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Abstract

Variable metric techniques are a crucial ingredient in many first order optimization algo-

rithms. In practice, they consist in a rule for computing, at each iteration, a suitable

symmetric, positive definite scaling matrix to be multiplied to the gradient vector. Besides

quasi-Newton BFGS techniques, which represented the state-of-the-art since the 70’s, new

approaches have been proposed in the last decade in the framework of imaging problems ex-

pressed in variational form. Such recent approaches are appealing since they can be applied

to large scale problems without adding significant computational costs and they produce

an impressive improvement in the practical performances of first order methods. These

scaling strategies are strictly connected to the shape of the specific objective function and

constraints of the optimization problem they are applied to; therefore, they are able to ef-

fectively capture the problem features. On the other side, this strict problem dependence

makes difficult extending the existing techniques to more general problems. Moreover, in

spite of the experimental evidence of their practical effectiveness, their theoretical properties

are not well understood. The aim of this paper is to investigate these issues; in particular,

we develop a unified framework for scaling techniques, multiplicative algorithms and the

Majorization-Minimization approach. With this inspiration, we propose a scaling matrix

rule for variable metric first order methods applied to nonnegatively constrained problems

exploiting a suitable structure of the objective function. Finally, we evaluate the effectiveness

of the proposed approach on some image restoration problems.
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1. Introduction

In image restoration problems, the data are represented by a nonnegative vector g ∈ Rm

corresponding to some noisy measurements of the true object, x̃ ∈ Rn, we would like to

observe. In many applications, the measurement (or acquisition) process can be modeled

by a linear operator H ∈ Rm×n and the image restoration problem consists in computing

an approximation of x̃, knowing g and H, possibly taking into account also a nonnegative

background constant bg ∈ Rm. Due to the ill-posedness of the problem and to the presence

of noise, a direct solution of the linear system Hx + bg = g does not produce a mean-

ingful solution. As a valid alternative, the Bayesian paradigm [1, 2] leads to a variational

reformulation of the inverse problem as

min
x∈Rn

D(Hx+ bg; g) +R(x) (1)

where D(Hx+ bg; g) expresses the data discrepancy, while R(x) represents a regularization

term, introducing some a priori information in the model and forcing desired properties on

the solution.

The fit-to-data term is usually defined through the Maximum Likelihood principle according

to the noise statistics. For example, the data discrepancy corresponding to Poisson noise is

the Kullback-Leibler divergence

D(z; g) =

m∑
i=1

gi log
gi
zi

+ zi − gi, (2)

while the least squares functional

D(z; g) =
1

2
‖z − g‖2 (3)

is related to Gaussian noise. The functions in the above examples are both convex and

smooth, but other kinds of noise lead to nonconvex (e.g. Cauchy noise, signal dependent

Gaussian noise) or nonsmooth (impulse noise) data discrepancy.

As regards the regularization term, it may consists in simple bounds, for example nonneg-

ativity constraints, or in more general functions. Typical examples are: Total Variation,
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Hypersurface Potential and Markov Random Fields [3, 1, 2] for edge preserving, Tikhonov

for smoothness preservation, `1 for sparsity promoting, or a combination of them.

By separating smooth from nonsmooth terms, (1) can be rewritten also as

min
x∈Rn

F (x) ≡ Φ(x) + Ψ(x). (4)

where Φ : Rn → R ∪ {∞} is possibly nonconvex, continuously differentiable on an open

subset of Rn containing dom(Ψ) = {x ∈ Rn : Ψ(x) < +∞} and Ψ : Rn → R ∪ {∞}

is convex, possibly nonsmooth. A special instance of (4) is the constrained minimization

problem

min
x∈Ω

Φ(x), (5)

which is recovered when Ψ reduces to the indicator function ιΩ of a non-empty, closed,

convex set Ω

ιΩ(x) =

 0 if x ∈ Ω

+∞ otherwise
.

In the framework of signal and image processing, one of the most popular approaches for

solving (4) is the family of forward–backward (FB) methods [4, 5], which includes as special

instance the projected gradient methods [6] for the case (5).

Such kind of methods are well suited for large scale problems, such as imaging applications,

where a medium accuracy solution is usually satisfactory, since they use only first order

information - the gradient of Φ(x) - and their implementation does not require a large amount

of memory. On the other side, they often exhibit a slow convergence behaviour, resulting in

a large number of iterations to obtain an acceptable approximation of the solution.

Variable metric techniques have been proposed in the recent literature as a tool to be included

in FB methods, especially with the aim of accelerating the progress towards a solution

[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. More precisely, the variable metric approach is

based on the following definition of the proximity operator of a convex function Ψ at x with

respect to the metric induced by a given symmetric, positive definite matrix D:

proxΨ,D(x) := argmin
y∈Rn

Ψ(y) +
1

2
‖y − x‖2D, (6)
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where the D-metric of a vector y is defined as ‖y‖D =
√
yTDy. Then, the general iteration

of a variable metric FB method can be stated as follows [19, 20, 12]:

d(k) = proxαkΨ,D(k)(x(k) − αkD(k)−1
∇Φ(x(k)))− x(k)

x(k+1) = x(k) + λkd
(k),

(7)

where αk and λk are positive parameters controlling the steplength and D(k) is a symmetric,

positive definite matrix, to be chosen at each iteration k.

It is worth stressing that D(k) not only affects the metric involved in the proximal point

computation, but its inverse also multiplies the gradient direction: for this reason, variable

metric strategies are also referred in the literature as scaling techniques.

When Ψ = ιΩ, the proximity operator reduces to the projection operator with respect to

the D(k)-norm, proxαkΨ,D(k) ≡ PΩ,D(k)

PΩ,D(k)(x) = argmin
y∈Ω

1

2
‖y − x‖2D(k)

and the variable metric FB scheme (7) consists in the Scaled Gradient Projection (SGP)

method [10, 13].

We point out that different choices of the parameters λk, αk and D(k) in (7) lead to different

algorithms in terms of convergence properties and practical performance.5

While the literature on FB methods provides several approaches on how to select the

steplength parameters, also in an adaptive way, the scaling matrix selection is a challenging

and less investigated problem. The latter issue is the main focus of this paper.

From a practical point of view, a good scaling matrix selection rule should consist in a for-

mula which, given the current iterate x(k) and, possibly, the gradient of Φ(x(k)) produces10

a matrix D(k) such that: 1) the theoretical convergence of the iterates to a solution is pre-

served; 2) it is easy to invert; 3) it improves the effectiveness of the whole algorithm.

As far as the theoretical convergence issue, iteration (7) has been analyzed by several au-

thors under different settings [10, 13, 15, 21, 19, 20, 22, 23]. Typically, the assumptions

on the scaling matrix are not very restrictive: indeed, regardless of other properties, the15

convergence of the iterates to a solution can be proved when {D(k)}k∈N is any sequence

of symmetric positive definite matrices whose eigenvalues are bounded or, in addition, also

converge to a fixed value, namely:

• 1

L
≤ δi(D

(k)) ≤ L, i = 1, ..., n, for all k ≥ 0, L ≥ 1, where δi(D
(k)) represents
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the i-th eigenvalue of D(k),20

or, in addition,

• D(k+1) � (1 + ξk)D(k), ξk ≥ 0,

∞∑
k=0

ξk < ∞ , where, given A,B ∈ Rn×n

symmetric and positive definite matrices, the notation A � B indicates that B −A is

a symmetric and positive definite matrix. This last condition states that the sequence

{D(k)}k∈N asymptotically approaches a constant matrix [19, Lemma 2.3].25

The ideas developed in this work are thought for variable metric FB methods whose se-

quence of scaling matrices only satisfies one of the previous recalled hypotheses.

Under these assumptions on {D(k)}k∈N, the convergence rate on the objective function values

is at most O
(

1
k

)
[24, 13, 22, 23] and the same lower complexity bounds can be given inde-

pendently on the choice of the parameters [16]. Nevertheless the convergence analysis does30

not give a clear indication on how to define D(k) in order to improve the performances. Ac-

tually, in [12], the authors build a sequence of scaling matrices starting from the convergence

analysis but the hypotheses made on D(k) are different from the ones we are considering.

On the other side, it has been numerically shown [10, 13, 25] that method (7) equipped with

suitable strategies for selecting D(k) can reach performances comparable with algorithms35

with known superlinear convergence rate.

In spite of the experimental evidence of the huge impact that scaling techniques may have on

algorithm performance, it is still unclear how to give an explanation of these good numerical

results, particularly at the early stage of the iterative process, and how to design general,

adaptive and effective rules.40

Our aim is to investigate these two issues, also giving an overview of existing approaches.

The main contribution of the paper is a rule for computing a scaling matrix when Ψ(x) in

(4) includes nonnegativity constraints and Φ(x) has a suitable, quite general structure.

Our discussion moves from the Split Gradient technique [9, 26], described in Section 2, a45

simple strategy for computing a diagonal scaling matrix D(k) for nonnegatively constrained

problems, which is at the basis of two very popular image deconvolution methods: the Lucy-

Richardson (LR) method, known also as Expectation Maximization (EM), and the Iterative

Space Reconstruction Algorithm (ISRA). Borrowing the ideas in [27], in Section 3 we show

that applying the Split Gradient scaling technique corresponds to the minimization of suit-50
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able auxiliary (or surrogate) functions. Hence, from the properties of surrogate functions,

these scaling techniques promote the objective function decrease. In this framework, a sur-

rogate function, and the corresponding scaling matrix, can be computed for any term Φ(x)

which can be written as a combination of logarithms and/or powers, as described in Section

3.1. These ideas are extended in Section 3.2, to consider a larger class of function: in par-55

ticular, Tikhonov, Hypersurface potential, which is a generalization of the Total Variation

functional, and Markov Random Fields can be included in our extended analysis, as well

as nonnegatively constrained least squares problems where the Hessian may have negative

entries. At the best of our knowledge, these contributions are new.

The scaling matrix obtained from the auxiliary function approach must be adapted to fit60

the convergence framework for FB methods, as explained in Section 3.3. Here, we also show

that the same scaling techniques can be included also in the variant of FB methods based

on an inertial/extrapolation step.

The numerical assessment of the proposed techniques is described in Section 4, where the

impact of scaling strategies is evaluated on some image restoration applications.65

Notations . Subscripts denote the entries of matrices and vectors, possibly in square brack-

ets: for example, xi and [x]i denote the i-th component of the vector x (or the i-th occurrence

of a sequence of scalars), while Aij and [A]ij indicate the element of A on the i-th row, j-th

column. Superscripts in round brackets indicate an element of a finite or infinite sequence

of vector or matrices (for example x(k), D(k)). We denote by sign(·) the sign function, i.e.70

sign(x) = 1 if x ≥ 0, sign(x) = −1 if x < 0. Any function from R to R applied to a vector,

as well as equalities and inequalities between vectors, are to be intended component-wise.

2. Scaling matrix selection strategy: state of the art

In this section we describe some popular methods based on scaling/variable metric strate-

gies which can be cast in the form (7).75

The most classical examples of scaled gradient methods are Newton, quasi-Newton and

Gauss-Newton methods. However, the scaling matrix associated to these classical examples

requires the computation of the Hessian ∇2Φ(x(k)) or an approximation of it, and this may

lead to expensive additional computations, especially on large scale problems.

Therefore, in the following we will consider scaling strategies based only on the gradient80
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∇Φ(x(k)), which is already available since it is the fundamental ingredient of the FB itera-

tion itself.

2.1. The Split Gradient strategy

This technique was introduced in the framework of image deblurring [9, 26] and nonneg-

ative matrix factorization [28, 27], as a way to design scaled gradient methods.

The Split Gradient strategy was initially proposed for solving problem (4) when Ψ(x) re-

duces to nonnegativity constraints. For sake of simplicity, here and in the following we

restrict our attention to the case

min
x≥0

Φ(x), (8)

even if the core of our discussion can be extended to lower bounds constraints and also when

Ψ(x) is the sum of the indicator function of the nonnegative orthant plus other convex,

nonsmooth terms.

The first order optimality conditions of (8) write as

x·∇Φ(x) = 0, x ≥ 0, ∇Φ(x) ≥ 0, (9)

where · denotes the component-wise product. The basic idea is to devise two functions

V,U : Rn → Rn such that the gradient of Φ can be decomposed as

∇Φ(x) = V (x)− U(x), with V (x) > 0 ∀x > 0, and U(x) ≥ 0 ∀x > 0. (10)

Thus, the equalities in (9) can be rewritten as a fixed point equation

x = x·U(x)

V (x)
, (11)

where the fraction symbol indicates component-wise division. Given a strictly positive start-

ing vector x(0), the above equation can be solved by the fixed point method

x(k+1) = x(k)·U(x(k))

V (x(k))
. (12)

Since the starting vector x(0) is positive, all the subsequent iterates remain strictly positive.

Examples. In the field of the variational approach to image restoration, two very popular

methods are the Iterative Space Reconstruction Algorithm (ISRA) [29] and the Expectation

Maximization or Richardson Lucy (EM-RL) method [7, 30]. Both methods apply to the
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nonnegatively constrained problem (8) with Φ(x) = D(Hx; g), where D(·; g) is defined as

in (3) in the first case, while the latter is for the minimization of the Kullback-Leibler

divergence (2). In many applications, the linear model satisfies the following assumptions:

Hij ≥ 0,

m∑
i=1

Hij > 0,

n∑
j=1

Hij > 0 ∀i = 1, ...,m, j = 1, ..., n, (13)

therefore, when g is a positive vector, the following decompositions and corresponding mul-

tiplicative iterations perfectly fit in the framework of (10) and (12):

∇Φ(x) = HT g︸︷︷︸
U(x)

−HTHx︸ ︷︷ ︸
V (x)

⇒ x(k+1) = x(k) · HT g

HTHx(k)
(ISRA) (14)

∇Φ(x) = HT g

Hx︸ ︷︷ ︸
U(x)

−HT1︸ ︷︷ ︸
V (x)

⇒ x(k+1) =
x(k)

HT1
·HT g

Hx(k)
(EM-RL), (15)

(here 1 is the vector with all entries equal to one). �85

Iteration (12) is expressed in a multiplicative form, but it can be written also as a scaled

gradient method

x(k+1) = x(k) − x(k)

V (x(k))
(V (x(k))− U(x(k))) = x(k) − x(k)

V (x(k))
· ∇Φ(x(k)) (16)

which fits in (7) with αk = λk = 1 and

D(k) = diag

(
V (x(k))

x(k)

)
. (17)

Therefore, the gradient splitting (10) leads to a multiplicative algorithm (12) which, in turn,

can be interpreted as a scaled gradient method (16). The convergence of the iteration (16)

is not assured in general (see [9, 26]). Nevertheless, this approach suggests a strategy to

devise a scaling matrix in the framework of variable metric FB methods. In other words,90

the Split Gradient strategy for scaling matrix selection consists in: 1) finding a gradient

decomposition as in (10); 2) computing the matrix D(k) in (17) (or an adaptation of it) to

be employed in (7).

Such strategy has been successfully applied in a quite large class of problems, resulting in

a significant improvement of the convergence behaviour of the underlying variable metric95

method [10, 15, 21, 18].
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It is worth stressing that, in general, the splitting (10) is not uniquely defined, but several

significant problems have a kind of natural decomposition, corresponding to well behaving

algorithms. However, a clear explanation of these good numerical results as well as a general

rule to devise a gradient splitting leading to an effective scaling matrix is still missing.100

2.2. The Majorization Minimization approach

In this section we describe a different approach to scaling matrix selection, which is

related to the framework of Majorization-Minimization (MM) methods. This class of algo-

rithms is based on the following definition.

Definition 2.1. Let Φ : Rn → R be a real valued function and let x̄ be a point belonging105

to its domain. Then, an auxiliary or surrogate function of Φ at x̄ is any function G(·, x̄)

satisfying the following majorization conditions:

(i) G(x̄, x̄) = Φ(x̄);

(ii) G(x, x̄) ≥ Φ(x) for any x in dom(Φ).

If Φ and G(·, x̄) are differentiable functions, then we have [31, Prop. 1] ∇G(x̄, x̄) = ∇Φ(x̄),

where ∇G(x̄, x̄) denotes the gradient of the function G(·, x̄) evaluated at x̄.

A MM scheme for solving the problem (8) is given by the following basic iteration

x(k+1) = argmin
x≥0

G(x, x(k)); (18)

when G(·, x̄) is chosen as a strictly convex function with respect to the first argument, the

iteration (18) is well-definite.

A direct consequence of the properties of surrogate functions is that (18) is a descent method,

i.e. Φ(x(k+1)) ≤ Φ(x(k)):

Φ(x(k+1)) ≤ G(x(k+1), x(k)) ≤ G(x(k), x(k)) = Φ(x(k))

In the literature on MM methods, a relevant issue is the construction of a surrogate in110

specific cases, often exploiting convexity or concavity properties of the objective function

(see [32, 12, 33, 27, 34] and references therein). Indeed, an effective implementation of the

method (18) requires that the minimizer of the surrogate is easily computed with an explicit

formula. Two interesting examples where the surrogate is separable are described below.
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Examples. In [34, 28], given a strictly positive vector x̄, the following surrogates are com-115

puted for the least squares functional and for the KL divergence (bg = 0):

GLS(x, x̄) = (Hx̄− g)T (Hx̄− g) + (Hx̄− g)TH(x− x̄) +
1

2
(x− x̄)diag

(
HTHx̄

x̄

)
(x− x̄)

GKL(x, x̄) =

m∑
i=1

gi log gi − gi
n∑
j=1

Hij x̄j
[Hx̄]i

log

(
xj
x̄j

[Hx̄]i

)
+ [Hx]i − gi

 .

An easy calculation shows that

x(k+1) = x(k) · HT g

HTHx(k)
= x(k) − x(k)

HTHx(k)
∇Φ(x(k)) = arg minGLS(x, x(k)) (ISRA)

x(k+1) =
x(k)

HT1
·HT g

Hx(k)
= x(k) − x(k)

HT1
∇Φ(x(k)) = arg minGKL(x, x(k)) (EM-RL).

Therefore, we can regard ISRA and EM-RL from three different points of view: either as

multiplicative algorithms based on gradient splitting, either as scaled gradient methods, or

as MM methods. �

120

MM methods are directly related to scaling techniques when there exists a strictly convex

quadratic surrogate function, written as

G(x, x(k)) = Φ(x(k)) +∇Φ(x(k))T (x− x(k)) +
1

2
(x− x(k))TA(k)(x− x(k)).

Here A(k) is a symmetric positive definite matrix such that the minimum point of G(·, x(k))

belongs to the constraint set. Furthermore, from a practical point of view, A(k) has to be

chosen as an easily solvable matrix, as, for example, a diagonal matrix. In this case, the

MM method (18) writes also as

x(k+1) = argmin
x≥0

G(x, x(k)) = x(k) −A(k)−1
∇Φ(x(k)), (19)

which clearly is a special instance of (7) with D(k) = A(k) and αk = λk = 1.

Therefore, the MM strategy for scaling matrix selection consists in: 1) constructing a

quadratic surrogate for the objective function Φ(x); 2) define D(k) as the Hessian of the

quadratic surrogate. This approach has been considered for example in [12, 33]. Clearly, the

implementation of the MM iteration (19) is effective when A(k) has a simple, for example125

diagonal, structure.
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3. Proposed approach

In this section we present our approach, which is based on a combination of the two

strategies described in the previous section. In particular, developing the ideas in [27], we

explain the connections between SG and MM strategies, by showing how, in a quite general

case, a surrogate G(·, ·) can be constructed upon a uniquely defined gradient splitting of

the form (10). The crucial properties of the resulting surrogate, which is not necessarily

quadratic, is that its domain is the strictly positive orthant and its unique minimum point

(or an approximation of it) can be written as

x(k+1) ' x(k) −D(k)−1
∇Φ(x(k))

where D(k) is a diagonal matrix with positive entries depending only on the components of

∇Φ(x(k)).

Once a surrogate with these properties has been calculated, we propose to employ the130

associated scaling matrix D(k) with a suitable thresholding on its diagonal entries in the

framework of variable metric FB methods (7). The thresholding technique enables to assure

the uniformly boundedness of the eigenvalues of D(k), essential for the convergence results of

(7). The main advantages of this strategy are: 1) it promotes both feasibility and objective

function decrease; 2) it does not introduce additional expensive computations.135

We point out that quadratic surrogates are also employed to define the variable metric in the

FB algorithm [12], where the majorization property is crucial for proving the convergence of

the iterates. Our point of view is different, since the convergence analysis of the FB methods

where we want to apply our approach allows much more freedom to choose the scaling

matrix. Indeed, as it will be better explained in Section 3.3, the practical implementation140

of our scaling strategy, taking into account of numerical and theoretical requirements, will

result in an approximate majorization property.

3.1. Construction of the surrogate

In this section we revisit and extend the approach in [27] with the aim to calculate a

surrogate for any function which can be written in the form

f0(x) =

p∑
d=1

m∑
i=1

αd,ih([Hx]i + cd,i, ζd) (20)
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where H ∈ Rn×m is a matrix with nonnegative entries such that Hx > 0 for any x > 0, cd,i

are nonnegative constant parameters and

h(σ, t) =

 σt−1
t if t 6= 0

log(σ) if t = 0
. (21)

The domain of h(·, t) is [0,∞) if t > 0 and (0,∞) if t ≤ 0.

Examples: data discrepancy for Gaussian noise, Poisson noise and signal dependent Gaus-

sian noise. The least–squares function (3) with background bg ≥ 0 can be written in the

form (20) with the settings

p = 2 cd,i = bg α1,i = −gi ζ1 = 1,

α2,i = 1 ζ2 = 2,
(22)

up to the additive constant
∑m

1=1(
g2
i

2 + gi) + m
2 .

Also the generalized Kullback–Leibler divergence (2) fits into the structure (20) up to an

additive constant independent of x, by setting

p = 2 cd,i = bg α1,i = −gi ζ1 = 0,

α2,i = 1 ζ2 = 1.
(23)

The additive constant is m+
∑m
i=1(gi log gi − gi).

A further example is the negative log-likelihood discrepancy corresponding to signal depen-

dent Gaussian noise (see [12] end reference therein):

f0(x) =
1

2

m∑
i=1

([Hx]i − gi)2

ai[Hx]i + bi
+ log(ai[Hx]i + bi), (24)

where ai, bi are positive parameters related to the noise model. It is easy to verify that the

previous expression is equivalent to

f0(x) =
1

2

m∑
i=1

{
1

ai

(
([Hx]i + ηi) +

(gi + ηi)
2

[Hx]i + ηi
− 2(gi + ηi)

)
+ log([Hx]i + ηi)) + log(ai)

}
,

with ηi = bi/ai. Therefore, this nonconvex functional is a special case of (20) with

p = 3 cd,i = ηi α1,i = 1
2ai

ζ1 = 1,

α2,i = − (gi+ηi)
2

2ai
ζ2 = −1,

α3,i = 1
2 ζ3 = 0.

(25)

The additive constant is 1
2

∑m
i=1 log ai + (gi+ηi−1)2

ai
�145

Useful properties of h(σ, t) are summarized in the following lemma.
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Lemma 3.1. The function h defined in (21) has the following properties:

1. h(·, t) is convex with respect to the first argument if t ≥ 1 and is concave if t ≤ 1 (for

t = 1 is linear, then it can be considered both convex and concave);

2. h(·, t) is continuous with respect to the first argument in its domain and monotone150

increasing;

3. h(σ, ·) is continuous with respect to the second argument and monotone nondecreasing

for any σ > 0.

Proof. Claims 1, 2 are straightforward. Let us prove 3. The continuity of h(σ, ·) with

respect to the second argument follows from the known limit limt→0+(σt − 1)/t = log(σ).

In order to prove the monotonicity, we write the explicit expression of the partial derivative

with respect to t, for t > 0

∂h

∂t
(σ, t) =

σt(t log(σ)− 1) + 1

t2
;

the sign of the partial derivative is the sign of its numerator

µσ(t) = σt(t log(σ)− 1) + 1.

For any σ > 0 we have that µ′σ(t) = σtt(log σ)2 is negative for t < 0 and positive for t > 0.

Then, the function µσ(t) has a minimum at t = 0. Since µσ(0) = 0, we have that µσ(t) ≥ 0155

∀t. This implies that ∂h
∂t (σ, t) ≥ 0 for all σ > 0 and, therefore, h(σ, ·) is monotone nonde-

creasing for any σ > 0. �

In the following, we present a general technique to define a specific surrogate for a

function of the form (20). Before stating the theorem, we introduce the following notation

ωd,i(z) = αd,ih(z, ζd) (26)

so that f0 in (20) writes also as

f0(x) =

p∑
d=1

m∑
i=1

ωd,i([Hx]i + cd,i). (27)

We also denote by ∂d,i,j the partial derivative of ωd,i([Hx]i+cd,i) with respect to xj at x̄

∂d,i,j ≡
∂ωd,i([Hx]i + cd,i)

∂xj

∣∣∣∣
x=x̄

= αd,iHij
∂h(σ, ζd)

∂σ

∣∣∣∣
σ=[Hx̄]i+cd,i

= αd,iHij([Hx̄]i+cd,i)
ζd−1.

(28)

Note that:
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1. the last equality in (28) also holds when ζd = 0;160

2. when Hi,j > 0, in view of the monotonicity of h(·, ζd), the sign of ∂d,i,j is the same of

αd,i.

Based on the previous definitions we can write

∂f0(x̄)

∂xj
=

p∑
d=1

m∑
i=1

∂d,i,j

and, by grouping the positive and the negative terms, we have

[∇f0(x̄)]j =
∑

(d,i)∈W+

∂d,i,j︸ ︷︷ ︸
≡[V0(x̄)]j

−
∑

(d,i)∈W−
−∂d,i,j︸ ︷︷ ︸

≡[U0(x̄)]j

(29)

where

W+ = {(d, i) ∈ {1, ..., p} × {1, ..., n} : αd,i > 0}

W− = {(d, i) ∈ {1, ..., p} × {1, ..., n} : αd,i < 0}

Finally, we define V0(x̄), U0(x̄) ∈ Rn as the vectors whose components are [V0(x̄)]j and

[U0(x̄)]j , respectively.165

We remark that with a little abuse of notation, if G fulfills Definition 2.1, we can consider as

a surrogate any function of the form G+c, where c is any real number which does not depend

on the first argument of the function G; this is because, in the framework of MM methods,

we are mostly interested in the minimum points of G (see (18)) which do not change if we

add a constant. For this reason, borrowing the notation from [27], we introduce the symbols170

c
=,

c
≤ to indicate that an equality (respectively inequality) holds up to an additive constant.

Theorem 3.1. [27, Theorem 1]Let f0 be a function with the structure (20) with p ≥ 2 and

let x, x̄ be two points of its domain. Assume that Hij ≥ 0, x̄j > 0 for all i, j = 1, ..., n.

Then, the function G0 defined as

G0(x, x̄) =

n∑
j=1

x̄j [V0(x̄)]jh

(
xj
x̄j
, ζmax

)
− x̄j [U0(x̄)]jh

(
xj
x̄j
, ζmin

)
(30)

where

ζmax = max{ζ1, ..., ζd, 1}, ζmin = min{ζ1, ..., ζd, 1}

is a convex surrogate of f0 at x̄ up to an additive constant.
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Proof. The proof proceeds by finding a majorant for each term ωd,i(z) defined in (26),

considering the convex and concave cases separately.

If ωd,i(z) is concave (i.e. either αd,i > 0 and ζd ≤ 1 or αd,i < 0 and ζd > 1), for the

properties of a differentiable concave function, we have

ωd,i(z) ≤ ωd,i(z̄) + ω′d,i(z̄)(z − z̄),

where

ω′d,i(z) = αd,i
∂h

∂σ
(σ, ζd)

∣∣∣∣
σ=z

= αd,iz
ζd−1,

which, for z = [Hx]i + cd,i and z̄ = [Hx̄]i + cd,i gives

ωd,i([Hx]i + cd,i)
c
≤ ω′d,i([Hx̄]i + cd,i)([Hx]i + cd,i)

c
= ω′d,i([Hx̄]i + cd,i)([Hx]i)

=

n∑
j=1

αd,i([Hx̄]i + cd,i)
ζd−1Hij︸ ︷︷ ︸

∂d,i,j

xj

=

n∑
j=1

∂d,i,jxj
c
=

n∑
j=1

∂d,i,j x̄jh

(
xj
x̄j
, 1

)
.

We now consider the case when ωd,i(z) = αd,ih(z, ζd) is convex (i.e. either αd,i > 0 and175

ζd > 1 or αd,i < 0 and ζd ≤ 1). A simple algebra gives

ωd,i([Hx]i + cd,i) = αd,ih

 n∑
j=1

Hijxj + cd,i, ζd


= αd,ih

 n∑
j=1

Hij x̄j
[Hx̄]i + cd,i

xj
x̄j

([Hx̄]i + cd,i) +
cd,i

[Hx̄]i + cd,i
([Hx̄]i + cd,i), ζd


Since the n+1 coefficients

cd,i
[Hx̄]i+cd,i

,
Hij x̄j

[Hx̄]i+cd,i
, j = 1, .., n sum to one, the Jensen’s inequality

yields

ωd,i([Hx]i + cd,i) ≤
n∑
j=1

αd,i
Hij x̄j

[Hx̄]i + cd,i
h

(
xj
x̄j

([Hx̄]i + cd,i), ζd

)
+

+αd,i
cd,i

[Hx̄]i + cd,i
h ([Hx̄]i + cd,i, ζd)

c
=

n∑
j=1

αd,i
Hij x̄j

[Hx̄]i + cd,i
h

(
xj
x̄j

([Hx̄]i + cd,i), ζd

)
.
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If ζd 6= 0 the right-hand-side of the previous inequality can be written as

n∑
j=1

αd,i
Hij x̄j

[Hx̄]i + cd,i
h

(
xj
x̄j

([Hx̄]i + cd,i), ζd

)
=

n∑
j=1

αd,i
Hij x̄j

[Hx̄]i + cd,i

1

ζd

[(
xj
x̄j

([Hx̄]i + cd,i)

)ζd
− 1

]
c
=

n∑
j=1

αd,iHij([Hx̄]i + cd,i)
ζd−1 x̄j

ζd

(
xj
x̄j

)ζd
=

n∑
j=1

∂d,i,j
x̄j
ζd

(
xj
x̄j

)ζd
c
=

n∑
j=1

∂d,i,j x̄jh

(
xj
x̄j
, ζd

)
.

When ζd = 0, we have that

h

(
xj
x̄j

([Hx̄]i + cd,i), 0

)
= h

(
xj
x̄j
, 0

)
+ h([Hx̄]i + cd,i, 0)

which gives180

n∑
j=1

αd,i
Hij x̄j

[Hx̄]i + cd,i
h

(
xj
x̄j

[Hx̄]i + cd,i, 0

)
c
=

n∑
j=1

αd,i
Hij x̄j

[Hx̄]i + cd,i
h

(
xj
x̄j
, 0

)

=

n∑
j=1

∂d,i,j x̄jh

(
xj
x̄j
, 0

)
.

In both cases we obtain that

ωd,i([Hx]i + cd,i)
c
≤

n∑
j=1

∂d,i,j x̄jh

(
xj
x̄j
, ζd

)
. (31)

Now, we notice that, by definition (28), since x̄j and Hij are nonnegative, the quantities

∂d,i,j have the same sign of αd,i. Then, by exploiting the monotonicity of h(σ, ·) with respect

to its second argument, we can further majorize (31), obtaining

ωd,i([Hx]i + cd,i)
c
≤


∑n
j=1 ∂d,i,j x̄jh

(
xj
x̄j
, ζmax

)
if αd,i > 0,∑n

j=1 ∂d,i,j x̄jh
(
xj
x̄j
, ζmin

)
if αd,i < 0.

(32)
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Finally we have

f0(x) =

p∑
d=1

m∑
i=1

ωd,i([Hx]i + cd,i)

=
∑

(d,i)∈W+

ωd,i([Hx]i + cd,i) +
∑

(d,i)∈W−
ωd,i([Hx]i + cd,i)

c
≤

∑
(d,i)∈W+

n∑
j=1

∂d,i,j x̄jh

(
xj
x̄j
, ζmax

)
+

∑
(d,i)∈W−

n∑
j=1

∂d,i,j x̄jh

(
xj
x̄j
, ζmin

)

=

n∑
j=1

 ∑
(d,i)∈W+

∂d,i,j


︸ ︷︷ ︸

≡(V0)j(x̄)

x̄jh

(
xj
x̄j
, ζmax

)
−

n∑
j=1

 ∑
(d,i)∈W−

−∂d,i,j


︸ ︷︷ ︸

≡(U0)j(x̄)

x̄jh

(
xj
x̄j
, ζmin

)
,

which gives the result. �

We observe that the assumption p ≥ 2 guarantees that there exist at least two values of

the second argument of h different from each other; therefore it cannot happen that ζmax is

equal to ζmin.185

In order to derive the MM method (18) associated with the surrogate (30), we consider

the gradient of G0 with respect to its first argument (note that G0(·, x̄) is separable):

∂

∂xj
G0(x, x̄) = x̄j [V0(x̄)]j

1

x̄j

∂h(σ, ζmax)

∂σ

∣∣∣∣
σ=

xj
x̄j

− x̄j [U0(x̄)]j
1

x̄j

∂h(σ, ζmin)

∂σ

∣∣∣∣
σ=

xj
x̄j

= [V0(x̄)]j

(
xj
x̄j

)ζmax−1

− [U0(x̄)]j

(
xj
x̄j

)ζmin−1

.

Solving the equation ∇jG0(x, x̄) = 0 with respect to the first argument gives

x = x̄·
(
U0(x̄)

V0(x̄)

) 1
ζmax−ζmin

,

consisting in the unique minimum point of G0(·, x̄), which has strictly positive entries as

long as x̄ is strictly positive.

Iterating the previous formula leads to the following MM method in multiplicative form

x(k+1) = x(k)·
(
U0(x(k))

V0(x(k))

)ζ
, ζ =

1

ζmax − ζmin
. (33)

When ζ = 1, iteration (33) corresponds exactly to the SG method (16) with scaling matrix

(17). This case includes the Kullback-Leibler divergence (23) and the least squares (22); in
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particular, the surrogates and corresponding MM methods reduce to EM-LR and ISRA.190

When ζ 6= 1, as for example in the case (24)-(25), we propose the following approximation

x(k+1) = x(k)·
(

1 +
−∇f0(x(k))

V0(x(k))

)ζ
' x(k)·

(
1 + ζ

−∇f0(x(k))

V0(x(k))

)
= x(k) − ζ x(k)

V0(x(k))
·∇f0(x(k))

where the first equality follows from (29) and the approximate equality is justified by the

first order Taylor expansion (1 + s)ζ ' 1 + ζs. In this case, the convergence of the method

has to be carefully analyzed.

In conclusion, motivated by all the above discussion, we propose the following scaling strat-

egy for problem (8) where the objective function has the form (20): 1) compute the decom-

position (29); 2) define the scaling matrix

D(k)−1
= diag

(
ζ

x(k)

V0(x(k))

)
, (34)

where a thresholding procedure has to be applied to guarantee convergence assumptions for

the related FB method (7).

Remark . The same arguments of Theorem 3.1 can be adapted to handle the problem

min
x≥xlow

f0(x)

where f0(x) can be written in the form (20) and xlow ∈ Rn represents lower bounds for

the variable x. Indeed, using the change of variable y = x − xlow, the above problem is

equivalent to minimize f0(y+xlow) subject to y ≥ 0, which can be still expressed as in (20).

Under the assumption that [Hxlow]i + cd,i ≥ 0, ∀i = 1, ...,m, the proof of Theorem 3.1 is

still valid and leads to the surrogate

G0(x, x̄) =

n∑
j=1

(x̄j−xlowj )[V0(x̄)]jh

(
xj − xlowj
x̄j − xlowj

, ζmax

)
−(x̄j−xlowj )[U0(x̄)]jh

(
xj − xlowj
x̄j − xlowj

, ζmin

)
.

The corresponding variant of the scaling strategy (34) is

D(k)−1
= diag

(
ζ

(x(k) − xlow)

V0(x(k))

)
.
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We observe that, besides the assumption (20) on the structure of the objective function,195

most of the arguments leading to the scaling matrix above rely on the nonnegativity of the

entries of the matrix H. In the next section, we describe a procedure to derive a surrogate

also without the nonnegativity assumption on Hij , which applies to functions which are not

included in the formulation (20).

3.2. Generalizations200

In this section we extend our approach to a more general case, with the aim to devise a

technique, based on a suitable gradient splitting, to compute a surrogate for functions which

can not be represented in the form (20). In particular, we focus on the following case

f1(x) =

r∑
l=1

φl(‖A(l)x− b(l)‖2), (35)

where φl : R → R are differentiable, concave, monotone increasing functions and A(l) is

an `× n matrix, possibly having negative entries. The motivation of this extension is that

several interesting functionals can be expressed as in (35). For example, when H has negative

entries, the least squares function (3) can not be included in the discussion of the previous

section, but it can be represented as in (35) by setting r = 1, φ1(s) = 1
2s, b

(1) = g − bg and205

A(1) = H. Some further examples are described below.

Example: data discrepancy for Cauchy noise. The maximum likelihood criterion leads to

the following data discrepancy function for data corrupted by Cauchy noise [35]:

D(Hx; g) =

m∑
i=1

log(γ2 + ([Hx]i − gi)2),

where γ is a given scalar parameter related to the noise distribution. This function is a

special instance of (35) with the settings

r = m, φl(s) = log(γ2 + s), [A(l)]j = Hlj , j = 1, ..., n, b(l) = gl.

We observe that, when H has nonnegative entries, a surrogate for the above function can

be computed also by applying the procedure proposed in [12, formula (36)]- [33, Table 1]

(see also [21, Section 4.3]). However, this approach can not be extended to functions of the

form (35) where A(l) has negative entries, as in the following examples. �210
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Examples: Tikhonov and edge preserving regularization. In the framework of image restora-

tion, a family of very popular regularization functions is based on the discrete gradient

operator, which associates to each pixel the vector whose components are the differences

with respect to its neighbors. For example, for a 2D N × N image, the discrete gradient

operator at the l-th pixel is the matrix ∇(l) ∈ R2×n, where n = N2, with all zero entries

except [∇(l)]1,l = [∇(l)]2,l = −1, [∇(l)]1,l+1 = [∇(l)]1,l+N = 1, assuming that some boundary

conditions are set.

The Tikhonov regularization of order 1 is then obtained from (35) with φl(s) = 1
2s, A

(l) =

∇(l) and b(l) = 0.

When φl(·) =
√
·+ δ2, for some fixed δ ≥ 0, and A(l) = ∇(l), formula (35) corresponds to

the Hyper-surface (HS) regularization functional [3], which, introducing the set of indexes

Nl = {l + 1, l +N}, writes also as

f1(x) =

n∑
l=1

√∑
u∈Nl

(xu − xl)2
+ δ2. (36)

For small values of δ, the HS function can be regarded as a differentiable approximation of

the Total Variation (TV) function, which is recovered for δ = 0.

The HS functional itself can be considered as a special case of a function of the form

f1(x) =

n∑
l=1

√√√√∑
u∈Nl

(
(xu − xl)2

εu,l

)
+ δ2 (37)

where Nl is some index set and εu,l are weighting parameters. Clearly, f1(x) in (37) has the

form (35), provided that the nonzero elements of A(l) are defined according to the indexes

in Nl.

When Nl contains the indexes of all the 8 nearest neighbors of the l-th pixel, a typical choice

for the weights is εu,l = 1 for vertical and horizontal, and εu,l =
√

2 for diagonal neighbors:215

the function (37) corresponding to these settings is known in the literature as the Markov

Random Field (MRF) regularization [1]. �

In the following, we show that the convex function

G1(x, x̄) =

n∑
j=1

x̄j [V1(x̄)]jh

(
xj
x̄j
, 2

)
− x̄j [U1(x̄)]jh

(
xj
x̄j
, 1

)
, (38)
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which is built upon a suitable gradient decomposition∇f1(x) = V1(x)−U1(x), V1(x), U1(x) ≥

0, is a surrogate of the function (35). Our analysis is based on a simple decomposition for220

matrices whose properties are summarized in the following Lemma. The proof is omitted

since it is straightforward.

Lemma 3.2. Let A be any `× n matrix and define P,Q ∈ R`×n as follows:

Pij =

 Aij if Aij > 0

0 otherwise
, Qij =

 −Aij if Aij < 0

0 otherwise
,

i = 1, ..., `

j = 1, ..., n,
(39)

Therefore we have the decompositions

A = P −Q, ATA = PTP +QTQ︸ ︷︷ ︸
≡S

− (PTQ+QTP )︸ ︷︷ ︸
≡R

where the components of each matrix in the summations are nonnegative and, in addition,

S,R are symmetric. Moreover, the following properties hold:

1. diag(R) = 0;225

2. S +R = ÃT Ã, where Ã = P +Q, i.e. Ãij = |Aij |;

3. S +R is symmetric, positive semidefinite.

For sake of simplicity, we consider first the simple case ` = 1, φ1(s) = 1
2s, then we will

apply this preliminary result to the general case.

Theorem 3.2. Let the function f1(x) be defined as

f1(x) =
1

2
‖Ax− b‖2

and define P , Q, S and R as in Lemma 3.2. Moreover, let Σ be the diagonal ` × ` matrix

such that Σjj = sign(bj) and let P̃ , Q̃ ∈ R`×n be the two matrices of the decomposition

ΣA = P̃ − Q̃ defined as in (39). Define the function G1(x, x̄) as in (38), where

V1(x) = 2Sx+ Q̃TΣb and U1(x) = (S +R)x+ P̃TΣb. (40)

Then, ∇f1(x) = V1(x)−U1(x) and the majorization condition f1(x) ≤ G(x, x̄) holds for all230

positive n-vectors x, x̄.

Proof. We first rewrite the decomposition ATA = S −R as

ATA = S −R = 2S − (S +R). (41)
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Then, we observe that Σ is an orthogonal symmetric matrix and, therefore, we have the

following splitting of AT b as a difference of two nonnegative vectors:

AT b = ATΣTΣb = (P̃ − Q̃)TΣb = P̃TΣb− Q̃TΣb. (42)

Then, the gradient decomposition (40) directly follows from the above expressions, since

∇f1(x) = ATAx−AT b .

From Lemma 3.2, S + R is symmetric, positive semidefinite. Therefore, for any x, x̄ ∈ Rn

we have

0 ≤ (x− x̄)T (S +R)(x− x̄)

which writes also as

−xT (S +R)x ≤ x̄T (S +R)x̄− 2x̄T (S +R)x.

Then, from (41) we obtain

1

2
xTATAx ≤ (xTSx− x̄T (S +R)x+

1

2
x̄T (S +R)x̄)

c
≤ xTSx− x̄T (S +R)x (43)

The quadratic term in the right-hand-side of inequality (43) can be developed as

xTSx = xT (PTP +QTQ)x = xTPTPx+ xTQTQx.

Let us consider the term xTPTPx. For sake of simplicity, we first assume that P has no

zero rows (otherwise one should redefine P suppressing the null rows). We have

xTPTPx =
∑̀
i=1

[Px]2i
c
= 2

∑̀
i=1

h([Px]i, 2).

Then, proceeding as in the proof of Theorem 3.1 (Jensen’s inequality), we obtain

xTPTPx
c
≤ 2

∑̀
i=1

n∑
j=1

Pij x̄j
[Px̄]i

h

(
xj
x̄j

[Px̄]i, 2

)
c
= 2

∑̀
i=1

n∑
j=1

Pij x̄j [Px̄]ih

(
xj
x̄j
, 2

)
(44)

= 2

n∑
j=1

(∑̀
i=1

Pij [Px̄]i

)
x̄jh

(
xj
x̄j
, 2

)

= 2

n∑
j=1

[PTPx̄]j x̄jh

(
xj
x̄j
, 2

)
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Observe that the previous formula holds also if some rows of P are zero: in this case the

corresponding value [Px̄]i is zero and it does not contribute in the summation (44). The

same arguments apply also to the term xTQTQx. Therefore, exploiting additivity, we can

conclude that

xTSx
c
≤ 2

n∑
j=1

[PTPx̄]j + [QTQx̄]j︸ ︷︷ ︸
[Sx̄]j

 x̄jh

(
xj
x̄j
, 2

)
(45)

Consider now the linear term in (43):

x̄T (S +R)x =

n∑
j=1

[(S +R)x̄]jxj
c
=

n∑
j=1

[(S +R)x̄]j x̄jh

(
xj
x̄j
, 1

)
(46)

Using (42), (45) and (46), we obtain235

f1(x)
c
=

1

2
xTATAx− xTAT b

c
≤ xTSx+ xT Q̃TΣb− x̄T (S +R)x− xT P̃TΣb

c
≤

n∑
j=1

2[Sx̄]j x̄jh

(
xj
x̄j
, 2

)
+ [Q̃TΣb]j x̄jh

(
xj
x̄j
, 1

)
+

−[(S +R)x̄]j x̄jh

(
xj
x̄j
, 1

)
− [P̃TΣb]j x̄jh

(
xj
x̄j
, 1

)
Finally, the result follows by using the monotonicity of h(·, ·) with respect to its second

argument. �

The following corollary is a direct consequence of Theorem 3.2.

Corollary 3.1. Let f1(x) be defined as in (35), where φl(·) are differentiable, concave,

monotone increasing functions. Moreover, let the matrices S(l), R(l), Σ(l), P̃ (l), Q̃(l) be

defined as Theorem 3.2. Consider the function G1(x, x̄) as in (38), where

V1(x) = 2

r∑
l=1

φ′l(‖A(l) − b(l)‖2)(2S(l)x+ Q̃(l)TΣ(l)b(l)) (47)

and

U1(x) = 2

r∑
l=1

φ′l(‖A(l) − b(l)‖2)((S(l) +R(l))x+ P̃ (l)TΣ(l)b(l)). (48)

Then, ∇f1(x) = V1(x)−U1(x) and the majorization condition f1(x) ≤ G(x, x̄) holds for all

positive n-vectors x, x̄.240
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Proof. Applying the chain rule we obtain

∇f1(x) =

r∑
l=1

2φ′(‖A(l)x− b(l)‖2)(A(l)TA(l)x−A(l)T b)

and using the decomposition of A(l)TA(l) and A(l)T b directly gives the gradient decomposi-

tion (47)–(48). Since φl is concave the following inequality holds:

φl(s) ≤ φl(s̄) + φ′l(s̄)(s− s̄).

Moreover, by the monotonicity assumption, we have φ′l(s̄) > 0 for any s̄. Summing up the

previous inequalities with s = ‖A(l)x− b(l)‖2 and s̄ = ‖A(l)x̄− b(l)‖2 for l = 1, ..., r gives

f1(x) =

r∑
l=1

φl(‖A(l)x− b(l)‖2)
c
≤

r∑
l=1

φ′l(‖A(l)x̄− b(l)‖2)‖A(l)x− b(l)‖2.

Finally, applying Theorem 3.2 to any term ‖A(l)x− b(l)‖2 gives the result. �

Examples. Here we provide the explicit expression of the surrogate for the examples men-

tioned at the beginning of this section.

The vector V1(x) for the data discrepancy corresponding to Cauchy noise results in V1(x̄) =245

2HT ȳ, where ȳi = [Hx̄]i/(γ
2 + ([Hx̄]i − gi)2. It is interesting to observe that the corre-

sponding scaling strategy is the same proposed in [21], motivated there only from a SG

point of view. The numerical experience in [21] shows the good numerical performances of

this choice.

For the Tikhonov regularization of order 1, i.e. for A(l) = ∇(l) and assuming periodic250

boundary conditions, it holds that S(l) is a square diagonal matrix of order N2 = n, where

the only non-zero entries are: [S(l)]l,l = 2, [S(l)]l+1,l+1 = [S(l)]l+N,l+N = 1, whereas the

non-zero entries of R(l) are [R(l)]l,l+1 = [R(l)]l+1,l = 1 and [R(l)]l,l+N = [R(l)]l+N,l = 1. As

a consequence, we have

[V1(x̄)]j = 2[S(j) + S(j−1) + S(j−N)]j,j x̄j = 8x̄j

[U1(x̄)]j = [(S(j) +R(j) + S(j−1) +R(j−1) + S(j−N) + S(j−N))x̄]j

= 2x̄j + x̄j+1 + x̄j+N + x̄j + x̄j−1 + x̄j + x̄j−N . (49)

For the HS regularization term, in the case of a 2D image and periodic boundary condi-

tions, we obtain that the entries of the terms V1(x̄) and U1(x̄) in G1(x, x̄) can be written as
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[V1(x̄)]j =
4x̄j√
Zj(x̄)

+
2x̄j√
Zj−1(x̄)

+
2x̄j√
Zj−N (x̄)

,

[U1(x̄)]j =
2x̄j + x̄j+1 + x̄j+N√

Zj(x̄)
+
x̄j + x̄j−1√
Zj−1(x̄)

+
x̄j + x̄j−N√
Zj−N (x̄)

.

(50)

where Zl(x) = ‖A(l)x‖2 + δ2. This splitting is very similar to the one derived in [36] from a255

pure SG strategy.

The definition of a surrogate for the HS/TV function has been investigated by several authors

(see for example [33, 37, 38]). However, several of the proposed surrogate are not separable,

and this can introduce some difficulties in the implementation of the corresponding MM

method.260

For the general MRF functional (37), rearranging the terms in the definition of the

surrogate, we obtain the following expression:

G1(x, x̄) =

n∑
j=1

x̄j 2x̄j

∑
u∈Nj

(
1

ε2j,u
√
Zj,u(x̄)

+
1

ε2u,j
√
Zu,j(x̄)

)
︸ ︷︷ ︸

≡[V1(x̄)]j

h

(
xj
x̄j
, 2

)
+

−x̄j

∑
u∈Nj

(x̄j + x̄u)

(
1

ε2j,u
√
Zj,u(x̄)

+
1

ε2u,j
√
Zu,j(x̄)

)
︸ ︷︷ ︸

≡[U1(x̄)]j

h

(
xj
x̄j
, 1

)
, (51)

where Zu,i(x) = (xu − xi)2/ε2u,i. �

We conclude this section by observing that many image restoration problems can be

written as

min
x≥0

Φ(x) ≡ f0(x) + µf1(x) (52)

where the fit-to-data term f0 and the regularization function f1 can be represented as in (20)

and (35) respectively, while µ is a nonnegative parameter. The combination of the material

presented in this section with that in Section 3.1 allows to define the following surrogate for

the objective function Φ:

G(x, x̄) =

n∑
j=1

x̄j [V (x̄)]jh

(
xj
x̄j
, ρmax

)
− x̄j [U(x̄)]jh

(
xj
x̄j
, ρmin

)
(53)

where

ρmax = max{ζ1, ..., ζp, 2}, ρmin = max{ζ1, ..., ζp, 1}
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and

V (x) = V0(x) + µV1(x), U(x) = U0(x) + µU1(x)

Clearly, the surrogate (53) is based on the gradient decomposition ∇Φ(x) = V (x) − U(x),

which is uniquely defined by (29) and (47)–(48).

Moreover, the multiplicative MM algorithm associated to (53) writes as

x(k+1) = x(k)·
(
U(x(k))

V (x(k))

)ρ
, ρ =

1

ρmax − ρmin
. (54)

and, when ρ = 1, it corresponds to a scaled gradient method. Motivated by the same

consideration reported at the end of Section 3.1, we then propose the following scaling

strategy (combined by a thresholding procedure) for problem (52)

D(k)−1
= diag

(
ρ

x(k)

V (x(k))

)
. (55)

In Table 1 we summarize the ingredients to build the matrix (55) for the different fit-to-data265

and regularization functions mentioned in the previous sections.

3.3. Adaptations and applications

The scaling matrix choice (55) provides the inspiration for defining a scaling matrix to

be employed in the FB iteration (7). However, this idea must be better refined. First of

all, if the steplength parameters λk, αk are allowed to take values different than one, the

strict positivity of the iterates is no more guaranteed. This implies that, at some iterate k,

the point x(k) may have some zero components. Therefore, D(k) in (55) is not even defined.

Moreover, as we mentioned in the introduction, the convergence method (7) is proved under

the condition that the eigenvalues of the scaling matrices sequence are bounded or converge

to a fixed value at a given rate, regardless of how these matrices are defined.

Therefore, a simple and practical way to overcome these issues consists in thresholding the

components in (55), leading to the following rule for scaling matrix selection

D(k)−1
= diag

(
max

(
min

(
ρ

x
(k)
i

V (x
(k)
i )

, Lk

)
,

1

Lk

))
, (56)

where Lk ≥ 1 are given scalar parameters. In particular, (56) can be framed in the conver-

gence analysis developed in [10, 21] if Lk ≡ L, for some L ≥ 1, for all k ≥ 0. Moreover,
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when Φ is convex, the convergence conditions proposed in [13, 23, 15, 20] are fulfilled if

L2
k = 1 +O(1/k2), whose practical realization is

Lk =

√
1 +

a

(k + 1)2
, (57)

for some fixed a ≥ 0.

3.3.1. Variable metric FB methods with extrapolation

Variable metric techniques can be included also in the inertial/extrapolated version of

FB methods, whose iteration can be written as

z(k) = PY,D(k)(x(k) + βk(x(k) − x(k−1)))

x(k+1) = proxγkΨ,D(k)(z(k) − γkD(k)−1
∇Φ(zk)),

(58)

where Y denotes a closed convex set where ∇Φ is Lipschitz continuous and contains dom(Ψ).270

Method (58) is a variant of FISTA [24, 39, 40, 41] and it applies to (4) restricted to the

case when Φ is convex with Lipschitz-continuous gradient. As far as its parameters, γk can

be adaptively computed via a backtracking procedure, while the parameter of the inertial

step is defined as βk = tk−1−1
tk

for k > 0 and β0 = 0, with {tk}k∈N satisfying the condition

t2k−1 + tk − t2k ≥ 0, tk ≥ 1.275

Convergence of the iterates (58) can be proved under the condition (57), and, in this case,

the convergence rate of the objective function values is O
(

1
k2

)
[17, 18]. Therefore, the same

scaling techniques designed for (7) can be applied also to (58). Indeed, the numerical expe-

rience in [17] shows that also the extrapolated method can significantly benefit of suitable

variable metric strategies.280

4. Numerical experiments

In this section, we evaluate the impact of scaling strategies on the practical performance

of the FB method (7) in solving both convex and nonconvex optimization problems of the

form (52) arising from imaging real-life applications. Before detailing such applications, we

present the setting employed in our implementation of the algorithm (7) for the parameters285

λk and αk.

As concerns the iteration (7), we adopt the approach proposed in [10, 13, 15] where λk is

adaptively computed by means of a backtracking procedure based on an Armijo acceptance
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condition. For clarity of exposure, we resume in the following proposition the convergence

results of the considered approach. For the proof of this proposition, refer to [15]. More290

precisely, in this paper also the special case where the proximal step is inexactly computed

is considered. Furthermore, under very similar assumptions, in [21] convergence results for

a non convex Φ are obtained.

Proposition 4.1. Let assume {x(k)} be the sequence generated by the iteration (7). Under

the following assumptions295

• αk ∈ [αmin, αmax], 0 < αmin,

• {D(k)} is a sequence of symmetric positive definite matrices with bounded eigenvalues:

1
L ≤ δi(D

(k)) ≤ L, i = 1, ..., n, for all k ≥ 0, L ≥ 1,

• λk satisfies the condition

F (x(k+1) + λkd
(k)) ≤ F (x(k)) + cλk(∇Φ(x(k))T d(k) +

γ

αk
‖d(k)‖Dk + Ψ(x(k) + d(k))−Ψ(x(k)))

with c ∈ (0, 1) and γ ∈ [0, 1].

Then, a limit point of {x(k)} is a stationary point for the problem (4).300

Furthermore, under the following additional assumptions:

• Φ is a convex function and the solution set of (4) is not empty,

• the sequence {D(k)} satisfies the following additional condition

D(k+1) � (1 + ξk)D(k), ξk ≥ 0,

∞∑
k=0

ξk <∞ ,

then, the sequence {x(k)} converges to a solution x∗ of the problem (4).

Furthermore, when ∇Φ is Lipschitz-continuous, we have that F (x(k))− F (x∗) = O( 1
k ).305

The choice of the other steplength parameter, αk, is crucial to obtain good performances.

The non-restrictive hypothesis on αk allows to select it by means of strategies known in the

literature to accelerate the performance of standard first order methods. In particular, we

mention the well known Barzilai-Borwein rules proposed in the seminal paper [42], which

gave rise to a variety of further studies (see for example [43, 44, 45, 46, 47, 48]), to the more310

recent variants and adaptations [49, 50]. Here we adopt a variant of the rules proposed in

[50], which takes into account both the presences of constraints and of a nontrivial scaling
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matrix multiplying the gradient. More precisely, given the scaling matrix D(k), at each

iteration (7) the following two values are computed

αBB1
k = argmin

α∈R
‖α−1s

(k−1)
Ik−1

− (D(k)−1
)Ik−1,Ik−1

y
(k−1)
Ik−1

‖(D(k))Ik−1,Ik−1

αBB2
k = argmin

α∈R
‖s(k−1)
Ik−1

− α(D(k)−1
)Ik−1,Ik−1

y
(k−1)
Ik−1

‖(D(k))Ik−1,Ik−1
. (59)

where s(k−1) = x(k) − x(k−1), y(k−1) = ∇Φ(x(k))−∇Φ(x(k−1)) and Ik−1 is a set of indexes315

defined as Ik−1 = N −Jk−1, being N = {1, ..., n}, Jk−1 = {i ∈ N : (x
(k−1)
i = 0∧x(k)

i = 0)}

(the notation sI indicates the vector obtained by the components of s whose index is in

the set I and DI,I is the submatrix of D defined by the intersection of rows and columns

with indexes in I). The formulas above impose a quasi-Newton condition on the matrix

α(D(k)−1
)Ik−1,Ik−1

, which is the submatrix of D(k) restricted to the constraints which have320

been inactive in the last two iterations. An easy computation shows that the above formulas

write as

αBB1
k =

s(k−1)TD(k)s(k−1)

s(k−1)T y(k−1)

αBB2
k =

s
(k−1)
Ik−1

T
y

(k−1)
Ik−1

y
(k−1)
Ik−1

T
(D(k)−1

)Ik−1,Ik−1
y

(k−1)
Ik−1

. (60)

Then, the value of αk is computed by alternating the two values as described in Algorithm

ABBmin , where αmin and αmax, with 0 < αmin ≤ αmax are thresholding constants. More

details about stepsize selection can be found in [49, 50].325

All the numerical experiments have been carried out in a Matlabr R2016a environment

and run on a PC equipped with a 1.60 GHz Intel Core i7 in a Windows 7 environment. The

MATLAB routines are available at the website http://www.oasis.unimore.it/site/home/software.html.

4.1. Convex framework330

We consider two applications, the first one is the edge-preserving image deconvolution

with data corrupted by Poisson noise whereas the second one is the reconstruction of images

from low sampling acquisition in Computed Tomography. The model problem is (52) where

f0(x) = D(Hx; g) is a convex fit-to-data term, f1 is the HS regularization function described

in Section 3.2 and µ is the regularization parameter balancing the weight of the regulariza-335

tion term f1. The matrix H represents, in the first case, the convolution operator and a
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Algorithm ABBmin for steplength selection

if k = 0

set α0 ∈ [αmin, αmax], τ1 ∈ (0, 1), ν > 1, Mα ∈ N;

else

Compute αBB1 and αBB2 as in (60)

if αBB1
k <= 0 then

α
(1)
k = αmax;

α
(2)
k = αmax;

else

α
(1)
k = max

{
αmin,min

{
αBB1
k , αmax

}}
;

α
(2)
k = max

{
αmin,min

{
αBB2
k , αmax

}}
;

end

if
α

(2)
k

α
(1)
k

≤ τk

αk = minj=max{1,k−Mα},...,k

{
α
(2)
j

}
;

τk+1 = τk/ν;

else

αk = α
(1)
k ;

τk+1 = ντk;

end

end
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discrete approximation of the CT acquisition system in the second application. In both

cases, its components are nonnegative. Since the nonsmooth part of the problem consists

in nonnegativity constraints, method (7) actually is a scaled gradient projection method,

where the projection onto the constraint set can be computed in a straightforward way. In340

this framework, we denote by SGP the algorithm (7) applied to problem (52), equipped

with the steplength selection rules described in Algorithm ABBmin (with αmin = 10−5,

αmax = 105, τ1 = 0.5, Mα = 3, ν = 1.1) and D(k) chosen as in (56). Moreover, since the

problem is convex, we adopt the thresholding strategy (56)-(57) to ensure convergence (with

ρ = 1). The nonscaled version of the same algorithm, i.e. D(k) = I for all k ≥ 0 is referred345

as GP.

We compare the SGP scheme with the inertial method (58) in the implementation de-

scribed in [17, 18]. In particular, we set β0 = 0 and βk = k−1
k−2.1 . The inertial algorithm

corresponding to the choice (56)–(57) is denoted by SFBEM, while its nonscaled version is

referred as FBEM.350

4.1.1. Application 1: deconvolution of images corrupted by Poisson noise

When the data are corrupted by Poisson noise, the data discrepancy is expressed by the

(generalized) Kullback-Leibler divergence and the restored image is obtained as an approx-

imation of the solution of the problem

min
x≥0

m∑
i=1

(
gi log

gi
(Hx+ bg)i

+ (Hx+ bg)i − gi
)

+ µf1(x), (61)

for a suitable value of the regularization parameter µ.

We simulate the blurring effect in data acquisition by convolving a clean image x̃ with

a discretized Point Spread Function (PSF); then the blurred images are added by a back-

ground constant and perturbed with Poisson noise by the Matlab routine imnoise. Periodic355

boundary conditions are assumed in all cases; as a consequence of this, the convolution

operator can be modeled as a n × n matrix H with a block-circulant-with-circulant-blocks

(BCCB) structure and the associated matrix-vector products can be efficiently computed

via the Fast Fourier Transform (FFT) algorithm.

In the following we detail the simulated test problems:360

• spacecraft: the image size is 256× 256; its pixels range between 0 and 2550; the ob-

ject is convolved with a PSF simulating a ground-based telescope (downloaded from
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www.mathcs.emory.edu/nagy/RestoreTools/index.html); finally, the background

emission is simulated by adding to all pixels the constant bg = 10; the relative dis-

tance between the original object and the blurred noisy data in `2 norm is 0.705, the365

simulated detected data g are in the interval [5, 1135] and the regularization parameter

µ is 3.353 10−4;

• tubulins: the size of the original object representing a micro-tubulin network inside

a cell [51] is 512 × 512; its values are in [0, 686], whereas those of the blurred and

noisy image are in [0, 446]; the background is set equal to 1 and the relative distance370

between the original object and the blurred noisy data in `2 norm is 0.756; µ is set

equal to 4 10−4.

The blurred and noisy images for the two test problems are reported in Figure 1.
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Figure 1: Blurred and noisy images for spacecraft (first panel) and tubulins (second panel).

We evaluate the effectiveness of the proposed selection of the steplength and the scaling

matrix by comparing SGP and SFBEM with the corresponding nonscaled versions, GP and375

FBEM. In these experiments, the scaling matrix is defined as in (56)-(57), where V (x(k)) =

V0(x(k)) + µV1(x(k)), with V0(x(k)) = HT1 and V1(x(k)) defined as in (50). The constant

a in (57) is set to 1010 for both SGP and SFBEM, while the starting value γ0 is chosen as

0.125 and 2.5 for FBEM and SFBEM respectively.

As further benchmark, we include in our comparison also the multiplicative or MM method380

(54), where the terms of the gradient splitting are given in (23)-(29) and (50) (for the

gradients of the discrepancy function and the HS regularization, respectively).
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For all the test problems, the initial iterate x(0) is set as max(g, ε), where ε is the machine

precision and the value of δ in the HS term is chosen equal to 10−6 maxi gi. For each

test problem, we compute an high accuracy numerical approximation x∗µ of the solution of

(61), by running a huge number of iterations of SGP. In order to evaluate the effectiveness

of the methods in reducing the objective function and converging to the solution of the

minimization problem (61), at any iteration k of each of the considered methods we computed

the relative error

Fk =
F (x(k))− F ∗

F ∗
, F ∗ = F (x∗µ)

and the relative distance

ek =
‖x(k) − x∗µ‖2
‖x∗µ‖2

with respect to the estimated minimum. Moreover, to evaluate the performance also from

the point of view of image restoration, we compute the relative reconstruction error

Ek =
‖x(k) − x̃‖2
‖x̃‖2

with respect to the original object x̃.

Table 2 shows the numerical results obtained by running the methods until the relative error

Fk is less than a prefixed value tol or a maximum number of 1500 iterations is reached. In385

particular, for different values of tol, we report the number k of iterations and the compu-

tational time (in seconds) needed by each method to satisfy Fk ≤ tol, the corresponding

relative minimization and reconstruction errors ek, Ek . Figure 2 shows the plot of the

sequences Fk, ek and Ek with respect to the computational time for both test problems.

From Table 2 and Figure 2 we can draw the following remarks:390

• the variable metric methods have a very effective behaviour in the initial iterations,

and this effectiveness is similar for all the schemes;

• according to the theoretical results, the inertial methods exhibits the o
(

1
k2

)
rate of

convergence with respect to the function values; nevertheless, from a practical point of

view, the faster convergence rate is really appreciable when high accuracy is required.395

As a further consideration, we can observe that a stopping criterion based on the relative

difference of the function values at two subsequent iterations may either provide an unsatis-

factory solution for the slower methods as GP or induce unnecessary iterations for the faster
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ones. Indeed for FBEM and SFBEM, the objective function curve becomes flat only close

to the solution.400

Figure 3 shows the image provided by the SGP and the SFBEM methods for the

spacecraft dataset after 5 seconds and for the tubulins dataset after 10 seconds.

4.1.2. Application 2: 3D X-ray Computed Tomography

The 3D Computed Tomography (CT) operation process is based on the different levels

of X-ray absorption by materials in an object, or tissues in the human body. Essentially, a405

CT apparatus consists of a X-ray source and a X-ray detector: a cone of X-rays is emitted

by the source which rotates around the object of interest from a fixed number of angles.

The rays, partially absorbed by the object, are projected on a detector and then recorded.

Given the number of angles Nθ , the number of pixels in the detector Np and the number

of voxels of the object n, the image formation model for the X-ray CT can be discretized410

through the linear model Hx = g where H ∈ R(NpNθ)×n is the matrix describing the system

geometry, x ∈ Rn is the vector of the linear attenuation coefficients of the object at each

voxel and g ∈ RNpNθ is the nonnegative vector of the recorded projections.

Recently, low sampling acquisition in CT received growing attention in the medical com-

munity with respect to complete sample since the acquisition of a reduced set of data allows415

to speed-up the imaging process and to increase the patient safety thanks to a low-dose

ionizing radiation. However, in this case, NpNθ < n; hence the linear system Hx = g has

infinite possible solutions. This fact, together with the ill-conditioning of H, makes neces-

sary to employ regularization techniques. In [52, 53], the authors propose to formulate the

restoration problem as in (52), where f0(x) = D(Hx+ bg; g) is the Kullback-Leibler or the420

least squares functional, according to the noise statistics, and f1(x) is the HS regularization.

We generated 4 different test problems by simulating the CT acquisition of the 3D Shepp–

Logan phantom, discretized in n = 613 = 226981 voxels lexicographically ordered in the

vector x̃. The projections have been computed as g̃ = Hx̃, where H is the projection matrix,

obtained with the functions in the TVREG Matlab Toolbox; in particular, H represents a425

3D geometry with random angles over an half sphere. The detector pixels are Np = 612 while

the number of angles Nθ varies in the set {19, 37}. The projections g̃ have been artificially

corrupted by adding Gaussian or Poisson noise. In particular, we denote by

G1 the dataset with Nθ = 19 and Gaussian noise;
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G2 the dataset with Nθ = 37 and Gaussian noise;430

P1 the dataset with Nθ = 19 and Poisson noise (bg = 1);

P2 the dataset with Nθ = 37 and Poisson noise (bg = 1).

The value of δ in the HS term has been set as 10−6 ·max(g) for all the datasets, while the

regularization parameters µ are set to the following values: 8× 10−4 for G1, 6.5× 10−2 for

G2 and 3× 10−2 for both P1 and P2.435

We compare the methods described in the previous section with the variable metric defined

by (56)-(57) and the same parameters settings, except the following change:

• Lk =

√
1 +

a

(k + 1)2
with a = 1015 for SGP and SFBEM.

For each problem, we first computed a numerical approximation of the minimum F ∗ and

the corresponding solution x∗µ by running all methods for a huge number of iterations and440

selecting the output corresponding to the smallest value of the objective function.

Table 4 reports the values of Fk and Ek reached by the algorithms at three different

temporal windows: at 5 s (simulating real-time execution), 20 s (over-time of few minutes)

and 50 s (off-line execution). The number of iterations is also reported. Figures 4-7 show

the behaviour of the sequences Fk and Ek with respect to the computational time for all445

the test problems considered. Finally, by way of example, Figures 8 and 9 show the recon-

struction of the true object provided by GP, SGP and SFBEM at 5 and 20 seconds, for the

dataset G1 and the dataset P1, respectively. These figures shows the different quality of the

reconstructions provided by scaled and nonscaled methods in a short time. Indeed, scaled

methods produce good restorations where the image structure are well reconstructed in few450

iterations, while nonscaled methods need more computational time to give comparable re-

sults. We can also observe that SGP and SFBEM show comparable numerical performance.

4.2. Nonconvex framework: deconvolution of images corrupted by signal dependent Gaussian

noise455

We consider the image restoration problem described in [12] where the data are corrupted

by a signal dependent Gaussian noise. Under this assumption, an estimate of the true

image can be computed by solving the minimization problem (52) where f0 is the data
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discrepancy function introduced in (24) and f1 is the discretization of the TV functional,

given by (36) with δ = 0. We point out that the backward step for the algorithm (7) can460

not be computed in a closed formula, but inexactly. The minimization problem related

to the inexact computation of the proximal step has been addressed by the FISTA [24]

method which has been stopped thanks to the implementable criterion suggested in [15]. In

the notation used in [15] we set η = 10−6. In this framework, we denote by VMILA the

algorithm (7) applied to problem (52), equipped with the steplength selection rules described465

in Algorithm ABBmin (with αmin = 10−1, αmax = 10, τ1 = 0.5, Mα = 3, ν = 1.1). The

scaling matrix has been selected in two different ways in order to compare the effects of

different variable metrics. In particular the following choices for D(k) has been considered.

a) D(k) has been chosen as in (56) with ρ = 1
2 , Lk ≡ 102, ∀k and V (x(k)) = V0(x(k)) =

HT y(k) with

y
(k)
i = (Hx(k))i

ai((Hx
(k))i + gi) + 2bi

2(ai(Hx(k))i + bi)2
+

ai
2(ai(Hx(k))i + bi)

.

b) D(k) has been fixed as D(k)−1
= diag

(
max

(
min ((Ak)ii, L) , 1

L

))
, where Ak is defined470

in [12, formula (36)] with ε = 0 and L = 102.

The nonscaled version of the same algorithm, i.e. D(k) = I for all k ≥ 0 is referred as

ILA. We evaluate the performance of the VMILA and ILA methods in comparison with the

variable-metric forward-backward (VMFB) algorithm [12] (the implementation is provided

by the authors [54]). In particular, we analyze the test problem jet plane [54]. In Table475

4 we report the number of iterations and the computational time needed by each method

to satisfy Fk ≤ tol, the corresponding relative minimization and reconstruction errors ek,

Ek. The notations VMILAa and VMILAb indicate the VMILA method equipped with the

scaling matrices defined before in a) and b), respectively. Figure 10 shows the behaviour

of the relative error on the objective function values with respect to both the iterations480

number and the computational time and the behaviour of the relative minimization error

and the relative reconstruction error. From the analysis of both Table 4 and Figure 10

it is possible to conclude that VMILA and ILA outperform the VMFB algorithm in terms

of number of iterations and computational time, by confirming the numerical results shown

in [15, 21]. Moreover, by comparing the performance of VMILA with respect to ILA, the485
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benefits gained thanks to the presence of the first scaling matrix is quite evident, especially

in the first part of the iterative process. On the other hand, the second scaling matrix seems

to not guarantee the same effect.

In conclusion, the numerical experience, carried out in both the convex and the nonconvex

framework, shows that490

• variable metric methods based on the proposed scaling technique are valid tools for

image reconstruction, especially when a medium accuracy solution is needed in a short

time, as in real-time applications;

• the suggested approach to define scaling matrices for forward-backward algorithms is

effective, quite general and it can be applied to many optimization problems arising495

from imaging applications.

5. Conclusions and future work

In this paper, combining the Split Gradient and Majorization-Minimization ideas, we

proposed some new strategies to choose the scaling matrix for nonnegatively constrained

problems, in the framework of variable metric FB methods. Our strategy employs only500

the first order information, and leads to a diagonal scaling matrix, therefore it does not

require significant additional computations. The effectiveness of the proposed approach has

been validated on image restoration problems. We believe that interesting issues to be

investigated for future work concern the extension of this ideas to more general problems

involving different kinds of constraints and objective functions.505
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[3] P. Charbonnier, L. Blanc-Féraud, G. Aubert, M. Barlaud, Deterministic edge-

preserving regularization in computed imaging, IEEE Trans. Image Proc. 6 (1997)

298–311.515

[4] P. L. Combettes, J.-C. Pesquet, Proximal splitting methods in signal processing, in:

H. H. Bauschke, R. S. Burachik, P. L. Combettes, V. Elser, D. R. Luke, H. Wolkowicz

(Eds.), Fixed-point algorithms for inverse problems in science and engineering, Springer

Optimization and Its Applications, Springer, New York NY, 2011, pp. 185–212.

[5] P. L. Combettes, V. R. Wajs, Signal recovery by proximal forward-backward splitting,520

SIAM Multiscale Model. Simul. 4 (2005) 1168–1200.

[6] E. S. Levitin, B. T. Polyak, Constrained minimization methods, U.S.S.R. Comput.

Math. Math. Phys. 6 (1966) 1–50.

[7] L. B. Lucy, An iterative technique for the rectification of observed distributions, As-

tronom. J. 79 (1974) 745–754.525

[8] D. S. C. Biggs, M. Andrews, Acceleration of iterative image restoration algorithms,

Appl. Optics 36 (1997) 1766–1775.

[9] H. Lantéri, M. Roche, O. Cuevas, C. Aime, A general method to devise maximum-

likelihood signal restoration multiplicative algorithms with nonnegativity constraints,

Signal Process. 81 (2001) 945–974.530

[10] S. Bonettini, R. Zanella, L. Zanni, A scaled gradient projection method for constrained

image deblurring, Inverse Problems 25 (1) (2009) 015002 (23pp).

[11] S. Bonettini, G. Landi, E. Loli Piccolomini, L. Zanni, Scaling techniques for gradient

projection-type methods in astronomical image deblurring, International Journal of

Computer Mathematics 90 (1) (2013) 9–29.535

[12] E. Chouzenoux, J.-C. Pesquet, A. Repetti, Variable metric forward–backward algorithm

for minimizing the sum of a differentiable function and a convex function, J. Optim.

Theory and Appl. 162 (1) (2014) 107–132.

38



[13] S. Bonettini, M. Prato, New convergence results for the scaled gradient projection

method, Inverse Problems 31 (9) (2015) 095008.540

URL http://stacks.iop.org/0266-5611/31/i=9/a=095008

[14] E. Chouzenoux, J.-C. Pesquet, A. Repetti, A block coordinate variable metric forward–

backward algorithm, J. Glob. Optim. 66 (3) (2016) 457–485.

[15] S. Bonettini, I. Loris, F. Porta, M. Prato, Variable metric inexact line–search based

methods for nonsmooth optimization, SIAM Journal on Optimization 26 (2016) 891–545

921.

[16] S. Bonettini, A. Benfenati, V. Ruggiero, Scaling techniques for ε-subgradient methods,

SIAM Journal on Optimization 26 (3) (2016) 1741–1772.

[17] S. Bonettini, F. Porta, V. Ruggiero, A variable metric forward–backward method with

extrapolation, SIAM J. Sci. Comput. 38 (4) (2016) A2558–A2584.550

[18] S. Bonettini, S. Rebegoldi, V. Ruggiero, Inertial variable metric techniques for the

inexact forward–backward algorithm, SIAM Journal on Scientific Computing 40 (5)

(2018) A3180–A3210.
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Table 2: Computational results for the HS edge-preserving regularization problem.

spacecraft

Fk ≤ 0.05 Fk ≤ 0.005

method k time Ek ek k time Ek ek

MM 221 1.50 0.41 0.29 1500 10.10 0.34 0.17

GP 248 1.77 0.44 0.34 1500 10.68 0.37 0.23

SGP 34 0.24 0.41 0.30 125 0.91 0.33 0.17

FBEM 81 0.73 0.44 0.34 194 1.77 0.35 0.19

SFBEM 30 0.29 0.41 0.30 98 0.89 0.33 0.16

tubulins

Fk ≤ 0.05 Fk ≤ 0.001

method k time Ek ek k time Ek ek

MM 101 2.99 0.53 0.35 1500 43.80 0.44 0.18

GP 381 11.40 0.56 0.39 1500 45.97 0.52 0.33

SGP 27 0.83 0.49 0.29 266 8.12 0.44 0.14

FBEM 349 13.93 0.57 0.41 1500 59.00 0.45 0.17

SFBEM 20 0.86 0.54 0.37 122 4.83 0.44 0.13
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Figure 2: Behaviour of the relative error on the function values (first row), the minimization error (second

row) and the reconstruction error (third row) for spacecraft (first column) and tubulins (second column)

with respect to the execution time for the considered methods in solving the HS edge-preserving regulariza-

tion problem.

45



0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

SGP SFBEM

0

100

200

300

400

500

600

700

800

900

0

100

200

300

400

500

600

700

800

900

1000

SGP SFBEM

Figure 3: Reconstructed images provided by the SGP (first column) and the SFBEM (second column)

methods for the spacecraft dataset after 5 seconds (first row) and for the tubulins dataset after 10 seconds

(second row).
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Table 3: Computational results at different times for the X-ray CT problems.

G1

5 s 20 s 50 s

method k Ek Fk k Ek Fk k Ek Fk

MM 22 0.34 84.566 43 0.26 25.177 205 0.17 1.8450

GP 19 0.35 32.156 37 0.24 3.356 185 0.16 0.0566

SGP 20 0.22 7.376 38 0.16 0.830 186 0.12 0.0287

FBEM 23 0.34 28.718 43 0.24 3.540 205 0.16 0.0521

SFBEM 21 0.20 4.686 40 0.16 0.726 190 0.12 0.0276

G2

5 s 20 s 50 s

method k Ek Fk k Ek Fk k Ek Fk

MM 21 0.31 5.326 41 0.21 1.554 199 0.11 0.1071

GP 19 0.28 1.412 37 0.18 0.222 177 0.12 0.0225

SGP 19 0.13 0.231 37 0.11 0.086 178 0.10 0.0002

FBEM 22 0.30 2.008 41 0.17 0.225 194 0.10 0.0012

SFBEM 20 0.15 0.280 38 0.10 0.058 182 0.10 0.0005

P1

5 s 20 s 50 s

method k Ek Fk k Ek Fk k Ek Fk

MM 23 0.29 1.265 44 0.22 0.339 212 0.12 0.0153

GP 20 0.36 1.329 39 0.35 1.288 190 0.22 0.1228

SGP 20 0.19 0.095 39 0.12 0.012 190 0.10 0.0004

FBEM 17 0.74 60.516 37 0.61 15.189 196 0.22 0.1680

SFBEM 20 0.19 0.113 39 0.12 0.012 185 0.10 0.0003

P2

5 s 20 s 50 s

method k Ek Fk k Ek Fk k Ek Fk

MM 21 0.27 2.438 41 0.18 0.598 201 0.09 0.0211

GP 19 0.38 3.713 37 0.23 0.632 181 0.14 0.0815

SGP 20 0.14 0.127 37 0.08 0.010 181 0.07 0.0002

FBEM 12 0.79 160.250 30 0.64 33.470 176 0.19 0.3084

SFBEM 18 0.16 0.246 35 0.09 0.020 172 0.07 0.0005
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Figure 4: Relative error on the function values and relative reconstruction error generated by the considered

methods for the dataset G1 at three different temporal windows: 5 seconds (first row), 20 seconds (second

row) and 50 seconds (third row).
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Figure 5: Relative error on the function values and relative reconstruction error generated by the considered

methods for the dataset G2 at three different temporal windows: 5 seconds (first row), 20 seconds (second

row) and 50 seconds (third row).
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Figure 6: Relative error on the function values and relative reconstruction error generated by the considered

methods for the dataset P1 at three different temporal windows: 5 seconds (first row), 20 seconds (second

row) and 50 seconds (third row).
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Figure 7: Relative error on the function values and relative reconstruction error generated by the considered

methods for the dataset P2 at three different temporal windows: 5 seconds (first row), 20 seconds (second

row) and 50 seconds (third row).
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Figure 8: Reconstruction provided by GP, SGP and SFBEM after 5 seconds (first row) and after 20 seconds

(second row) for the G1 dataset.

Table 4: Computational results for the TV edge-preserving regularization problem in presence of signal

dependent Gaussian noise.

Fk ≤ 10−2 Fk ≤ 10−4 Fk ≤ 10−6

method k time Ek ek k time Ek ek k time Ek ek

VMILAa 9 0.15 0.050 2.4e-02 58 0.68 0.048 3.1e-03 688 6.85 0.049 2.3e-05

VMILAb 42 0.41 0.052 2.8e-02 273 2.70 0.048 6.0e-03 998 9.93 0.049 8.1e-04

ILA 44 0.33 0.053 2.9e-02 271 2.20 0.048 6.1e-03 925 7.60 0.049 9.2e-04

VMFB 203 3.65 0.052 2.8e-02 - - - - - - - -
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Figure 9: Reconstruction provided by GP, SGP and SFBEM after 5 seconds (first row) and after 20 seconds

(second row) for the P1 dataset.
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Figure 10: Behaviour of the relative error on the function values (first row), the minimization error and the

reconstruction error for the jetplane test problem.
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