk
µ

3∆x2

[
S−1
i+1/2(P̂

k

i+1 − P̂
k

i )− S−1
i−1/2(P̂

k

i − P̂
k

i−1)
]

= 〈R̂
k−1

i 〉.

By inverting a tridiagonal matrix, one can obtain P̂
k

i . Then using (29), the fully

discretized R̂k
i is obtained and thus Ĵki subsequently as

(
I +

akk∆t

ε2
Si

)
R̂k
i = r̂ni + ∆t

k−1∑
l=1

ãkl

{
− v

2∆x
(Ĵli+1−Ĵli−1)+

vφ1/2

2∆x
(R̂l

i+1−2R̂l
i+R̂l

i−1)

− vφ1/2

4
(γli − γli−1 + βli+1 − β

l
i)

− µ

3∆x2

[
S−1
i+1/2(P̂

l

i+1 − P̂
l

i)− S−1
i−1/2(P̂

l

i − P̂
l

i−1)
]}

+ ∆t

k−1∑
l=1

akl

{
− 1

ε2
Si(R̂

l
i − P̂

l

i)

+
µ

3∆x2

[
S−1
i+1/2(P̂

l

i+1 − P̂
l

i)− S−1
i−1/2(P̂

l

i − P̂
l

i−1)
]}

+ ∆takk

{
1

ε2
SiP̂

k

i +
µ

3∆x2

[
S−1
i+1/2(P̂

k

i+1 − P̂
k

i )

−S−1
i−1/2(P̂

k

i − P̂
k

i−1)
]}

,(30a)(
1+

akk∆t

ε2
Si

)
Ĵki = ĵni +∆t

k−1∑
l=1

ãkl

{
− vφ

2∆x
(R̂l

i+1−R̂l
i−1)+

vφ1/2

2∆x
(Ĵli+1−2Ĵli+Ĵli−1)

−vφ
4

(γli − γli−1 + βli+1 − β
l
i)

}
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−∆t

k−1∑
l=1

akl
1

ε2

{
SiĴ

l
i + (1− ε2φ)v

R̂l
i+1 − R̂l

i−1

2∆x

}

−∆takk

(
1− ε2φ

ε2

)
v

R̂k
i+1 − R̂k

i−1

2∆x
.(30b)

After calculating all R̂k
i and Ĵki for k = 1, . . . , s, one can update r̂n+1

i and ĵn+1
i

in (20) to get

r̂n+1
i = r̂ni + ∆t

s∑
k=1

b̃k

{
− v

2∆x
(Ĵki+1 − Ĵki−1) +

vφ1/2

2∆x
(R̂k

i+1 − 2R̂k
i + R̂k

i−1)

− vφ1/2

4
(γki − γki−1 + βki+1 − β

k
i )

− µ

3∆x2

[
S−1
i+1/2(P̂

k

i+1 − P̂
k

i )− S−1
i−1/2(P̂

k

i − P̂
k

i−1)
]}

+ ∆t

s∑
k=1

bk

{
− 1

ε2
Si(R̂

k
i − P̂

k

i )

+
µ

3∆x2

[
S−1
i+1/2(P̂

k

i+1 − P̂
k

i )− S−1
i−1/2(P̂

k

i − P̂
k

i−1)
]}

,(31a)

ĵn+1
i = ĵni + ∆t

s∑
k=1

b̃k

{
− vφ

2∆x
(R̂k

i+1 − R̂k
i−1) +

vφ1/2

2∆x
(Ĵki+1 − 2Ĵki + Ĵki−1)

−vφ
4

(γki − γki−1 + βki+1 − β
k
i )

}
−∆t

k∑
k=1

bk
1

ε2

{
SiĴ

k
i + (1− ε2φ)v

R̂k
i+1 − R̂k

i−1

2∆x

}
,(31b)

where γki and βki are defined the same as in (28).
We choose [2]

(32) µ = exp(−ε2/∆x)

as a smoothed version of

µ(ε) =

{
1 if ε < ∆x,

0 if ε2 ≥ ∆x.

Thus, for large value of ε (e.g., ε = 1), one can avoid the loss of accuracy caused
by adding and subtracting the penalty term; for very small value of ε (e.g., ε → 0),
µ→ 1.

Before continuing some observations are appropriate.

Remark 2.3.
• The velocity space is discretized by the so-called discrete ordinate method [8]

which corresponds to use of the Gauss–Legendre quadrature for the velocity
integrals.

• Notice that the matrix S(x) can be precomputed. For each stage of (20),
a large tridiagonal matrix has to be inverted. Since it is sparse and can be
precomputed, fast algorithms can be applied.

• To get the boundary conditions for r̂ and ĵ we refer to [20] for details.
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2.4. The sAP property. The formal definition of sAP was first defined in [21].
In this subsection, we are going to formally show that scheme (31) with internal stages
(30) converges to a limiting IMEX-RK gPC-SG discretization of the diffusion equation
(12) as ε goes to 0 and thus scheme (31) is sAP.

Denote

ξ1(R̂l
i, Ĵ

l
i) =− v

2∆x
(Ĵli+1 − Ĵli−1) +

vφ1/2

2∆x
(R̂l

i+1 − 2R̂l
i + R̂l

i−1)

− vφ1/2

4
(γli − γli−1 + βli+1 − β

l
i)

− µ

3∆x2

[
S−1
i+1/2(P̂

l

i+1 − P̂
l

i)− S−1
i−1/2(P̂

l

i − P̂
l

i−1)
]
,

ξ2(R̂l
i) =− 1

ε2
Si(R̂

l
i − P̂

l

i)

+
µ

3∆x2

[
S−1
i+1/2(P̂

l

i+1 − P̂
l

i)− S−1
i−1/2(P̂

l

i − P̂
l

i−1)
]
,

η1(R̂l
i) =− vφ

2∆x
(R̂l

i+1 − R̂l
i−1) +

vφ1/2

2∆x
(Ĵli+1 − 2Ĵli + Ĵli−1)

− vφ

4
(γli − γli−1 − β

l
i+1 + βli),

η2(R̂l
i, Ĵ

l
i) =

1

ε2

[
SiĴ

l
i + (1− ε2φ)v

R̂l
i+1 − R̂l

i−1

2∆x

]
.

From (27) one gets
R̂1
i

R̂2
i

...

R̂s
i

 =


r̂ni
r̂ni
...

r̂ni

+ ∆t


0

ã21ξ1(R̂1
i , Ĵ

1
i )

...∑s−1
l=1 ãslξ1(R̂l

i, Ĵ
l
i)

+ ∆tA


ξ2(R̂1

i )

ξ2(R̂2
i )

...

ξ2(R̂s
i )

 ,(33a)


Ĵ1
i

Ĵ2
i
...

Ĵsi

 =


ĵni
ĵni
...

ĵni

+ ∆t


0

ã21η1(R̂1
i )

...∑s−1
l=1 ãslη1(R̂l

i)

+ ∆tA


η2(R̂1

i , Ĵ
1
i )

η2(R̂2
i , Ĵ

2
i )

...

η2(R̂s
i , Ĵ

s
i )

 ,(33b)

where

(34) AK(i−1)+1:Ki,K(j−1)+1:Kj = Ai,jIK×K , IK×K is the K×K identity matrix,

and A is defined in (21). Denote W as the inverse matrix of A, then one obtains from
(33)

∆t


ξ2(R̂1

i )

ξ2(R̂2
i )

...

ξ2(R̂s
i )

 = W




R̂1
i

R̂2
i

...

R̂s
i

−


r̂ni
r̂ni
...

r̂ni

−∆t


0

ã21ξ1(R̂1
i , Ĵ

1
i )

...∑s−1
l=1 ãslξ1(R̂l

i, Ĵ
l
i)


 ,(35a)

∆t


η2(R̂1

i , Ĵ
1
i )

η2(R̂2
i , Ĵ

2
i )

...

η2(R̂s
i , Ĵ

s
i )

 = W




Ĵ1
i

Ĵ2
i
...

Ĵsi

−


ĵni
ĵni
...

ĵni

−∆t


0

ã21η1(R̂1
i )

...∑s−1
l=1 ãslη1(R̂l

i)


 ,(35b)
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Since W has the same structure as A, W should be a lower triangular matrix
with entries

(36) WK(i−1)+1:Ki,K(j−1)+1:Kj = ωi,jIK×K ,

where W = (ωi,j) is the inverse of the lower triangular matrix A in (21).
Then one can rewrite (35) as

∆tξ2(R̂k
i ) =

k∑
l=1

ωkl

[
R̂l
i − r̂ni −∆t

k−1∑
l=1

ãklξ1(R̂l
i, Ĵ

l
i)

]
,(37a)

∆tη2(R̂k
i , Ĵ

k
i ) =

k∑
l=1

ωkl

[
Ĵli − ĵni −∆t

k−1∑
l=1

ãklη1(R̂l
i)

]
.(37b)

More explicitly,

∆t

{
− 1

ε2
Si(R̂

k
i − P̂

k

i ) +
µ

3∆x2

[
S−1
i+1/2(P̂

k

i+1 − P̂
k

i )− S−1
i−1/2(P̂

k

i − P̂
k

i−1)
]}(38a)

=

k∑
l=1

ωkl

{
R̂l
i − r̂ni −∆t

k−1∑
l=1

ãkl

[
− v

2∆x
(Ĵli+1 − Ĵli−1) +

vφ1/2

2∆x
(R̂l

i+1 − 2R̂l
i + R̂l

i−1)

−vφ
1/2

4
(γli−γli−1+βli+1−β

l
i)−

µ

3∆x2

(
S−1
i+1/2(P̂

l

i+1−P̂
l

i)−S−1
i−1/2(P̂

l

i−P̂
l

i−1)
)]}

,

∆t

{
1

ε2

[
SiĴ

k
i + (1− ε2φ)v

R̂k
i+1 − R̂k

i−1

2∆x

]}(38b)

=

k∑
l=1

ωkl

{
Ĵli − ĵni −∆t

k−1∑
l=1

ãkl

[
− vφ

2∆x
(R̂l

i+1 − R̂l
i−1) +

vφ1/2

2∆x
(Ĵli+1 − 2Ĵli + Ĵli−1)

−vφ
4

(γli − γli−1 − β
l
i+1 + βli)

]}
.

Thus, setting ε→ 0, since Si is nonsingular, one obtains

R̂k
i = P̂

k

i ,(39a)

Ĵki = −vS−1
i

R̂k
i+1 − R̂k

i−1

2∆x
.(39b)

Inserting this back into (31a) and letting ε→ 0,

(40) r̂n+1
i = r̂ni + ∆t

s∑
k=1

b̃kξ̂1(R̂k
i ) + ∆t

s∑
k=1

bkξ̂2(R̂k
i ),

where

ξ̂1(R̂k
i ) =v2 1

4∆x2

[
S−1
i+1(R̂k

i+2 − R̂k
i )− S−1

i−1(R̂k
i − R̂k

i−2)
]

(41a)

− 1

3∆x2

[
S−1
i+1/2(R̂k

i+1 − R̂k
i )− S−1

i−1/2(R̂k
i − R̂k

i−1)
]
,(41b)

ξ̂2(R̂k
i ) =

1

3∆x2

[
S−1
i+1/2(R̂k

i+1 − R̂k
i )− S−1

i−1/2(R̂k
i − R̂k

i−1)
]
.(41c)
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Integrating above over v, one gets

(42) ρ̂n+1
i = ρ̂ni +

∆t

3∆x2

s∑
k=1

bk

[
S−1
i+1/2(P̂

k

i+1 − P̂
k

i )− S−1
i−1/2(P̂

k

i − P̂
k

i−1)
]
+O(∆x2),

where

(43) P̂
k

i = ρ̂ni +
∆t

3∆x2

k∑
l=1

akl

[
S−1
i+1/2(P̂

l

i+1 − P̂
l

i)− S−1
i−1/2(P̂

l

i − P̂
l

i−1)
]
,

which is an implicit RK scheme (requiring inverting a tridiagonal matrix at each stage)
for the limiting IMEX-RK gPC-SG approximation of the diffusion equation (12) and
also corresponds to (29). Thus, the sAP property [21] of the efficient IMEX R-K
scheme is shown.

3. The radiative heat transfer equation with random inputs. Let x ∈
D ⊂ R3 be the space variable, Ω ∈ S2 be the direction variable, S2 be the unit sphere
of R3, z ∈ Rd(d ≥ 1) be the random variable, and t ∈ R+ be the time.

We denote by I = I(x,Ω, z, t) the radiative intensity and by θ(x, z, t) the ma-
terial temperature. Introducing the Knudsen number ε, the radiative heat transfer
equations in nondimensional form are

ε2M∂tI + εΩ · ∇xI = B(θ)− I,(44a)

ε2∂tθ = ε2∆xθ − (B(θ)− 〈I〉)(44b)

with the total intensity

(45) 〈I〉(x, z, t) =
1

|S|2

∫
S2

I(x,Ω, z, t)dΩ

and the black body intensity

(46) B(θ) = σθ4,

where M is the Mach number (= 1 for this paper) and σ = σ(x, z) > 0 is the cross
section depending on the space variable and the random variable.

The initial conditions and reflection transmission boundary conditions are pre-
scribed as follows:

I.C.

{
I(x,Ω, z, 0) = II(x,Ω, z),

θ(x, z, 0) = θI(x, z),

B.C.


I(x̂,Ω, z, t) = α(n(x̂) · Ω)I(x̂,Ω′, z, t) + [1− α(n(x̂) · Ω)]IB(x̂,Ω, z, t),

for n(x̂) · Ω < 0,

θ(x̂, z, t) = θB(x̂, z, t),

(47)

where x̂ ∈ ∂D with outward unit normal n(x̂) and Ω′ = Ω − 2n(x̂)(n(x̂) · Ω) is the
reflection of Ω on the tangent plane to ∂D. The reflectivity α, 0 ≤ α ≤ 1, depends on
the incidence angle. These boundary conditions avoid the formation of a boundary
layer for ε� 1 [23], which is numerically difficult for AP schemes [16].

3.1. An even-odd decomposition. For simplicity, we consider the one-
dimensional case x ∈ [0, 1] and define v = cos(Ω · x), v ∈ [−1, 1]. Thus, the angular
averaging is defined as
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〈f〉 =
1

2

∫ 1

−1

f(v)dv.

The one-dimensional radiative heat transfer equation is

ε2∂tI + εv∂xI = B(θ)− I,(48a)

ε2∂tθ = ε2∂xxθ − (B(θ)− 〈I〉).(48b)

For v > 0,

(49)

ε2∂tI(v) + εv∂xI(v) = B(θ)− I(v),

ε2∂tI(−v)− εv∂xI(−v) = B(θ)− I(−v),

ε2∂tθ = ε2∂xxθ − (B(θ)− 〈I〉).

Now denote the even and odd parities

(50)
r(t, x, v, z) =

1

2
(I(t, x, v, z) + I(t, x,−v, z)),

j(t, x, v, z) =
1

2ε
(I(t, x, v, z)− I(t, x,−v, z)).

Then (49) becomes

∂tr + v∂xj =
1

ε2
(B(θ)− r),(51a)

∂tj +
1

ε2
v∂xr = − 1

ε2
j,(51b)

∂tθ = ∂xxθ −
1

ε2
(B(θ)− 〈r〉).(51c)

As ε→ 0, (51) gives

(52) B(θ) = r = 〈r〉, j = −v∂xr.

Applying this in (51a), integrating over v, and adding to (51c)

(53) ∂t(θ +B(θ)) = ∂x

[
∂xθ +

1

3
∂xB(θ)

]
,

which is the same limiting diffusion equation one can derive from the Hilbert expansion
as [23].

3.2. The gPC-SG formulation. Now we deal with the uncertainty. Using the
gPC approximation for r(t, x, v, z), j(t, x, v, z), and θ(t, x, z) and truncating at the
Nth order,

r(t, x, v, z) ≈ rN (t, x, v, z) =

K∑
k=1

r̂k(t, x, v)Φk(z) = r̂ ·Φ,(54a)

j(t, x, v, z) ≈ jN (t, x, v, z) =

K∑
k=1

ĵk(t, x, v)Φk(z) = ĵ ·Φ,(54b)

θ(t, x, z) ≈ θN (t, x, z) =

K∑
k=1

θ̂k(t, x)Φk(z) = θ̂ ·Φ,(54c)
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where Φk is the same as defined in (8) and

r̂ = (r̂1, r̂2, . . . , r̂K)T ,(55a)

ĵ = (ĵ1, ĵ2, . . . , ĵK)T ,(55b)

θ̂ = (θ̂1, θ̂2, . . . , θ̂K)T ,(55c)

Φ̂ = (Φ̂1, Φ̂2, . . . , Φ̂K)T .(55d)

Then (51) becomes

∂tr̂ + v∂xĵ =
1

ε2
(B(θ̂)− r̂),(56a)

∂tĵ +
1

ε2
v∂xr̂ = − 1

ε2
ĵ,(56b)

∂tθ̂ = ∂xxθ̂ −
1

ε2
(B(θ̂)− 〈r̂〉),(56c)

where B(θ̂) = (Bj)1≤j≤K with

(57) Bj =

∫
Iz

(θ̂ ·Φ)4σ(x, z)Φj(z)π(z)dz.

Similarly, the limiting diffusion equation (53) becomes

(58) ∂t[θ̂ + B(θ̂)] = ∂x

[(
I +

4

3
C

)
∂xθ̂

]
,

where I is a K ×K identity matrix and C(θ̂) = (cij)1≤i,j≤K with

(59) cij =

∫
Iz

(θ̂ ·Φ)3σ(x, z)Φi(z)Φj(z)π(z)dz.

The well-posedness of this equation under some gentle condition is proved in [19].

3.3. An efficient IMEX-RK scheme. One could apply the same relaxation
method as in [20] for system (56), but it will still suffer from the parabolic CFL
condition ∆t = O(∆x2). So similarly as in section 2.2, we rewrite (56) as follows:

∂tr̂ = −v∂xĵ +
1

ε2
(B(θ̂)− r̂),(60a)

∂tĵ = − 1

ε2
(̂j + v∂xr̂),(60b)

∂tθ̂ = ∂xxθ̂ −
1

ε2
(B(θ̂)− 〈r̂〉).(60c)

By adding and subtracting the term µ
3 ∂xxB(θ̂) in (60a) and the term φv∂xr̂ in

(60b), we reformulate the problem into its equivalent form

∂tr̂ =
[
−v∂xĵ−

µ

3
∂xxB(θ̂)

]
+

[
1

ε2
(B(θ̂)− r̂) +

µ

3
∂xxB(θ̂)

]
,

= ξ1(̂j, θ̂) + ξ2(r̂, θ̂),(61a)

∂tĵ = −vφ∂xr̂−
1

ε2
[̂j + (1− ε2φ)v∂xr̂] = η1(r̂) + η2(r̂, ĵ),(61b)

∂tθ̂ = ∂xxθ̂ −
1

ε2
(B(θ̂)− 〈r̂〉) = h(θ̂),(61c)
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where

ξ1(̂j, θ̂) = −v∂xĵ−
µ

3
∂xxB(θ̂),(62a)

ξ2(r̂, θ̂) =
1

ε2
(B(θ̂)− r̂) +

µ

3
∂xxB(θ̂),(62b)

η1(r̂) = −vφ∂xr̂,(62c)

η2(r̂, ĵ) = − 1

ε2
[̂j + (1− ε2φ)v∂xr̂].(62d)

The constants µ and φ are chosen the same as in (17) and (19), respectively.

3.3.1. The IMEX-RK method. Now we apply an IMEX-RK scheme to sys-
tem (61) where (ξ1,η1, 0)T is evaluated explicitly and (ξ2,η2, h)T implicitly; then we
obtain

r̂n+1 = r̂n + ∆t
s∑

k=1

b̃kξ1(Ĵk, Θ̂k) + ∆t
s∑

k=1

bkξ2(R̂k, Θ̂k),(63a)

ĵn+1 = ĵn + ∆t

s∑
k=1

b̃kη1(R̂k) + ∆t

s∑
k=1

bkη2(R̂k, Ĵk),(63b)

θ̂
n+1

= θ̂
n

+ ∆t

s∑
k=1

bkh(Θ̂
k
),(63c)

where the internal stages are

R̂k = r̂n + ∆t

k−1∑
l=1

ãklξ1(Ĵl, Θ̂
l
) + ∆t

k∑
l=1

aklξ2(R̂
l
, Θ̂

l
),(64a)

Ĵk = ĵn + ∆t

k−1∑
l=1

ãklη1(R̂l) + ∆t

k∑
l=1

aklη2(R̂l, Ĵl),(64b)

Θ̂
k

= θ̂
n

+ ∆t

k∑
l=1

aklh(Θ̂
l
).(64c)

Notice that for each internal stage, one has to compute Θ̂k first. Then R̂k and Ĵk
can be solved similarly as before:

(65) Θ̂
k

= θ̂
n

+ ∆t

k∑
l=1

akl

(
∂xxΘ̂

l
− 1

ε2
(B(Θ̂

l
)− 〈R̂

l
〉)
)
.

Take 〈·〉 on (64a),
(66)

〈R̂k〉 =

〈
r̂n + ∆t

k−1∑
l=1

ãklξ1(Ĵl, Θ̂l) + ∆t

k−1∑
l=1

aklξ2(R̂l, Θ̂l)

〉
+ ∆takk〈ξ2(R̂k, Θ̂k)〉

=

〈
r̂n + ∆t

k−1∑
l=1

ãklξ1(Ĵl, Θ̂l) + ∆t

k−1∑
l=1

aklξ2(R̂l, Θ̂l)

〉

+ ∆takk

(
1

ε2
(B(Θ̂k)− 〈R̂k〉) +

µ

3
∂xxB(Θ̂k)

)
.
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Add (65) and (66),

(67)

Θ̂
k

+ 〈R̂k〉 = θ̂
n

+ ∆t

k−1∑
l=1

aklh(Θ̂
l
)

+

〈
r̂n + ∆t

k−1∑
l=1

ãklξ1(Ĵl, Θ̂l) + ∆t

k−1∑
l=1

aklξ2(R̂l, Θ̂
l
)

〉
+ ∆takk

(
∂xxΘ̂

k
+
µ

3
∂xxB(Θ̂

k
)
)
.

Thus, 〈R̂k〉 can be expressed in terms of Θ̂
k

and other explicit terms. Inserting
it back into (65), then
(68)

Θ̂
k

= θ̂
n

+ ∆t
k−1∑
l=1

aklh(Θ̂
l
) + ∆takk∂xxΘ̂

k
− ∆takk

ε2
B(Θ̂

k
)

+
∆takk
ε2

[̂
θ
n
+∆t

k−1∑
l=1

aklh(Θ̂
l
)+

〈̂
rn+∆t

k−1∑
l=1

ãklξ1(Ĵl, Θ̂l)+∆t

k−1∑
l=1

aklξ2(R̂l, Θ̂
l
)

〉

+∆takk

(
∂xxΘ̂

k
+
µ

3
∂xxB(Θ̂

k
)
)
− Θ̂

k

]
.

Reordering and approximating B(Θ̂
k
) by B(Θ̂

k−1
)+4C(Θ̂

k−1
)(Θ̂

k
−Θ̂

k−1
) and

∂xxB(Θ̂
k
) by ∂x(4C(Θ̂

k−1
)∂xΘ̂

k
), one gets

(69) [(
1 +

∆takk
ε2

)
I +

∆takk
ε2

4C(Θ̂
k−1

)

]
Θ̂k −∆takk

(
1 +

∆takk
ε2

)
∂xxΘ̂

k

− (∆takk)2

ε2

4µ

3
∂x(C(Θ̂

k−1
)∂xΘ̂

k
)

=

(
1 +

∆takk
ε2

)
θ̂
n

+

(
1 +

∆takk
ε2

)
∆t

k−1∑
l=1

aklh(Θ̂
l
)

+
∆takk
ε2

[〈
r̂n + ∆t

k−1∑
l=1

ãklξ1(Ĵl, Θ̂
l
) + ∆t

k−1∑
l=1

aklξ2(R̂l, Θ̂
l
)

〉
+ 3B(Θ̂

k−1
)

]
,

where I is a K ×K identity matrix, and B and C are the same as (57) and (59).

3.3.2. The spatial discretization. Following the same space discretization as
in section 2.3,

[(
1 +

∆takk
ε2

)
I +

∆takk
ε2

4C(Θ̂)ki

]
Θ̂k
i −∆takk

(
1 +

∆takk
ε2

)
Θ̂
k

i+1 − 2Θ̂
k

i + Θ̂
k

i−1

∆x2

(70)

− (∆takk)2

ε2

4µ

3

C(Θ̂)k−1
i+1/2(Θ̂

k

i+1 − Θ̂
k

i )−C(Θ̂)k−1
i−1/2(Θ̂

k

i − Θ̂
k

i−1)

∆x2
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=

(
1 +

∆takk
ε2

)
θ̂
n

i +

(
1 +

∆takk
ε2

)
∆t

k−1∑
l=1

aklh(Θ̂
l

i)

+
∆takk
ε2

[〈
r̂ni + ∆t

k−1∑
l=1

ãklξ1(Ĵli, Θ̂
l

i) + ∆t

k−1∑
l=1

aklξ2(R̂l
i, Θ̂

l

i)

〉
+ 3B(Θ̂

k−1

i )

]
,

where

h(Θ̂
l

i) =
Θ̂
l

i+1 − 2Θ̂
l

i + Θ̂
l

i−1

∆x2
− 1

ε2
(B(Θ̂

l

i)− 〈R̂l
i〉),

ξ1(Ĵli, Θ̂
l

i) = − v

2∆x
(Ĵli+1 − Ĵli−1) +

vφ1/2

2∆x
(R̂l

i+1 − 2R̂l
i + R̂l

i−1)

− vφ1/2

4
(γli − γli−1 + βli+1 − β

l
i)−

µ

3

B(Θ̂
l

i+1)− 2B(Θ̂
l

i) + B(Θ̂
l

i−1)

∆x2
,

ξ2(R̂l
i, Θ̂

l

i) =
1

ε2
(B(Θ̂

l

i)− R̂l
i) +

µ

3

B(Θ̂
l

i+1)− 2B(Θ̂
l

i) + B(Θ̂
l

i−1)

∆x2
,

with γli and βli the same as (28).
We omit the details of velocity discretization and other space discretization, which

is the same as in section 2.3. On the left-hand side of (70), we approximate C(Θ̂)k−1
i+1/2

by a second order discretization

C(Θ̂)k−1
i+1/2 ≈

1

2

(
C(Θ̂)k−1

i+1 + C(Θ̂)k−1
i

)
.

Notice that to obtain Θ̂
k

i , one needs to invert a large K(Nx + 1) × K(Nx + 1)
matrix M, where Nx + 1 is the number of discretized points in space. M is defined
as follows:

(71) MKi+1:K(i+1),Kj+1:K(j+1) =


m1
i for j = i− 1,

m2
i for j = i,

m3
i for j = i+ 1,

0 otherwise,

, i = 0, 1, . . . , Nx,

with K ×K matrix m1,m2, and m3:

(72)

m1
i =− ∆takk

∆x2

(
1 +

∆takk
ε2

)
I− (∆takk)2

2ε2∆x2

4µ

3

[
C(Θ̂)k−1

i−1 + C(Θ̂)k−1
i

]
;

m2
i =

(
1 +

∆takk
ε2

)
I +

∆takk
ε2

4C(Θ̂)k−1
i +

2∆takk
∆x2

(
1 +

∆takk
ε2

)
I

+
(∆takk)2

2ε2∆x2

4µ

3

[
C(Θ̂)k−1

i+1 + 2C(Θ̂)k−1
i + C(Θ̂)k−1

i−1

]
;

m3
i =− ∆takk

∆x2

(
1 +

∆takk
ε2

)
I− (∆takk)2

2ε2∆x2

4µ

3

[
C(Θ̂)k−1

i + C(Θ̂)k−1
i+1

]
.

From [19], one can prove the matrix
(
1 + ∆takk

ε2

)
I+ ∆takk

ε2 4C(Θ̂)k−1
i is symmetric

and positive definite under some gentle conditions. Then obviously, M is strictly
block diagonal dominant, thus invertible. Since M is also sparse, a fast algorithm can

be applied to solve for Θ̂
k
, then R̂k and Ĵk can be obtained from (64a) and (64b)

subsequently.
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3.4. The sAP property. Similarly as in section 2.4, setting ε→ 0 in (64), one
gets

R̂k
i = B(Θ̂

k

i ),(73a)

Ĵki = −v
R̂k
i+1 − R̂k

i−1

2∆x
,(73b)

〈R̂k
i 〉 = B(Θ̂

k

i ).(73c)

Inserting (73) back into (63a) + (63c) and setting ε = 0,
(74)

r̂n+1
i + θ̂

n+1

i = r̂ni + θ̂
n

i +∆t

s∑
k=1

b̃kξ̂1(R̂k
i , Θ̂

k

i )+∆t

s∑
k=1

bkξ̂2(R̂k
i , Θ̂

k

i )+∆t

s∑
k=1

bkĥ(Θ̂
k

i ),

where

ξ̂1(R̂k, Θ̂
k
) = v2 R̂k

i+2 − 2R̂k
i + R̂k

i−2

4∆x2
−

B(Θ̂
k

i+1)− 2B(Θ̂
k

i ) + B(Θ̂
k

i−1)

3∆x2
,(75a)

ξ̂2(Θ̂
k
) =

B(Θ̂
k

i+1)− 2B(Θ̂
k

i ) + B(Θ̂
k

i−1)

3∆x2
,(75b)

ĥ(Θ̂
k
) =

Θ̂
k

i+1 − 2Θ̂
k

i + Θ̂
k

i−1

∆x2
.(75c)

Take 〈·〉 on (74) and use (73c),

(76)

θ̂
n+1

i + B(θ̂
n+1

i ) = θ̂
n

i + B(θ̂
n

i ) + ∆t

s∑
k=1

bk

[
Θ̂
k

i+1 − 2Θ̂
k

i + Θ̂
k

i−1

∆x2

+
B(Θ̂

k

i+1)− 2B(Θ̂
k

i ) + B(Θ̂
k

i−1)

3∆x2

]
+O(∆x2),

where

(77)

Θ̂
k

i + B(Θ̂
k

i ) = θ̂
n

i + B(θ̂
n

i ) + ∆t

k∑
l=1

akl

[
Θ̂
l

i+1 − 2Θ̂
l

i + Θ̂
l

i−1

∆x2

+
B(Θ̂

l

i+1)− 2B(Θ̂
l

i) + B(Θ̂
l

i−1)

3∆x2

]
,

which is an implicit RK method for the limiting diffusion equation (58). Thus the
sAP property is demonstrated.

4. Numerical tests. In this section we present several numerical tests to show
the performance of the new sAP IMEX schemes. We use the notation SSP2 to denote
the new scheme based on the second order IMEX-RK tableau (24) and JPT to denote
the second order scheme in [20] with the SG formulation. First we test the new
approach in the deterministic case and then we consider the presence of uncertainties.

4.1. Test 1: The linear transport equation. We consider problem (1) with

x ∈ [0, 1], FL(v) = 1, FR(v) = 0, σs = 1, σA = 0, Q = 0, ε = 10−6.
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Fig. 1. Test 1. The solution of the mass density ρ to the linear transport equation. JPT (◦),
∆x = 0.01, ∆t = 0.5(∆x)2, NT = 200, 1000, 3000; SSP2 (�), ∆x = 0.01, ∆t = λ∆x with λ = 0.04,
NT = 25, 125, 375.

Table 1
Test 1. Time cost comparison in seconds between JPT and SSP2 schemes.

t = 0.01 t = 0.05 t = 0.15
JPT 0.451567s 2.014770s 6.069805s
SSP2 0.069801s 0.290240s 0.815041s

We report the results at different times t = 0.01, t = 0.05, and t = 0.15 in
Figure 1. In all figures we use the notation NT to denote the number of time steps.
With fixed ∆x = 0.01, for JPT (◦) ∆t = 0.5(∆x)2, NT = 200, 1000, 3000; for SSP2
(�) ∆t = λ∆x with λ = 0.04, NT = 25, 125, 375. The exact diffusive solution is
computed by (2) with the same mesh size in the dashed line. One can see that both
methods are AP and work well in the diffusive regime at any time. The time cost of
the two methods is reported in Table 1, which shows that SSP2 is about 7 times more
efficient than JPT.

4.2. Test 2: The linear transport equation with random inputs. We
consider problem (1) with random inputs and

x ∈ [0, 1], FL(v) = 1, FR(v) = 0, σs = 1 + 0.5z, σA = 0, Q = 0, ε = 10−6,

where z follows uniform distribution on [−1, 1] (denoted by z ∼ U [−1, 1] in the fol-
lowing tests).

4.2.1. Diffusive regime: ε = 10−6. The mean and standard deviation are two
quantities of interest. So we examine these two quantities of the numerical solutions
at different times t = 0.01, t = 0.05 and t = 0.15 in Figure 2. Fourth order gPC basis
(K = 5) is used here and after. Given the gPC coefficients ρ̂k of ρ, it’s convenient to
calculate the mean value and standard deviation by

E[ρ] ≈ ρ̂1, Sd[ρ] ≈

√√√√ K∑
k=2

ρ̂2
k.



A690 SHI JIN, HANQING LU, AND LORENZO PARESCHI

Fig. 2. Test 2. The mean (left) and standard deviation (right) of the solution of the mass
density ρ to the linear transport equation. JPT (◦), ∆x = 0.025, ∆t = 0.0002, NT = 50, 250, 750;
SSP2 (�), ∆x = 0.025, ∆t = λ∆x with λ = 0.035, NT = 11, 57, 171.

Fig. 3. Test 2. Mass density ρ(x, z) of the linear transport equation by gPC-SSP2 with NT =
11, 57, 171.

With fixed ∆x = 0.025, for JPT (◦) ∆t = 0.0002 and NT = 50, 250, 750; for SSP2
(�) ∆t = λ∆x with λ = 0.035, NT = 11, 57, 171. The exact diffusive solution is
represented by the dashed line. As expected, both methods are sAP and match well
in the diffusive regime at any time. The distribution of ρ(x, z) at different times is
presented in Figure 3. We report the time cost comparison of gPC-JPT and gPC-SSP2
in Table 2, which shows that gPC-SSP2 is more than 3 times faster than gPC-JPT.
Since randomness is introduced and computation becomes more time-consuming, the
efficiency of gPC-SSP2 is remarkable.
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Table 2
Test 2. Time cost comparison in seconds between JPT and SSP2 schemes for ε = 10−6.

t = 0.01 t = 0.05 t = 0.15
gPC-JPT 2.662382s 13.159598s 39.255826s
gPC-SSP2 0.759259s 3.865332s 11.424931s

Fig. 4. Test 2. The mean (left) and standard deviation (right) of the solution of the mass
density ρ to the linear transport equation. JPT (◦), ∆x = 0.025, ∆t = 0.0002, NT = 500, 1250, 2500;
SSP2 (�), ∆x = 0.025, ∆t = λ∆x with λ = 0.035, NT = 114, 285, 571.

4.2.2. Kinetic regime: ε = 1. Similarly as in the experiments in the diffusive
regime, we examine the mean and standard deviation of the numerical solutions at
different times t = 0.1, t = 0.25, and t = 0.5 in Figure 4. With the same mesh size
and notation, we compare the gPC-JPT (◦) and the gPC-SSP2 (�) methods and we
can see they match well in the kinetic regime as expected. The distribution of ρ(x, z)
at different times is presented in Figure 5 and the time cost comparison is reported
in Table 3.

4.2.3. Convergence test. In this section we investigate the convergence rate
of the gPC-SSP2 method numerically in the diffusive regime (ε = 10−6) and the
kinetic regime (ε = 1), respectively. Numerical results in [21] already showed the
spectral convergence of the gPC approach. Thus here we refine the spatial mesh by
2 with fixed degree of gPC polynomials K = 8. Relative error of mean and standard
deviation until t = 0.1 for NX= 40, 80, 160, 320 in L∞ norm are plotted in log-log
scale in Figure 6. The second order convergence is reached as expected.

4.3. Test 3: The radiative heat transfer equation. We then compare the
two methods for deterministic radiative heat transfer equations (44) near diffusive
regime (ε = 10−6) with the initial and boundary conditions

II(x, µ, z, 0) = 0, θI(x, z, 0) = 0, x ∈ [0, 1],

θB(0, z, t) = 1, θB(1, z, t) = 0;

IB(0, µ, z, t) = 1, µ > 0, IB(1, µ, z, t) = 0, µ < 0,

and constant coefficient
σ(x) = 1.

Figure 7 shows the solutions of temperature θ at different times t = 0.01, t = 0.05,
and t = 0.15. With fixed ∆x = 0.025, for JPT (◦) ∆t = 0.002; for SSP2 (�) ∆t = λ∆x
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Fig. 5. Test 2. Mass density ρ(x, z) of the linear transport equation by gPC-SSP2 with NT =
114, 285, 571.

Table 3
Test 2. Time cost comparison in seconds between JPT and SSP2 schemes for ε = 1.

t = 0.1 t = 0.25 t = 0.5
gPC-JPT 21.332570s 66.430655s 114.492939s
gPC-SSP2 11.232046 30.808011s 81.000325s

with λ = 0.035. The exact diffusion solution is computed by (54) with the same mesh
size in the dashed line. One can see that both methods are AP and work well in the
diffusive regime at any time. The time cost of both methods is reported in Table 4,
which shows that SSP2 is about two times faster than JPT in this nonlinear case.

4.4. Test 4: The radiative heat transfer equation with random inputs.
We then compare the two methods in (44) with randomness in the cross section with
the initial and boundary conditions

II(x, µ, z, 0) = 0, θI(x, z, 0) = 0, x ∈ [0, 1],

θB(0, z, t) = 1, θB(1, z, t) = 0;

IB(0, µ, z, t) = 1 + 0.5z, µ > 0, IB(1, µ, z, t) = 0, µ < 0,

and random coefficient

σ(z) = 1 + 0.5z, z ∼ U [−1, 1].

In Figure 8, we report the mean and standard deviation of temperature θ at
different times t = 0.01, t = 0.05, and t = 0.15. Similar to Test 2, the mean value and
standard deviation are calculated by
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Fig. 6. Test 2. Errors in mean and standard deviation versus N of gPC-SSP2 method in
diffusive regime (ε = 10−6) and kinetic regime (ε = 1).

Fig. 7. Test 3. The solution of temperature θ to the radiative heat transfer equation. JPT (◦),
∆x = 0.025, ∆t = 0.0002, NT = 50, 250, 750; SSP2 (�), ∆x = 0.025, ∆t = λ∆x with λ = 0.035,
NT = 11, 57, 171.

Table 4
Test 3. Time cost comparison in seconds between JPT and SSP2 schemes.

t = 0.01 t = 0.05 t = 0.15
JPT 0.112507s 0.268415s 0.806410s
SSP2 0.059658s 0.208812s 0.583166s

E[θ] ≈ θ̂1, Sd[θ] ≈

√√√√ K∑
k=2

θ̂2
k.

With fixed ∆x = 0.025, for JPT (◦) ∆t = 0.0002 and NT = 50, 250, 750; for SSP2
(�) ∆t = λ∆x with λ = 0.035, NT = 11, 57, 171. The reference diffusion solution
is represented by the dashed line. We refer to [19] for the same results using the
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Fig. 8. Test 4. The mean (left) and standard deviation (right) of the solution of temperature
θ to the radiative heat transfer equation. JPT (◦), ∆x = 0.025, ∆t = 0.0002, NT = 50, 250, 750;
SSP2 (�), ∆x = 0.025, ∆t = λ∆x with λ = 0.035, NT = 11, 57, 171.

Fig. 9. Test 2. Temperature θ(x, z) of the radiative heat transfer equation by gPC-SSP2 with
NT = 11, 57, 171.

micro-macro decomposition based gPC method. Good agreements of the gPC-JPT
and gPC-SSP2 methods and the reference solution are observed in the diffusive regime
at plotted times. The distribution of θ(x, z) at different times is depicted in Figure
9. We report the time cost comparison of gPC-JPT and gPC-SSP2 in Table 5, which
shows that gPC-SSP2 is nearly 4 times faster than gPC-JPT. The nonlinearity slows
down gPC-JPT a lot and thus the advantage in efficiency of gPC-SSP2 is significant
in this nonlinear problem with random inputs.
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Table 5
Test 4. Time cost comparison in seconds between JPT and SSP2 schemes.

t = 0.01 t = 0.05 t = 0.15
gPC-JPT 172.431508s 804.915170s 2329.405654s
gPC-SSP2 36.945166s 192.040137s 626.736282s

5. Conclusions. In this article, for linear transport and radiative heat transfer
equations with random inputs, new generalized polynomial chaos based asymptotic-
preserving stochastic Galerkin schemes are introduced. Compared with previous
methods for these problems, our new method uses the implicit-explicit time discre-
tization to gain higher order accuracy, and by using a modified diffusion operator
based penalty method, a more relaxed stability condition—a hyperbolic, rather than
parabolic—CFL condition is achieved when the Knudsen number is small, in the
diffusive regime.

These schemes allow efficient computation of random transport equations that
contain both uncertainties and multiscales, allowing Knudsen number independent
time step, mesh size, and degree of polynomials, with a spectral accuracy in the
random space. They can be used efficiently for all ranges of Knudsen numbers.

There remain many issues to be resolved. First, we only studied the one-dimensional
problems in space and velocity. The next step will be to extend the methods to
higher dimensions. In addition, a multidimensional challenge is also presented in the
random space. Sparse grids could be used, as was done in [32], but it remains to be
explored.
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[12] P. Degond and F. Deluzet, Asymptotic-preserving methods and multiscale models for plasma

physics, J. Comput. Phys., 336 (2017), pp. 429–457.
[13] G. Dimarco and L. Pareschi, Numerical methods for kinetic equations, Acta Numer., 23

(2014), pp. 369–520.
[14] L. Gosse and G. Toscani, Asymptotic-preserving and well-balanced schemes for radiative

transfer and the Rosseland approximation, Numer. Math., 98 (2004), pp. 223–250.



A696 SHI JIN, HANQING LU, AND LORENZO PARESCHI

[15] J. Hu and S. Jin, A stochastic Galerkin method for the Boltzmann equation with uncertainty,
J. Comput. Phys., 315 (2016), pp. 150–168.

[16] S. Jin, Asymptotic Preserving (AP) Schemes for Multiscale Kinetic and Hyperbolic Equations:
A Review, Lecture notes, Porto Ercole, Grosseto, Italy, 2010, pp. 177–216.

[17] S. Jin, J.-G. Liu, and Z. Ma, Uniform spectral convergence of the stochastic Galerkin method
for the linear transport equations with random inputs in diffusive regime and a micro-
macro decomposition based asymptotic preserving method, Res. Math. Sci., 4 (2017).

[18] S. Jin and L. Liu, An asymptotic-preserving stochastic galerkin method for the semiconductor
Boltzmann equation with random inputs and diffusive scalings, Multiscale Model. Simul.,
15 (2017), pp. 157–183.

[19] S. Jin and H. Lu, An asymptotic-preserving stochastic Galerkin method for the radiative heat
transfer equations with random inputs and diffusive scalings, J. Comput. Phys., 334 (2017),
pp. 182–206.

[20] S. Jin, L. Pareschi, and G. Toscani, Uniformly accurate diffusive relaxation schemes for
multiscale transport equations, SIAM J. Numer. Anal., 38 (2000), pp. 913–936.

[21] S. Jin, D. Xiu, and X. Zhu, Asymptotic-preserving methods for hyperbolic and transport
equations with random inputs and diffusive scalings, J. Comput. Phys., 289 (2015), pp.
35–52.

[22] A. Klar, An asymptotic-induced scheme for nonstationary transport equations in the diffusive
limit, SIAM J. Numer. Anal., 35 (1998), pp. 1073–1094.

[23] A. Klar and C. Schmeiser, Numerical passage from radiative heat transfer to nonlinear
diffusion models, Math. Models Methods Appl. Sci., 11 (2001), pp. 749–767.

[24] P. Lafitte and G. Samaey, Asymptotic-preserving projective integration schemes for kinetic
equations in the diffusion limit, SIAM J. Sci. Comput., 34 (2012), pp. A579–A602.

[25] E. W. Larsen and J. B. Keller, Asymptotic solution of neutron transport problems for small
mean free paths, J. Math. Phys., 15 (1974), pp. 75–81.

[26] E. W. Larsen and J. E. Morel, Asymptotic solutions of numerical transport problems in
optically thick, diffusive regimes II, J. Comput. Phys., 83 (1989), pp. 212–236.

[27] E. W. Larsen, J. E. Morel, and W. F. Miller, Jr., Asymptotic solutions of numerical
transport problems in optically thick, diffusive regimes, J. Comput. Phys., 69 (1987), pp.
283–324.

[28] M. Lemou and L. Mieussens, A new asymptotic preserving scheme based on micro-macro
formulation for linear kinetic equations in the diffusion limit, SIAM J. Sci. Comput., 31
(2010), pp. 334–368.

[29] Q. Li and L. Wang, Uniform regularity for linear kinetic equations with random input based
on hypocoercivity, SIAM/ASA J. Uncertain. Quantif., 5 (2017), pp. 1193–1219.

[30] G. Naldi and L. Pareschi, Numerical schemes for hyperbolic systems of conservation laws
with stiff diffusive relaxation, SIAM J. Numer. Anal., 37 (2000), pp. 1246–1270.

[31] L. Pareschi and G. Russo, Implicit-Explicit Runge-Kutta schemes and applications to hyper-
bolic systems with relaxations, J. Sci. Comput., 25 (2005), pp. 129–155.

[32] R. Shu and S. Jin, A stochastic Asymptotic-Preserving scheme for a kinetic-fluid model for
disperse two-phase flows with uncertainty, J. Comput. Phys., 335 (2017), pp. 905–924.

[33] H. Spohn, Large Scale Dynamics of Interacting Particles, Springer-Verlag, Berlin, 1991.
[34] W. Sun, S. Jiang, and K. Xu, An asymptotic preserving unified gas kinetic scheme for gray

radiative transfer equations, J. Comput. Phys., 285 (2015), pp. 265–279.
[35] D. Xiu and G.E. Karniadakis, The Wiener–Askey polynomial chaos for stochastic differential

equations, SIAM J. Sci. Comput., 24 (2002), pp. 619–644.
[36] Y. Zhu and S. Jin, The Vlasov-Poisson-Fokker-Planck system with uncertainty and a one-

dimensional asymptotic-preserving method, SIAM Multiscale Model. Simul., 15 (2017),
pp. 1502–1529.


	Introduction
	The linear neutron transport equation with random inputs
	The gPC-SG formulation
	An efficient IMEX-RK scheme with an improved CFL condition
	A new penalization method
	The IMEX implementation

	The space discretization
	The sAP property

	The radiative heat transfer equation with random inputs
	An even-odd decomposition
	The gPC-SG formulation
	 An efficient IMEX-RK scheme
	The IMEX-RK method
	The spatial discretization

	 The sAP property

	Numerical tests
	Test 1: The linear transport equation
	Test 2: The linear transport equation with random inputs
	Diffusive regime: =10-6
	Kinetic regime: =1
	Convergence test

	Test 3: The radiative heat transfer equation
	Test 4: The radiative heat transfer equation with random inputs

	Conclusions
	References

