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Abstract. In this paper we show that if the supremal functional

F (V,B) = ess sup
x∈B

f(x,DV (x))

is sequentially weak* lower semicontinuous on W 1,∞(B,Rd) for every
open set B ⊆ Ω (where Ω is a fixed open set of R

N ), then f(x, ·) is
rank-one level convex for a.e x ∈ Ω. Next, we provide an example of a
weak Morrey quasiconvex function which is not strong Morrey quasicon-
vex. Finally we discuss the Lp-approximation of a supremal functional F
via Γ-convergence when f is a non-negative and coercive Carathéodory
function.
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1. Introduction

In recent years, a new class of functionals is being considered with growing
interest in the mathematical literature: these functionals are represented by
the so called supremal form

F (V ) = ess sup
x∈Ω

f(x,DV (x)) (1.1)

where Ω is a bounded open set of R
N and V ∈ W 1,∞(Ω,Rd). Following an

established convention, we will refer to a functional of the type (1.1) as a
supremal functional or L∞-functional (see [3,8]). Several papers in this con-
text were motivated by the problem to finding the best Lipschitz extension
in Ω of a function defined on the boundary ∂Ω ([5,7,20]). Actually, the L∞-
variational problems arise naturally in several practical contexts: for example,
in models describing dielectric breakdown in a composite material (see [17])
or polycrystal plasticity (see [10]), and in the optimal transportation problem
(see [13]). In order to apply the direct method of the calculus of variations
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the main issue is the lower semicontinuity of F . Semicontinuity properties for
supremal functionals have recently been studied by many authors; we refer for
instance to Barron-Jensen [6], Barron-Jensen-Wang [8], Prinari [22,23] and to
the recent papers by Ansini-Prinari [2] and Ribeiro-Zappale [24]. In the context
of supremal functionals, in [8] Barron, Jensen and Wang introduce the notion
of the weak Morrey quasiconvexity as the natural extension of the notion of
Morrey quasiconvexity (see [14] and references therein).

Definition 1.1. A Borel function f : Md×N �→ R is weak Morrey quasiconvex
if for all Σ ∈ M

d×N

f(Σ) ≤ ess sup
x∈Q

f(Σ + Dϕ(x)) ∀ϕ ∈ W 1,∞
0 (Q;Rd) (1.2)

where Q = [0, 1]N stands for the standard unit cube and W 1,∞
0 (Q;Rd) stands

for the weak* closure of C∞
c Q;Rd) in W 1,∞(Q;Rd).

They show that this property is a necessary condition for the lower semi-
continuity of a supremal functional with respect to the weak* topology of
W 1,∞. Moreover, in the scalar case, i.e. d = 1 or N = 1, this condition is also
sufficient since it coincides with the notion of level convexity (for a proof, see
Theorem 5.5 (ii) and (iii) in [24]). We recall that f : Rk → R is level convex
if for every t ∈ R the level set

{
ξ ∈ R

k : f(ξ) ≤ t
}

is convex. In the vectorial
case, Barron, Jensen and Wang do not characterize the weak* lower semicon-
tinuity of a supremal functional (1.1) by the weak Morrey quasiconvexity and
introduce another class of functions: the strong Morrey quasiconvex functions.

Definition 1.2. A function f : Md×N → R is strong Morrey quasiconvex if
∀ε > 0, ∀Σ ∈ M

d×N and ∀K > 0 ∃ δ = δ(ε,K, Σ) > 0 such that ∀ϕ ∈
W 1,∞(Q,Rd) satisfying

‖Dϕ‖L∞(Q) ≤ K, max
∂Q

|ϕ(x)| ≤ δ,

it holds:

f(Σ) ≤ ess sup
x∈Q

f(Σ + Dϕ(x)) + ε.

It easily follows that any strong Morrey quasiconvex function is also weak
Morrey quasiconvex. In their paper, Barron, Jensen and Wang show that, un-
der suitable assumptions for f , the strong Morrey quasiconvexity is necessary
and sufficient for the lower semicontinuity of supremal functionals defined on
W 1,∞(Ω,Rd) (see Theorem 2.7 in [8]). They also raise the important question
if the notions of weak and strong Morrey quasiconvexity are equivalent in the
vectorial case. They speculate that this is not the case. In this paper, we show
that these two classes of functions are in general different. With this aim, un-
der a continuity assumption on f(·,Σ), in Theorem 2.4 we show that if the
supremal functional

F (V,A) = ess sup
x∈A

f(x,DV (x)) (1.3)
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is sequentially weakly* lower semicontinuous on W 1,∞(A,Rd) for every open
set A ⊂ Ω, then for every x ∈ Ω the function f(x, ·) is weak Morrey quasiconvex
and rank-one level convex, i.e.

f(x, tΣ1 + (1 − t)Σ2) ≤ max{f(x,Σ1), f(x,Σ2)}
for every Σ1,Σ2 ∈ M

d×N such that rank (Σ1 − Σ2) ≤ 1. In particular every
strong Morrey quasiconvex function is rank-one level convex. This result is
applied in Example 2.7 in order to find a weak Morrey quasiconvex function
which cannot be strong Morrey quasiconvex: more precisely we exhibit a weak
Morrey quasiconvex function f which is not rank-one level convex. A fortiori,
such a function f cannot be strong Morrey quasiconvex.

Summarizing, by Theorem 2.4 and by [1, Proposition 5.2] we have that

f strong Morrey quasiconvex
=⇒ f weak Morrey quasiconvex and rank-one quasiconvex,

f upper semicontinuous and weak Morrey quasiconvex
=⇒ f rank-one quasiconvex

while in general

f weak Morrey quasiconvex �=⇒ f strong Morrey quasiconvex

f lower semicontinuous and weak Morrey quasiconvex
�=⇒ f rank-one quasiconvex

(see Example 2.7). In the integral case the famous counterexample of Sverak
[25] shows that the rank-one convexity does not imply quasiconvexity at least
when N ≥ 3, d ≥ 2. In the supremal case the question remains open whether
the rank-one level convexity implies any type of Morrey quasiconvexity.

The last part of this paper is devoted to study the Γ-convergence, as
p → ∞, of the family of the integral functionals Fp : C(Ω̄;Rd) → [0,+∞]
given by

Fp(V ) :=

⎧
⎨

⎩

(∫

Ω

fp(x,DV (x))dx

)1/p

if V ∈ W 1,p(Ω;Rd)

+∞ otherwise,
(1.4)

where f : Ω × M
d×N → [0,+∞) is a Carathéodory function satisfying the

growth condition: there exist α, β > 0 such that

α|Σ| ≤ f(x,Σ) ≤ β(|Σ| + 1) (1.5)

for a.e. x ∈ Ω and for every Σ ∈ M
d×N . This problem has been studied by

Garroni-Nesi-Ponsiglione in the special case f(x,Σ) = λ(x)|Σ| (see [17]), by
Champion-De Pascale-Prinari when f satisfies a generalized Jensen inequality
for gradient Young measures (see [12]) and by Bocea-Nesi and Ansini-Prinari
when V ∈ L∞(Ω;Md×N ) is constrained to satisfy a more general rank-constant
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differential constraint (see [1,10]). In this paper we give a complete represen-
tation of the Γ-limit by showing that, as p → ∞, the family (Fp)p Γ-converges,
with respect to the uniform convergence, to the supremal functional F

F (V ) :=

{
ess sup

x∈Ω
f∞(x,DV (x)) if V ∈ W 1,∞(Ω;Rd)

+∞ otherwise
(1.6)

where the function f∞ is given by the formula

f∞(x,Σ) = sup
p≥1

(Qfp(x,Σ))1/p for a.e. x ∈ Ω, ∀Σ ∈ M
d×N .

Here, for every p ≥ 1 and for a.e. x ∈ Ω, the function Qfp(x, ·) is the quasi-
convex envelope of the function fp(x, ·), i.e.

Qfp(x,Σ) := inf
{∫

Q

fp(x,Σ + Dϕ(y))dy : ϕ ∈ C∞
0 (Q;Rd)

}
. (1.7)

(see Theorem 3.2). Notice that if d = 1 and f : RN → [0,+∞) then

f∞(ξ) = sup
p≥1

(fp)∗∗(ξ)1/p ∀ ξ ∈ R
N

since, in the scalar case, the function Qfp coincides with the convex envelope
(fp)∗∗ of the function fp. In particular if f : R

N → [0,+∞) is a continu-
ous function satisfying a linear growth condition, then f∞ coincides with the
greatest lower semicontinuous and level convex function which is less or equal
to f (see [23, Corollary3.11]).
In [1] a function f : Md×N → [0,+∞) which satisfies condition

f(Σ) = sup
p≥1

(Qfp(Σ))1/p ∀Σ ∈ M
d×N

has been referred as curl-∞ quasiconvex. The class of curl -∞ quasiconvex func-
tions is quite large since it contains the coercive functions which are continuous
and quasiconvex (see [1, Proposition 3.6(1)]) or lower semicontinuous and level
convex (see [2, Proposition 2.9]) or continuous and polylevel convex (see [1,
Proposition 5.7]). When N = 1 or d = 1 the curl-∞ quasiconvexity reduces
to level convexity in the class of the functions f : Md×N → [0,+∞) which are
upper semicontinuous (see [1, Proposition 5.2(3)]). In the general case, since
the Γ-limit F given by (1.6) is weakly* lower semicontinuous, we obtain that
every continuous curl -∞ quasiconvex function satisfying the growth condition
(1.5) is strong Morrey quasiconvex. It remains an open question whether every
strong Morrey quasiconvex function with a suitable growth condition is curl -∞
quasiconvex.

1.1. Notation

Let Ω be a bounded open subset of R
N . We denote by O(Ω) the family of

open subsets of Ω. We write LN (E) for the Lebesgue measure of E ⊂ R
N . Let

Σ ∈ M
d×N , where M

d×N stands for the space of d × N real matrices, with a
slight abuse of notation, we denote |Σ| =

∑d
i=1 |Σi|, where Σi is the ith row of

Σ and |Σi| its Euclidean norm. We use ξi also to denote the ith component of
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a vector ξ. The notation Σ · a stands for the matrix Σ ∈ M
d×N that acts on

the vector a ∈ R
N while x · y denotes the scalar product between two vectors.

2. Necessary conditions for the lower semicontinuity

In this section first of all we recall the main results shown by Barron-Jensen-
Wang in [8]. They prove that the strong Morrey quasiconvexity provides a
necessary and sufficient condition for the weak* lower semicontinuity of a
supremal functional under a continuity assumption on f(·,Σ). Note that the
proof of the following theorem relies on a intermediate result (see Lemma 2.8 in
[8]) which shows that the weak Morrey quasiconvexity is a necessary condition
for the weak* lower semicontinuity.

Theorem 2.1 ([8], Theorems 2.6–2.7). Let f : Ω × M
d×N → R be a Borel

function. Assume that there exists a function ω : R+ × R
+ �→ R

+ continuous
in its first variable, non-decreasing in its second variable, ω(0, t) = 0 for every
t > 0 and such that

|f(x1,Σ) − f(x2,Σ)| ≤ ω(|x1 − x2|, |Σ|) (2.1)

for every x1, x2 ∈ R
N , Σ ∈ M

d×N . Let

F (V,B) := ess sup
x∈B

f(x,DV (x)), V ∈ W 1,∞(Ω;Rd), B ∈ O(Ω). (2.2)

Then the following facts are equivalent:
(i) For any x ∈ Ω f(x, ·) is strong Morrey quasiconvex and lower semicontin-

uous;
(ii) The functional F (·, B) is weakly* lower semicontinuous in W 1,∞(B,Rd)

for every B ∈ O(Ω).

Remark 2.2. 1. The class of strong Morrey quasi-convex functions contain
the (Morrey) quasi-convex functions with appropriate growth conditions
(see [8, Proposition 2.4]).

2. Thanks to [8, Theorem 3.3], the level convexity is sufficient to provide
the weak* lower semicontinuity of the functional F (·, B) given by (2.2).
Therefore, thanks to the necessary condition stated in Theorem 2.1, it
follows that any level convex function f = f(ξ) is strong Morrey quasi-
convex. In the scalar case d = 1 or N = 1, the class of strong Morrey
quasi-convex functions coincides with the class of the level convex func-
tions (for a proof see [8, Theorem 3.3] and [24, Theorem 5.5]).

In [8] the authors introduce a last notion of convexity: the rank-one con-
vexity.

Definition 2.3. A measurable function f : RN → R is rank-one level convex if
for every t ∈ [0, 1] it holds

f(tΣ1 + (1 − t)Σ2) ≤ max{f(Σ1), f(Σ2)} (2.3)

for every Σ1,Σ2 ∈ M
d×N such that rank (Σ1 − Σ2) ≤ 1.
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Any upper semicontinuous and weak Morrey quasi-convex function is
rank-one level convex (see [1, Proposition 5.2]) but in general the only weak
Morrey quasiconvexity is not sufficient to provide the rank-one quasiconvexity:
in fact in [24, Remark 5.2], the authors exhibit an example of a lower semicon-
tinuous and weak Morrey quasi-convex function which is not rank-one level
convex. In the following theorem we derive the rank-one level convexity as a
necessary condition for the weak* lower semicontinuity of a supremal func-
tional. A version of this theorem has been given in [2, Theorem 6.2], in order
to characterize the weak* lower semicontinuity of functionals of the form

F (V ) = ess sup
x∈Ω

f(x, V (x))

where V ∈ L∞(Ω;Md×N )∩Ker A and A is a constant-rank partial differential
operator. Note that in our setting we do not require the continuity of the
supremand function f with respect to second variable.

Theorem 2.4 (Necessary condition). Let f : Ω×M
d×N → R be a Borel function.

Assume that there exists a function ω : R+ ×R
+ �→ R

+ continuous in its first
variable, non-decreasing in its second variable, ω(0, t) = 0 for every t > 0 and
satisfying (2.1). Assume that the functional F (·, B) given by (2.2) is weakly*
lower semicontinuous in W 1,∞(B,Rd) for every B ∈ O(Ω). Then

(i) ∀x ∈ R
N

Σ �→ f(x,Σ)

is lower semicontinuous in R
N ;

(ii) ∀x0 ∈ Ω and for every N -cube Y ⊂ R
N

f

(
x0,−

∫

Y

DV (x) dx

)
≤ ess sup

x∈Y
f(x0,DV (x)) (2.4)

for every V ∈ W 1,∞
loc (RN ;Md×N ) whose gradient is Y -periodic. In partic-

ular f(x0, ·) is weak Morrey quasiconvex;
(iii) ∀x0 ∈ Ω f(x0, ·) is rank-one level convex. In particular, if d = 1 or N = 1,

f(x0, ·) is level convex.

Proof. (i) It follows by [8, Lemma 2.8(1)].
(ii) Let V ∈ W 1,∞

loc (RN ;Md×N ) whose gradient DV is Y -periodic. We de-
fine Vn(x) = 1

nV (n(x − x0)). Then Vn ∈ W 1,∞
loc (Ω;Md×N ) and DVn is

(1/n)Y -periodic. Since (Vn)n converges weakly* to the function U(x) =
(−∫

Y
DV (y) dy)·x in W 1,∞(B;Md×N ) for every bounded open set B ⊂ R

N ,
by the lower semicontinuity of the functional F we have that for every
0 < ρ < d(x0, ∂Ω)

ess sup
x∈Bρ(x0)

f

(
x,−

∫

Y

DV (y) dy

)
≤ lim inf

n→∞ ess sup
x∈Bρ(x0)

f(x,DVn(x)). (2.5)

By (2.1) we have that
f(x,DVn(x)) = f(x,DVn(x)) − f(x0,DVn(x)) + f(x0,DVn(x))

≤ ω(|x − x0|, |DVn(x)|) + f(x0,DVn(x))
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hence,

f(x,DVn(x)) ≤ ω(|x − x0|, C) + ess sup
x∈Bρ(x0)

f(x0,DVn(x)), (2.6)

Since DVn is (1/n) Y -periodic, for n big enough, we have that

ess sup
x∈Bρ(x0)

f(x0,DVn(x)) = ess sup
x∈Y

f(x0,DV (x)).

Therefore, by (2.6) it follows that

ess sup
x∈Bρ(x0)

f(x,DVn(x)) ≤ ess sup
x∈Bρ(x0)

ω(|x − x0|, c) + ess sup
x∈Y

f(x0,DV (x)).

Gathering the last inequality with (2.5) we get that for every 0 < ρ <
d(x0, ∂Ω)

ess sup
x∈Bρ(x0)

f

(
x,−

∫

Y

DV (y) dy

)
≤ ess sup

x∈Bρ(x0)

ω(|x − x0|, c) + ess sup
x∈Y

f(x0,DV (x)).

Since f is continuous in its first variable, by passing to the limit as ρ → 0+

it follows that

f

(
x0,−

∫

Y

DV (y) dy

)
≤ ess sup

x∈Y
f(x0,DV (x)).

Finally if W ∈ W 1,∞
0 (Y ;Md×N ) and W̃ is its Y -periodic extension,

then the function V (x) = Σ · x + W̃ ∈ W 1,∞
loc (RN ;Md×N ) has Y -periodic

gradient and −
∫

Y

DV (x) dx = Σ; hence,

f(x0,Σ) = f
(
x0,−

∫

Y

DV (x) dx
)

≤ ess sup
x∈Y

f(x0,DV (x))

= ess sup
x∈Y

f(x0,Σ + DW (x))

for every fixed x0 ∈ Ω, Σ ∈ M
d×N and W ∈ W 1,∞

0 (Y ;Md×N ). In
particular, when Y = Q we obtain that f(x0, ·) is weak Morrey qua-
siconvex.

(iii) Let Σ1,Σ2 ∈ M
d×N such that rank (Σ1 − Σ2) ≤ 1. Let a ∈ R

d, w ∈ R
N

such that Σ1 − Σ2 = a ⊗ w = (aiwj) and consider the function V ∈
W 1,∞

loc (RN ;Rd) defined by

V (x) :=

{
Σ1 · x + (x · w)a − (1 − t)ja, if x ∈ A1

Σ1 · x + (1 + j)ta, if x ∈ A2

where

A1 =
{
x ∈ R

N : j ≤ x · w < j + t, j ∈ Z
}

,

A2 =
{
x ∈ R

N : j + t ≤ x · w < j + 1, j ∈ Z
}

for fixed t ∈ (0, 1). Then the gradient

DV (x) =

{
Σ1, if x ∈ A1

Σ2, if x ∈ A2
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is Y -periodic, where Y is any N -cube with one face orthogonal to w and
side lenght 1. Hence, by (2.4)

f (tΣ2 + (1 − t)Σ1) = f

(
−
∫

Y

DV (y)
)

≤ ess sup
x∈Y

f(DV (x))

= max
{
f(Σ1), f(Σ2)

}
.

�

Remark 2.5. In order to show part (iii) of Theorem 2.4 it is possible to proceed
also in the following way (see [21]): for a fixed unit vector a ∈ R

N and for a
fixed vector w ∈ R

d, let W ∈ W 1,∞
loc (RN ;Rd) be the function given by

W (x) := w

∫ x·a

0

(2χ(s) − 1) ds

where χ is the characteristic function of (0, 1
2 ) in (0, 1) and extended periodi-

cally to R. Then

DW (x) = (2χ(x · a) − 1)a ⊗ w

and, if Y ⊂ R
N is a cube with one axis along the direction of a, then, for fixed

Σ1 ∈ M
d×N , we have that the function

V (x) := Σ1 · x + W (x) ∈ W 1,∞
loc

(
R

N ;Rd
)

has Y -periodic gradient satisfying −
∫

Y

DV (x) dx = Σ1. Therefore, by (2.4) it

follows that

f(x0,Σ1) ≤ f(x0,Σ1 + a ⊗ w) ∨ f(x0,Σ1 − a ⊗ w)

for every x0 ∈ Ω. In particular, for every Σ1,Σ2 ∈ M
d×N such Σ1 −Σ2 = a⊗w

we obtain

f

(
x0,

1
2
Σ1 +

1
2
Σ2

)
≤ f(x0,Σ1) ∨ f(x0,Σ2) (2.7)

for every x0 ∈ Ω. By using the fact that f(x0, ·) is lower semicontinuous, we
can easily conclude that f(x0, ·) is rank-one level convex.

Corollary 2.6. Let f : M
d×N → R be a lower semicontinuous and strong

Morrey quasiconvex function. Then f is rank-one level convex.

Proof. Thanks to Theorem 2.1 the functional F (V,Ω) = ess supx∈Ω f(DV (x))
is weakly* lower semicontinuous on W 1,p(Ω,Rd) for every bounded open set
Ω ⊂ R

N . Therefore, by applying Theorem 2.4, we can conclude that f is
rank-one level convex. �

Thanks to the result given in Theorem 2.4 we are in position to show
that in general the weak Morrey quasiconvexity is not equivalent to the strong
Morrey quasiconvexity.
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Example 2.7. Let Σ1,Σ2 ∈ M
d×N be such that rank (Σ1−Σ2) = 1. We consider

the lower semicontinuous function

f(Σ) = 1 − χS(Σ)

where S = {Σ1,Σ2}, and χS is the characteristic function of S. Then
(i) The function f is not rank-one level convex; therefore, thanks to Corollary

2.6, f is not strong Morrey quasiconvex.
(ii) As shown in [24], we have that f is weak Morrey quasiconvex. To this

end it is enough to consider the case where Z /∈ S. Then, the property
(1.2) follows from the fact that there is no ϕ ∈ W 1,∞

0 (Q;Md×N ) such
that Dϕ(x) ∈ {Σ1 − Z; Σ2 − Z} a.e. in Q.

3. An approximation result

In this section we study the Γ-convergence, as p → ∞, of the family of integral
functionals Fp : C(Ω̄;Rd) → [0,+∞] given by

Fp(V ) :=

⎧
⎨

⎩

(∫

Ω

fp(x,DV (x))dx

)1/p

if V ∈ W 1,p(Ω;Rd)

+∞ otherwise.
(3.1)

For a comprehensive study of Γ-convergence we refer to the book of Dal Maso
[15]. Here we recall only the sequential characterization of the Γ-limit when X
is a metric space.

Proposition 3.1 ([15] Proposition 8.1). Let X be a metric space and let ϕn :
X → R ∪ {±∞} for every n ∈ N. Then (ϕn) Γ-converges to ϕ with respect to
the strong topology of X (and we write Γ(X)- limn→∞ ϕn = ϕ) if and only if

(i) For every x ∈ X and for every sequence (xn) converging to x, it is

ϕ(x) ≤ lim inf
n→∞ ϕn(xn);

(ii) For every x ∈ X there exists a sequence (xn) (recovering sequence) con-
verging to x ∈ X such that

ϕ(x) = lim
n→∞ ϕn(xn).

The main result of this section is the following theorem.

Theorem 3.2. Let Ω be a bounded open set with Lipschitz continuous boundary.
Let f : Ω × M

d×N → R be a Carathéodory function satisfying the following
growth condition: there exist α, β > 0 such that

α|Σ| ≤ f(x,Σ) ≤ β(|Σ| + 1) for a.e. x ∈ Ω and for every Σ ∈ M
d×N .

(3.2)

For every p ≥ 1 let Fp : C(Ω̄;Rd) → [0,+∞] be the functional given by (3.1)
and for every (x,Σ) ∈ Ω × M

d×N let

(Qfp)(x,Σ) := inf
{∫

Q

fp(x,Σ + DV (y)) dy : V ∈ W 1,∞
0 (Q;Rd)

}
.
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Then, as p → ∞, (Fp)p≥1 Γ-converges with respect to the uniform con-
vergence to the functional F̄ : C(Ω̄;Rd) → [0,+∞] given by

F̄ (V ) :=

{
ess sup

x∈Ω
f∞(x,DV (x)) if V ∈ W 1,∞(Ω;Rd),

+∞ otherwise
(3.3)

where

f∞(x,Σ) = lim
p→∞(Qfp(x,Σ))1/p. (3.4)

Remark 3.3. Note that
(1) Thanks to the growth condition (3.2), we have that Qfp is a Carathéodory

function which is quasiconvex with respect to the second variable (see [14,
Proposition 9.5]);

(2) Applying Hölder’s inequality, it is easy to show that the family
(
(
Qfp

)1/p)p≥1 is not decreasing. Therefore it follows that for every x ∈ Ω
and for every Σ ∈ M

d×N there exists the pointwise limit

lim
p→∞(Qfp

)1/p(x,Σ) = sup
p≥1

(
Qfp

)1/p(x,Σ).

(3) The Γ-lim inf inequality

F∞ ≤ Γ- lim inf
p→∞ Fp

can be obtained also as application of Theorem 4.2 in [1] to the particular
case A = curl. However this theorem does not give the existence of a
recovering sequence in the space C(Ω̄,Rd).

Proof (of Theorem 3.2). The proof will be achieved in several steps.
Step 1. For every p ≥ 1 let F̄p : C(Ω̄;Rd) → [0,+∞] be the lower semicon-

tinuous envelope of the functional Fp with respect to the uniform convergence.
Since the family (Fp)p≥1 is non decreasing, by [15, Proposition 5.4], we have
that

Γ(L∞)- lim
p→∞ Fp(V ) = lim

p→∞ F̄p(V ) = sup
p≥1

F̄p(V ). (3.5)

Now we show that for every p > N the lower semicontinuous envelope F̄p

coincides with the functional φp : C(Ω̄;Rd) → [0,+∞] given by

φp(V ) :=

{(∫
Ω

Qfp(x,DV (x))dx
)1/p if V ∈ W 1,p(Ω,Rd),

+∞ otherwise.

With this aim, let Gp, Ḡp : W 1,p(Ω,Rd) → R be the functionals given by

Gp(V ) :=
(∫

Ω

fp(x,DV (x))dx

)1/p

and

Ḡp(V ) :=
(∫

Ω

Qfp(x,DV (x))dx

)1/p

.
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By [4, Statement III(7)] it follows that for every p the functional Ḡp is the se-
quentially lower semicontinuous envelope of the functional Gp on W 1,p(Ω,Rd)
with respect to the weak convergence of W 1,p(Ω,Rd). In order to show that
φp ≤ F̄p we notice that for every p > 1 the functional φp is lower semi-
continuous on C(Ω̄;Rd) with respect to the uniform convergence. In fact, if
(Vn) ⊆ C(Ω̄,Rd) is such that Vn → V with respect to the uniform convergence
and lim infn→∞ φp(Vn) < +∞ then, thanks to the coercivity assumption (3.2),
we have that there exists n0 ∈ N such that the sequence (Vn)n≥n0 is bounded
in W 1,p(Ω,Rd). Therefore, up to a subsequence, (Vn)n≥n0 weakly converges to
V in W 1,p(Ω,Rd). In particular

φp(V ) = Ḡp(V ) ≤ lim inf
n→∞ Ḡp(Vn) = lim inf

n→∞ φp(Vn).

Since φp ≤ Fp on C(Ω̄,Rd) and φp is lower semicontinuous with respect to the
uniform convergence, we obtain that

φp(V ) ≤ F̄p(V ) ∀ V ∈ C(Ω̄,Rd). (3.6)

On the other hand, for every p > N the functional F̄p is sequentially lower semi-
continuous on W 1,p(Ω,Rd) with respect to the weak convergence of
W 1,p(Ω,Rd). In fact, if (Vn) ⊆ W 1,p(Ω,Rd) is such that Vn → V with re-
spect to weak convergence of W 1,p(Ω,Rd) then, thanks to Rellich-Kondrachov
Theorem, we have that Vn ∈ C(Ω̄,Rd) and Vn → V with respect to the uni-
form convergence. In particular it follows that F̄p(V ) ≤ lim infn→∞ F̄p(Vn).
Since F̄p ≤ Fp = Gp on W 1,p(Ω,Rd) we get that for every p > N

F̄p(V ) ≤ Ḡp(V ) = φp(V ) ∀ V ∈ W 1,p
(
Ω,Rd

)
. (3.7)

Inequalities (3.6) and (3.7) imply that for every p > N

F̄p(V ) = φp(V ) =
(∫

Ω

Qfp(x,DV (x))dx

)1/p

∀ V ∈ W 1,p
(
Ω,Rd

)
.

If we show thatF̄p(V ) < +∞ if and only if V ∈ W 1,p(Ω,Rd) then we can
conclude that F̄p = φp on C(Ω̄,Rd) for every p > N . In fact if V ∈ C(Ω̄,Rd)
is such that F̄p(V ) < +∞ then there exists a sequence (Vn) ⊆ C(Ω̄,Rd) such
that Vn → V with respect to the uniform convergence and limn→∞ Fp(Vn) =
F̄p(V ) < +∞. Then there exists n0 ∈ N such that Vn ∈ W 1,p(Ω,Rd) for
every n ≥ n0. Thanks to the coercivity assumption (3.2), we have that the
sequence (Vn)n≥n0 is bounded in W 1,p(Ω,Rd) and, up to a subsequence, weakly
converges to V in W 1,p(Ω,Rd) when p > 1. In particular V ∈ W 1,p(Ω,Rd).
The viceversa is trivial.

Step 2. Since ((Qfp)1/p) is a not decreasing family converging to f∞, for
every p > 1 we have that

F̄p(V ) =
(∫

Ω

Qfp(x,DV (x))dx

)1/p

≤ LN (Ω)
1
p ess sup

x∈Ω
f∞(x,DV (x))

for every V ∈ W 1,∞(Ω,Rd). In particular,

sup
p≥1

F̄p(V ) ≤ lim
p→∞ LN (Ω)

1
p F̃ (V ) = F̃ (V ). (3.8)
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By (3.5) and (3.8) we get that

Γ(L∞)- lim
p→∞ Fp(V ) ≤ F̃ (V )

for every V ∈ C(Ω̄,Rd).
We now prove the converse inequality; i.e.,

Γ(L∞)- lim
p→∞ Fp(V ) ≥ F̃ (V )

for every V ∈ C(Ω̄,Rd).
Without loss of generality, we consider the case when V ∈ C(Ω̄,Rd) is

such that M = supp>1 F̄p(V ) < +∞. This implies that V ∈ W 1,p(Ω,Rd) for
every 1 ≤ p < +∞ and thanks to the coercivity assumption (3.2), we have
that for for every 1 ≤ p < +∞

α||V ||W 1,p(Ω,Rd) ≤ M.

In particular it follows that V ∈ W 1,∞(Ω,Rd) and

F̃ (V ) = ess sup
x∈Ω

f∞(x,DV (x)) ≤ β||V ||W 1,∞(Ω,Rd) < +∞.

Therefore, for every fixed ε > 0, there exists a measurable set Bε ⊂ Ω such
that LN (Bε) > 0 and

ess sup
x∈Ω

f∞(x,DV (x)) ≤ f∞(x,DV (x)) + ε

for every x ∈ Bε. This implies

ess sup
x∈Ω

f∞(x,DV (x))LN (Bε) ≤
∫

Bε

f∞(x,DV (x))dx + εLN (Bε).

By Remark 3.3(2), Beppo Levi’s Theorem, and Hölder’s inequality we obtain

ess sup
x∈Ω

f∞(x,DV (x))LN (Bε)

≤ lim
p→∞

∫

Bε

(Qfp)
1
p (x,DV (x))dx + εLN (Bε)

≤ lim
p→∞

(∫

Bε

Qfp(x,DV (x))dx

) 1
p

LN (Bε)1− 1
p + εLN (Bε).

It follows that

ess sup
x∈Ω

f∞(x,DV (x)) ≤ lim
p→∞ F̄p(V )LN (Bε)− 1

p + ε = sup
p≥1

F̄p(V ) + ε. (3.9)

By (3.5), (3.9), and the arbitrariness of ε we conclude that

Γ(L∞)- lim
p→∞ Fp(V ) ≥ ess sup

x∈Ω
f∞(x,DV (x)) = F̃ (V ).

�

Corollary 3.4. Let Ω be a bounded open set with Lipschitz continuous boundary.
Let f : Ω × M

d×N → R be a Carathéodory function satisfying the growth
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condition (3.2). Assume that for a.e. x ∈ Ω f(x, ·) is curl-∞ quasiconvex, i.e.
for a.e. x ∈ Ω

f(x,Σ) = sup
p≥1

(Qfp(x,Σ))1/p ∀Σ ∈ M
d×N . (3.10)

For every p ≥ 1 let Fp : C(Ω̄;Rd) → [0,+∞] be the functional given by (3.1).
Then, as p → ∞, the family (Fp)p≥1 Γ-converges with respect to the uniform
convergence to the functional F : C(Ω̄;Rd) → [0,+∞] given by

F (V ) :=

{
ess sup

x∈Ω
f(x,DV (x)) if V ∈ W 1,∞(Ω;Rd),

+∞ otherwise.
(3.11)

Now we show that, if f does not depend explicitly on x, then the curl-
∞ quasiconvexity is also a necessary condition for the Lp-approximation of a
supremal functional.

Theorem 3.5. Let f : Md×N → [0,+∞) be a continuous function satisfying
the following growth condition: there exist α, β > 0 such that

α|Σ| ≤ f(Σ) ≤ β(|Σ| + 1) ∀Σ ∈ M
d×N . (3.12)

Let Ω be an open set with Lipschitz continuous boundary and let Fp, F :
C(Ω;Rd) → [0,+∞] be given by

Fp(V ) :=

⎧
⎨

⎩

(∫

Ω

fp(DV (x))dx

)1/p

if V ∈ W 1,p(Ω;Rd)

+∞ otherwise,
(3.13)

and

F (V ) :=

{
ess sup

x∈Ω
f(DV (x)) if V ∈ W 1,∞(Ω;Rd),

+∞ otherwise,
(3.14)

respectively. Then the following statement are equivalent:
(i) f is curl-∞ quasiconvex function;
(ii) Fp Γ-converges to F , as p → ∞, with respect to the uniform convergence.

Proof. (i) =⇒ (ii): it follows by Theorem 3.2.
(ii) =⇒ (i): by Theorem 3.2 we have that

Γ(L∞)- lim
p→∞ Fp(V ) = F̄ (V )

for every V ∈ W 1,∞(Ω;Rd), with F̄ given by (3.3). Therefore, by assumption
we have that

ess sup
x∈Ω

f∞(DV (x)) = F (V ) = ess sup
x∈Ω

f(DV (x))

for every V ∈ W 1,∞(Ω;Rd). In particular, for fixed Σ ∈ M
d×N , choosen

V (x) := Σ · x where x ∈ Ω, we get

f∞(Σ) = f(Σ)

for every Σ ∈ M
d×N . �
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