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BV FUNCTIONS ON CONVEX DOMAINS IN WIENER SPACES

ALESSANDRA LUNARDI, MICHELE MIRANDA JR., AND DIEGO PALLARA

Abstract. We study functions of bounded variation defined in an abstract Wiener space X,
relating the variation of a function u on a convex open set Ω ⊂ X to the behavior near t = 0
of T (t)u, T (t) being the Ornstein–Uhlenbeck semigroup in Ω.

1. Introduction

This paper is devoted to bounded variation (BV ) functions in open sets of infinite dimen-
sional separable Banach spaces endowed with Gaussian measures. BV functions defined in
the whole space X have been introduced in [18] and studied also in [19, 4]. As in the finite
dimensional case, they are strongly related to geometric measure theory and in particular to
the theory of perimeters, see [5, 21, 12].

We use notation and results from [8], to which we refer for the general theory of Gaussian
measures. Our setting is an abstract Wiener space, i.e., a separable Banach space X, with
a nondegenerate centred Gaussian measure γ and the induced Cameron-Martin Hilbert space
H ⊂ X (with inner product [·, ·]H and norm | · |H). See Subsection 2.2 for more details.

A basic result of the theory of BV functions in Wiener spaces is the characterization of the
BV functions in X as the elements of the Orlicz space L lnL1/2(X, γ) such that

lim
t→0

∫

X
|∇HTtu(x)|Hdγ(x) < +∞. (1.1)

In this case, the gradient Dγu of u is an H-valued measure on X and the above limit is just
the total variation of Dγu in X (see for instance in [18, Proposition 4.1], [19, Proposition 3.6]
and [4, Theorem 4.1]). Here, (Tt)t≥0 denotes the Ornstein–Uhlenbeck semigroup

Ttu(x) =

∫

X
u(e−tx+

√

1− e−2ty)dγ(y), t > 0, (1.2)

that, as well known, plays the role of the heat semigroup in the context of Wiener spaces. A
main feature in the proof is the monotonicity of the function t 7→

∫

X |∇HTtu(x)|Hdγ(x).
If X = R

n is endowed with the Lebesgue measure, under some regularity assumptions on Ω
there are bounded extension operators from W 1,p(Ω) and BV (Ω) to W 1,p(Rn) and BV (Rn),
respectively. In infinite dimensions, the lack of analogous results makes the study of Sobolev
and BV functions on domains more difficult.

In this paper we deal with BV functions (and sets with finite perimeter) on convex open
sets of abstract Wiener spaces. The theory is still at its very beginning, see [21, 22, 23, 13, 9].
However, convex open sets have finite perimeter by [12].

We propose a definition of BV functions on domains in X through an integration by parts
formula against a suitable class of test functions, rather than merely as restrictions of BV
functions on the whole space. This is not a trivial issue because of the lack of smooth bump
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functions (for general X) on the one hand, and of bounded extension operators on the other
hand.

Moreover, we relate the variation of a function and the short time behaviour of the Ornstein-
Uhlenbeck semigroup; besides the interest of extending similar results available in different
contexts, see [6, 10, 20], such a relation has proved to be useful to describe fine properties of
BV functions in Wiener spaces, see [1, 2].

In particular, we get a characterisation of BV functions on a convex open set Ω similar to
(1.1). We consider the Ornstein–Uhlenbeck operator L associated to the Dirichlet form

E (u, v) =

∫

Ω
[∇Hu(x),∇Hv(x)]H dγ(x), u, v ∈W 1,2(Ω, µ),

and the semigroup (Tt)t≥0 generated by the realization of L in L2(Ω, γ). The main result of
this paper is the next Theorem.

Theorem 1.1. Let Ω ⊂ X be an open convex set, and let u0 ∈ BV (X, γ) ∩ L2(X, γ) be such

that |Dγu0|(∂Ω) = 0. Then, for any t > 0,

∫

Ω
|∇HTtu0(x)|Hdγ(x) ≤ |Dγu0|(Ω)

and

lim
t→0

∫

Ω
|∇HTtu0(x)|Hdγ(x) = |Dγu0|(Ω). (1.3)

The study of the Ornstein–Uhlenbeck semigroup on domains is less straightforward than in
the whole X, since no explicit formula like (1.2) is available for T (t); nevertheless, the function
t 7→

∫

Ω |∇HTtu(x)|Hdγ(x) is still monotone. In the proof of monotonicity the convexity of Ω
plays an essential role.

The paper is organized as follows. In Section 2 we recall basic notations and results, both in
the finite and infinite dimensional case. In Section 3 we prove Theorem 1.1. In the appendix
we collect some useful properties of convex domains.

2. Notations and preliminaries

In this section we introduce the basic notation and recall some preliminary results, both
in finite and in infinite dimensional spaces. Let us recall that u : Rd → R is in BVloc(R

d) if
u ∈ L1

loc(R
d) and

V (u,O) = sup
{

∫

O

u(x)
d
∑

j=1

∂ϕj

∂xj
(x) dx : ϕ ∈ C1

c (O,R
d), |ϕ(x)| ≤ 1 ∀x ∈ O

}

<∞

for every bounded open set O ⊂ R
d. In this case, the distributional gradient of u is a locally

finite Radon measure with values in R
d. For more information about BV functions and their

fine properties in finite dimensions we refer to [3]. In the next subsection we describe our finite
dimensional Gaussian framework and the related class of BV functions. We refer to [8] for a
comprehensive presentation of infinite dimensional gaussian analysis, to [24] for a survey on
BV functions in infinite dimensions.
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2.1. BV functions in finite dimensions. Let O be an open set in a d-dimensional Euclidean
space F endowed with the standard Gaussian measure,

dγF (y) =
1

(2π)d/2
exp(−|y|2/2)dy = Gd(y)dy.

We define the (negative) formal adjoint of the partial derivative ∂yj by ∂∗yjϕ(y) = ∂yjϕ(y) −

yjϕ(y), and the Gaussian divergence by

divFϕ =

d
∑

j=1

∂∗yjϕj , ϕ = {ϕ1, . . . , ϕd} ∈ C1(O, F ). (2.1)

Given a function u ∈ L1(O, γF ), we define its Gaussian total variation by

|DγF u|(O) = sup

{
∫

O

u(y)divFϕ(y)dγF (y) : ϕ ∈ C1
c (O, F ), |ϕ(y)| ≤ 1 ∀y ∈ O

}

. (2.2)

The space BV (O, γF ) is defined as the set of functions u ∈ L1(O, γF ) with |DγF u|(O) < +∞.
This space is characterised by the fact that the distributional gradient of any u ∈ BV (O, γF )
is a vector valued finite measure µ = (µ1, . . . , µd), namely

∫

O

u(y)∂∗yig(y)dγF (y) =

∫

O

g(y)dµi(y), ∀g ∈ C1
c (O), i = 1, . . . , d.

For such a measure we have |µ|(O) = |DγF u|(O); moreover for any open set A ⊂ O we have

|DγF u|(A) = sup

{∫

A
u(y)divFϕ(y)dγF (y) : ϕ ∈ C1

c (A,F ), |ϕ(y)| ≤ 1 ∀y ∈ A

}

.

The space BV (O, γF ) is a Banach space with the norm

‖u‖BV = ‖u‖L1(O,γF ) + |DγF u|(O). (2.3)

We refer to [14] and to [11] for more details on sets with finite perimeter and functions with
bounded variation in Gaussian spaces. Let us point out that, due to the regularity and non
degeneracy of the standard Gaussian density, local and fine properties of Gaussian BV func-
tions do not differ from those of classical BVloc functions and indeed BV (O) ⊂ BV (O, γF ) ⊂
BVloc(O). As a matter of fact, a Gaussian BV function defines a finite measure that we denote
by DγF u for which the following integration by parts formula holds,

∫

O

u(x)divFϕ(x)dγF (x) =

∫

O

〈ϕ,DγF u〉, ∀ϕ ∈ C1
c (O;Rd).

Such a measure is absolutely continuous with respect to the standard total variation measure of
u and DγF u = GdDu. Of course, global properties are very different, as the Gaussian density
vanishes at infinity. Moreover, if u ∈W 1,1(O, γF ), then u ∈ BV (O, γF ) and

|DγF u|(O) =

∫

O

|∇u(y)|dγF (y). (2.4)

To some extent the above norm (2.3) is too strong, for instance smooth functions are not dense
in BV (O, γF ). However BV functions may be approximated by smooth functions in the sense
of the so called approximation in variation, as the next lemma shows. The proof we present is
based on classical ideas that require a minor adaptation to the present situation.

Here and in the following, we denote by BR(x) the open ball centred at x with radius R.
3



Lemma 2.1. Let v0 ∈ BV (O, γF ) ∩ L2(O, γF ). Then for any ε > 0 there exists vε ∈
W 1,2(O, γF ) such that

‖v0 − vε‖L2(O,γF ) < ε and

∣

∣

∣

∣

∫

O

|∇vε(x)|dγF (x)− |DγF v0|(O)

∣

∣

∣

∣

< ε.

Proof. The proof is a modification of the classical Meyers-Serrin arguments; we refer to [3,
Theorem 3.9] for more details. First of all we can assume that v0 has compact support in F .
Indeed, for every R > 1 let ϑR be a cut–off function such that 0 ≤ ϑR ≤ 1, |∇ϑR(x)| ≤ 2 for
every x and

ϑR ≡ 1 on BR−1(0), supp(ϑR) ⊂ BR(0).

Setting vR = v0ϑR, we have

lim sup
R→+∞

‖v0 − vR‖L2(O,γF ) ≤ lim
R→+∞

‖v0‖L2(O\BR−1(0),γF ) = 0

and, by the obvious equality divF (ϑRϕ) = ϑRdivFϕ+ 〈∇ϑR, ϕ〉,

|DγF vR|(O) ≤ 2

∫

O∩(BR(0)\BR−1(0))
|v0|dγF + |DγF v0|(O ∩BR(0)).

This implies that vR converges to v0 in variation as R → ∞. Precisely, for any ε > 0 there is
R > 0 such that ‖vR − v0‖L2(O,γF ) < ε and

∣

∣

∣|DγF v0|(O) − |DγF vR|(O)
∣

∣

∣ < ε.

From now on, we consider v = vR with this choice of R in place of v0. We can consider a
sequence of open sets Oj with compact closure in O such that any point of O belongs to at
most four sets Oj ; a possible choice is

O1 = {x ∈ O ∩B2(0) : dist(x, ∂O) > 1/2}

and for j ≥ 2

Oj =
{

x ∈ O ∩Bj+1(0) \Bj−1(0) :
1

j + 1
< dist(x, ∂O) <

1

j − 1

}

.

Let {ϕj}j be a partition of unity associated with such a covering, and let ̺ be a standard
mollifier. For every j ∈ N fix εj < ε such that supp((vϕj) ∗ ̺εj ) ⊂ Oj and

‖(vϕj) ∗ ̺εj − vϕj‖L2(O,γF ) +

∫

O

|(v∇ϕj) ∗ ̺εj − v∇ϕj |dγF <
ε

2j
.

The approximation of v is then defined by

vε =
∑

j∈N

(vϕj) ∗ ̺εj .

vε is indeed smooth, and

‖vε − v‖L2(O,γF ) ≤
∑

j∈N

‖(vϕj) ∗ ̺εj − vϕj‖L2(O,γF ) < ε.

On the other hand, see [3, Proposition 3.2]

∇vε =
∑

j∈N

(ϕjDv) ∗ ̺εj +
∑

j∈N

(

(v∇ϕj) ∗ ̺εj − v∇ϕj

)

.
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Here we have used the fact that BV (O, γF ) ⊂ BVloc(O), hence Dv is a measure with locally
finite variation and the convolution above is well defined. From these considerations, we then
obtain

|DγF vε|(O) =

∫

O

|∇vε(x)|dγF (x)

≤
∑

j∈N

∫

O

|v∇ϕj ∗ ̺εj(x)− v(x)∇ϕj(x)|Gd(x)dx

+
∑

j∈N

∫

O

dx

∫

Bε(x)
Gd(x)ϕj(y)̺εj (x− y)d|Dv|(y)

≤ε+
∑

j∈N

∫

O

dx

∫

Bε(x)

Gd(x)

Gd(y)
ϕj(y)̺εj (x− y)Gd(y)d|Dv|(y)

≤ε+
∑

j∈N

eεjR+ε2j/2
∫

O

ϕj(y)d|DγF v|(y) ≤ ε+ eεR+ε2/2|DγF v|(O),

where we have used the fact that the support of v is contained in BR(0) and for y ∈ Bεj(x)

Gd(x)

Gd(y)
= e

|y|2−|x|2

2 ≤ eεjR+ε2j/2.

�

2.2. Abstract Wiener spaces. We consider an infinite dimensional separable Banach space
X (whose topological dual we denote by X∗), endowed with the Borel σ-algebra B(X) and
a centred and non degenerate Gaussian measure γ with nondegenerate covariance operator
Q ∈ L(X∗,X) uniquely determined by the relation

y∗(Qx∗) =

∫

X
x∗(x)y∗(x)dγ(x) ∀x∗, y∗ ∈ X∗.

If we consider the operator R : L2(X, γ) → X given by the Bochner integral

Rϕ =

∫

X
xϕ(x) dγ(x), ϕ ∈ L2(X, γ),

it is easily seen that its adjoint R∗ : X∗ → L2(X, γ) is just the embedding operator, (R∗x∗)(x) =
x∗(x), x ∈ X, and the equality Q = RR∗ follows.

The Cameron-Martin space H is given by R(H), where H is the closure of X∗ in L2(X, γ).

It coincides with the set of all h ∈ X such that there exists ĥ ∈ H for which
∫

X
x∗(x)ĥ(x) dγ(x) = x∗(h), x∗ ∈ X∗.

In this case, we have R(ĥ) = h, and R|H : H → H is an isometry if we endow H with the norm

| · |H associated with the inner product [h, k]H = 〈ĥ, k̂〉L2(X,γ). The space Q(X∗) is dense in
H, and H is continuously and densely embedded in X.

The symbol FC1
b (X) denotes the space of bounded continuously differentiable cylindrical

functions with bounded derivatives, that is, u ∈ FC1
b (X) if

u(x) = ϕ(x∗1(x), . . . , x
∗
m(x))

for some ϕ ∈ C1
b (R

m) and x∗1, . . . , x
∗
m ∈ X∗.

5



We fix once and for all an orthonormal basis (hj)j∈N of H, with hj = Qh,j hj ∈ X∗ (such a

basis exists, see [8, Corollary 2.10.10]). We denote by πm : X → span{h1, . . . , hm} the projec-

tion πmx =
∑m

j=1 ĥj(x)hj and by Xm, X⊥
m the range and the kernel of πm, respectively. Note

that the restriction of πm to H is the orthogonal projection on the linear span of h1, . . . , hm.
πm induces the canonical factorisation γ = γm ⊗ γ⊥m, where γm = γ ◦ π−1

m and γ⊥m =
γ ◦ (I − πm)−1 are the pull–back measures on Xm and X⊥

m.
For every function u ∈ L1(X, γ) we define its canonical cylindrical approximations Emu by

Emu(x) =

∫

X
u(πmx+ (I − πm)y)dγ(y) =

∫

X⊥
m

u(πmx+ y′)dγ⊥m(y′), (2.5)

Then, limm→∞ Emu = u in L1(X, γ) and γ-a.e. (see e.g. [8, Corollary 3.5.2]). Moreover Emu
is invariant under translations along all the vectors in X⊥

m, hence Emu(x) = v(πmx) for some
function v.
Let us recall the notation for the partial derivative along h ∈ H and for its formal adjoint. For
f ∈ C1

b (X) we set

∂hf(x) = lim
t→0

f(x+ th)− f(x)

t
, ∂∗hf(x) = ∂hf(x)− f(x)ĥ(x)

where h = Rĥ ∈ H with ĥ ∈ H. The gradient along H, ∇Hf : X → H of f is defined as

∇Hf(x) =
∑

j∈N

∂hj
f(x)hj

and it is the unique element y ∈ H such that, for every h ∈ H, ∂hf(x) = [y, h]H . Notice that
if f(x) = g(πmx) with g ∈ C1(Rm), then

∂hf(x) = 〈∇g(πmx), πmh〉Rm .

The operator ∂∗h defined by ∂∗hϕ = −∂hϕ+ ĥϕ is (up to a change of sign) the formal adjoint of
∂h with respect to L2(X, γ), namely

∫

X
ϕ∂hf dγ = −

∫

X
f∂∗hϕdγ ∀ϕ, f ∈ FC1

b (X).

We define the space FC1
b (X,H) of cylindrical H-valued functions as the vector space spanned

by functions ϕh, where ϕ runs in FC1
b (X) and h in H. With this notation, the divergence

operator is defined for ϕ ∈ FC1
b (X,H) as

divγϕ =
∑

j∈N

∂∗j [ϕ, hj ]H ,

and we have the integration by parts formula
∫

X
[∇Hf, ϕ]Hdγ = −

∫

X
fdivγϕ dγ f ∈ FC1

b (X), ϕ ∈ FC1
b (X;H).

If we fix a finite dimensional space F ⊂ Q(X∗) ⊂ H with dim F = d, we identify F with
R
d and we denote by divF the divergence on F defined according to (2.1) with respect to any

orthonormal basis {h1, . . . , hd} of F . Moreover, since F ⊂ H, there is an orthogonal projection
of H onto F . According to Theorem 2.10.11 in [8] there is a unique (up to equivalence)
measurable projection πF : X → F which extends it.
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We denote by M (X,H) the space of all H-valued measures µ with finite total variation on
B(X). The total variation measure |µ| of µ is defined by

|µ|(B) = sup

{ ∞
∑

j=1

|µ(Bj)|H : B =
⋃

j∈N

Bh

}

,

where Bj ∈ B(X) for every j and Bj ∩ Bi = ∅ for j 6= i. Moreover, using the polar decompo-
sition µ = σ|µ|, the total variation of µ can be obtained as

|µ|(Ω) = sup
{

∫

Ω
[σ, ϕ]Hd|µ| : ϕ ∈ Cb(Ω,H), ‖ϕ‖∞ ≤ 1

}

. (2.6)

Indeed, in the real valued case this is a direct consequence of the isometry between the space of
real measures on and open set Ω and the dual space of Cb(Ω), see [16, Section IV.6]. The finite
dimensional case follows immediately because a vector-valued measure is just an n-tuple of
real-valued measures. If µ has infinitely many components µj = [µ, hj ]H , then µ ∈ M (X,H)
if and only if

sup
m

|(µ1, . . . , µm)|(X) <∞.

In fact, setting λ = supm |(µ1, . . . , µm)|, the inequality λ ≤ |µ| is obvious. Conversely, since
µj ≪ λ for every j ∈ N, there is a sequence of λ-measurable functions (fj) such that µj = fjλ
and

∑m
j=1 |fj|

2 ≤ 1 λ-a.e. for every m ∈ N, whence ‖(fj(x))‖ℓ2 ≤ 1 λ-a.e.,
∑∞

j=1 fjhj ∈

L1(X,λ;H) and µ =
∑∞

j=1 fjhjλ ∈ M (X,H).

Definition 2.2. Let u ∈ L2(X, γ). We say that u has bounded variation in X and we write

u ∈ BV (X, γ) if there exists µ ∈ M (X,H) such that for any ϕ ∈ FC1
b (X) we have

∫

X
u(x)∂∗jϕ(x)dγ(x) = −

∫

X
ϕ(x)dµj(x) ∀j ∈ N, (2.7)

where µj = [hj , µ]H . In this case we set Dγu = µ.

Even though in this paper we deal with BV functions defined in the whole space, it is
interesting to point out that an intrinsic definition of BV (Ω, γ) is possible, using a suitable
class of test functions. By (2.2), we notice that in finite dimension the natural class of test
functions is that of boundedly supported smooth functions. In infinite dimensions compactly
supported smooth functions are not adequate and for H-valued measures the following result
holds.

Lemma 2.3. Let Ω ⊂ X be open and let µ ∈ M (Ω,H) be an H-valued Radon measure. Then,

denoting by |µ| the total variation measure and using the polar decomposition µ = σ|µ| we have

|µ|(Ω) = sup
{

∫

Ω
[σ, ϕ]Hd|µ| : ϕ ∈ Lip0(Ω,H), ‖ϕ‖∞ ≤ 1

}

,

where Lip0(Ω,H) denotes the space of H-valued functions defined on X, Lipschitz continuous

with respect to the X-norm and vanishing in X \Ω.

Proof. We recall that in our framework all Borel measures on X are Radon measures. There-
fore, for every ε > 0 there are a function ϕε ∈ Cb(Ω,H) with ‖ϕ‖∞ ≤ 1 and a compact set
K ⊂ Ω with |µ|(Ω \K) < ε such that

|µ|(Ω) ≤

∫

Ω
[σ, ϕε]H d|µ|+ ε ≤

∫

K
[σ, ϕε]H d|µ|+ 2ε.

7



Let us now approximate σ: there is σε ∈ C(K,H) with finite dimensional range (just write
σ =

∑

j [σ, hj ]Hhj and take a suitable finite dimensional projection) such that

‖σ − σε‖L1(K,|µ|) < ε and |µ|(Ω) ≤

∫

K
[σε, ϕε]H d|µ|+ 3ε.

Notice that, since σε has finite dimensional range, only finitely many components of ϕε =
∑

j[ϕε, hj ]Hhj are involved in the above integral. We may therefore argue component by
component to show that ϕε can be approximated by Lip0 functions uniformly on K. To this
end, let us first remark that by the Stone-Weierstrass theorem the class of the restrictions to
K of FC1

b (X) functions is dense in Cb(K), hence there is a function gε ∈ FC1
b (X,H) with

finite dimensional range such that ‖gε − ϕε‖L∞(K) < ε. Moreover, the function

f(x) =
(

1−
2

δ
dist(x,K)

)+
, x ∈ H,

with δ = dist(K,∂Ω), belongs to Lip0(Ω), so that, setting

G(h) =

{

h if |h|H ≤ 1
h

|h|H
if |h|H > 1

, h ∈ H,

we have that ψε(x) = f(x)(G◦gε)(x) ∈ Lip0(Ω,H), ‖ψε‖L∞(K,|µ|) ≤ 1 and ‖ϕε−ψε‖L∞(K) ≤ 2ε,
whence

|µ|(Ω) ≤

∫

K
[σε, ψε]H d|µ|+ 5ε ≤

∫

Ω
[σ, ψε]H d|µ|+ 6ε

≤ sup
{

∫

Ω
[σ, ψ]Hd|µ| : ψ ∈ Lip0(Ω,H), ‖ψ‖∞ ≤ 1

}

+ 6ε.

By the arbitrariness of ε, the proof is complete. �

In the next lemma we extend the integration by parts formula (2.7) with u ∈ BV (X, γ) to
Lip0(Ω,H) functions.

Lemma 2.4. For every ϕ ∈ Lip0(Ω,H) and u ∈ BV (X, γ) the following equality holds:
∫

Ω
udivγϕdγ = −

∫

Ω
[ϕ,Dγu]H . (2.8)

Proof. Let us show (2.8) arguing component by component. Fix hj , an element of the given

orthonormal basis in H, and consider the projection πj : H → spanhj , πj(x) = ĥj(x)hj . Then

write x = y + thj, uy(t) = u(y + thj). Setting X
⊥
j = (I − πj)(X) and ϕj = [ϕ, hj ]H , we have

∫

X
u∂∗jϕj dγ =

∫

X⊥
j

dγ⊥
h⊥
j

∫

R

uy(t)∂
∗
t (ϕj)y(t) dγ1(t)

= −

∫

X⊥
j

dγ⊥
h⊥
j

∫

R

(ϕj)y(t)dDγ1uy(t) = −

∫

X
ϕj d[Dγu, hj ],

where we have used the notation γ = γ1 ⊕ γ⊥
h⊥
j

for the factorization of γ induced by the

decomposition of X into πj(X)⊕X⊥
j and in the second line for any y ∈ X⊥

j the integral on R

is with respect to the measure Dγ1uy, the measure derivative of the section uy of u, see [4]. �

An easy but useful consequence is the following lower semicontinuity property of the total
variation, see also [1, Proposition 2.5] for a different proof.
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Corollary 2.5. Let u ∈ BV (X, γ) and let Ω ⊂ X be any open set such that u|Ω ∈ L2(Ω, γ).

If a sequence (un)n converges to u in L2(Ω, γ), then

|Dγu|(Ω) ≤ lim inf
n→∞

|Dγun|(Ω).

Proof. By Lemmas 2.3 and 2.4,

|Dγu|(Ω) = sup
{

∫

Ω
[ϕ,Dγu]H : ϕ ∈ Lip0(Ω,H), ‖ϕ‖∞ ≤ 1

}

= sup
{

∫

Ω
udivγϕdγ : ϕ ∈ Lip0(Ω,H), ‖ϕ‖∞ ≤ 1

}

.

On the other hand, ϕ ∈ Lip0(Ω,H) the functional u 7→
∫

X udivγϕdγ is continuous in L2(X, γ)

and therefore, by Lemma 2.4, the functional u 7→ |Dγu|(Ω) is lower semicontinuous in L2(X, γ),
as it is the supremum of continuous functionals. �

It is not hard to see that if u ∈ BV (X, γ) then

|Dγu|(X) = sup
{

∫

X
[ϕ,Dγu]H : ϕ ∈ FC1

b (X,H), |ϕ(x)|H ≤ 1 ∀x ∈ X
}

,

see [4]. A useful consequence of Lemma 2.3 is that the canonical cylindrical approximations
Emu defined in (2.5) (which are known to converge to u in variation, i.e.

|Dγu|(X) = lim
m→+∞

|DγEmu|(X),

see equality (34) in [4]), verify the inequality |DγEmu|(A) ≤ |Dγu|(A) for all open sets A. In
fact,

|DγEmu|(A) = sup
{

∫

A
Emudivγϕdγ, ϕ ∈ Lip0(A,H), ‖ϕ‖∞ ≤ 1

}

(2.9)

= sup
{

∫

A
[ϕ, dDEmu]H , ϕ ∈ Lip0(A,H), ‖ϕ‖∞ ≤ 1

}

= sup
{

∫

A
〈πmϕ, dDEmu〉, ϕ ∈ Lip0(A,H), ‖ϕ‖∞ ≤ 1

}

= sup
{

∫

A
〈πmϕ, d (πmDγu)〉, ϕ ∈ Lip0(A,H), ‖ϕ‖∞ ≤ 1

}

≤ sup
{

∫

A
[ϕ, dDγu]H , ϕ ∈ Lip0(A,H), ‖ϕ‖∞ ≤ 1

}

= sup
{

∫

A
udivγϕdγ, ϕ ∈ Lip0(A,H), ‖ϕ‖∞ ≤ 1

}

= |Dγu|(A).

2.3. Sobolev spaces and the Ornstein–Uhlenbeck semigroup on convex domains.

There are several equivalent ways of defining Sobolev spaces on Wiener spaces, see [8, Section
5.2]. If X is replaced by a domain Ω ⊂ X, the equivalence of different definitions is not
obvious. Here we adopt the definition of [13], that works for sublevel sets Ω = {G < 0} of
Sobolev functions G ∈ W 1,p(X, γ) for some p > 1. Since we are interested in a convex Ω, we
fix any x0 ∈ Ω and we define the Minkowski function

m(x) := inf {λ ≥ 0 : x− x0 ∈ λ(Ω− x0)}

which is Lipschitz continuous; then Ω = {G < 0} with G(x) = m(x)− 1 ∈W 1,p(X, γ) for every
p > 1. By [13, Lemma 2.2], the operator Lip(Ω) → L2(Ω, γ;H) defined by u 7→ ∇H ũ|Ω, where
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ũ is any Lipschitz continuous extension of u to the whole X, is closable. The space W 1,2(Ω, γ)
is defined as the domain of its closure, still denoted by ∇H . Therefore, it is a Hilbert space for
the inner product

〈u, v〉W 1,2(Ω,γ) =

∫

Ω
uv dγ +

∫

Ω
[∇Hu,∇Hv]H dγ

which induces the graph norm of ∇H . The associated quadratic form in the gradient,

E (u, v) =

∫

Ω
[∇Hu(x),∇Hv(x)]H dγ(x), u, v ∈W 1,2(Ω, γ),

is used to define the Ornstein–Uhlenbeck operator L : D(L) ⊂ L2(Ω, γ) → L2(Ω, γ) by setting

D(L) =
{

u ∈W 1,2(Ω, γ) : ∃f ∈ L2(Ω, γ) s.t.

E (u, v) = −

∫

Ω
fvdγ, ∀v ∈W 1,2(Ω, γ)

}

,

and Lu = f . The operator (L,D(L)) is self-adjoint in L2(Ω, γ) and dissipative (namely,
〈Lu, u〉L2(Ω,γ) ≤ 0 for every u ∈ D(L)), hence it is the infinitesimal generator of an analytic

contraction semigroup (Tt)t≥0 in L2(Ω, γ).
For the moment we have considered only real valued functions. In the sequel we use also

the complexification of L in the space L2(Ω, γ;C), which is the operator associated with the
sesquilinear form (u, v) 7→

∫

Ω[∇Hu,∇Hv]Hdγ defined for u, v ∈W 1,2(Ω, γ;C). The semigroup
generated by the complexification agrees with (Tt)t≥0 on real valued functions, and we use its
representation formula as a Dunford integral along a complex path.

3. Proof of Theorem 1.1

The proof of Theorem 1.1 is divided in several steps and each step is discussed in a subsection.

3.1. Monotonicity in finite dimensions. Let O be a convex open set with smooth boundary
in a finite dimensional space F , with scalar product 〈·, ·〉 and norm | · |. We denote by νO(x)
the exterior unit normal vector at x ∈ ∂O. Let (TF

t )t≥0 be the semigroup generated by the
Ornstein-Uhlenbeck operator L defined by the Dirichlet form

EO(u, v) =

∫

O

〈∇u,∇v〉dγF , u, v ∈W 1,2(O, γF ),

as explained in Subsection 2.3. By [15], D(L) ⊂W 2,2(O, γF ) and the elements of D(L) satisfy
the Neumann boundary condition ∂u/∂νO = 0 at ∂O. Moreover for every u ∈ D(L) we have
Lu(x) = ∆u(x) − 〈x,∇u(x)〉. Since L is a realization of an elliptic operator with smooth
coefficients, and the boundary of O is smooth, the function (t, x) 7→ TF

t u0(x) is smooth in
(0,+∞)× O for every u0 ∈ L2(O, γF ).

For any v0 ∈ L2(O, γF ) let us introduce the function Fv0 : (0,+∞) → [0,+∞] defined as

Fv0(t) =

∫

O

|∇TF
t v0(x)|dγF (x).

Then the following result holds.

Proposition 3.1. For each v0 ∈ BV (O, γF ) ∩ L2(O, γF ) the function Fv0 is decreasing in

(0,∞). Moreover

Fv0(t) ≤ |DγF v0|(O), ∀t > 0
10



and

lim
t→0

Fv0(t) = |DγF v0|(O).

Proof. In order to avoid integrability problems, we introduce a family of cut–off functions ϑR
such that 0 ≤ ϑR ≤ 1, ϑR ≡ 1 in BR(0), supp(ϑR) ⊂ B2R(0) and |∇ϑR(x)| ≤ 2/R for every
x. Analogously, in order to overcome the lack of regularity of the function |∇TF

t v0(x)| at its

zeroes, we replace it by
√

|∇TF
t v0(x)|

2 + 1/R. We then define

FR,v0(t) =

∫

O

ϑR(x)

√

|∇TF
t v0(x)|

2 +
1

R
dγF (x).

As a first step, we prove that FR,v0 is differentiable. Since TF
t is analytic, t 7→ TF

t v0 is
differentiable with values in D(L), and

∂t

√

|∇TF
t v0(x)|

2 +
1

R
=

1
√

|∇TF
t v0(x)|

2 + 1
R

〈∇TF
t v0(x),∇LT

F
t v0(x)〉

so that

∂t

√

|∇TF
t v0(x)|

2 +
1

R
≤ |∇LTF

t v0(x)|.

Then we can differentiate under the integral, and recalling that ∂i∂
∗
jϕ = ∂∗j ∂iϕ− ϕδij we get

F
′
R,v0(t) =

∫

O

ϑR(x)
√

|∇TF
t v0(x)|

2 + 1
R

〈∇TF
t v0(x),∇LT

F
t v0(x)〉dγF (x)

=

d
∑

i,j=1

∫

O

ϑR(x)
√

|∇TF
t v0(x)|

2 + 1
R

∂iT
F
t v0(x)∂i∂

∗
j ∂jT

F
t v0(x)dγF (x)

=
d
∑

i,j=1

∫

O

ϑR(x)
√

|∇TF
t v0(x)|

2 + 1
R

∂iT
F
t v0(x)∂

∗
j ∂

2
ijT

F
t v0(x)dγF (x)+

−

∫

O

ϑR(x)
|∇TF

t v0(x)|
2

√

|∇TF
t v0(x)|

2 + 1
R

dγF (x)

=
d
∑

i,j=1

∫

∂O

ϑR(x)
√

|∇TF
t v0(x)|

2 + 1
R

∂iT
F
t v0(x)∂

2
ijT

F
t v0(x)ν

O
j (x)Gd(x)dH

d−1(x)

−
d
∑

i,j=1

∫

O

∂2ijT
F
t v0(x)∂j





ϑR(x)
√

|∇TF
t v0(x)|

2 + 1
R

∂iT
F
t v0(x)



 dγF (x)

−

∫

O

ϑR(x)
|∇TF

t v0(x)|
2

√

|∇TF
t v0(x)|

2 + 1
R

dγF (x)

=

∫

∂O

ϑR(x)
√

|∇TF
t v0(x)|

2 + 1
R

〈D2TF
t v0(x)ν

O(x),∇TF
t v0(x)〉Gd(x)dH

d−1(x)
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−
d
∑

i,j=1

∫

O

ϑR(x)
√

|∇TF
t v0(x)|

2 + 1
R

[

(∂2ijT
F
t v0(x))

2+

−
1

|∇TF
t v0(x)|

2 + 1
R

∂2kjT
F
t v0(x)∂kT

F
t v0(x)∂iT

F
t v0(x)∂

2
ijT

F
t v0(x)

]

dγF (x)+

−

∫

O

1
√

|∇TF
t v0(x)|

2 + 1
R

〈D2TF
t v0(x)∇ϑR(x),∇T

F
t v0(x)〉dγF (x)+

−

∫

O

ϑR(x)
|∇TF

t v0(x)|
2

√

|∇TF
t v0(x)|

2 + 1
R

dγF (x)

=−

∫

∂O

ϑR(x)
√

|∇TF
t v0(x)|

2 + 1
R

〈JνO(x)∇TF
t v0(x),∇T

F
t v0(x)〉Gd(x) dH

d−1(x)

+

∫

O

ϑR(x)
√

|∇TF
t v0(x)|

2 + 1
R

( |∇TF
t v0(x)|

2

|∇TF
t v0(x)|

2 + 1
R

∣

∣

∣

∣

D2TF
t v0(x)

∇TF
t v0(x)

|∇TF
t v0(x)|

∣

∣

∣

∣

2

+

− ‖D2TF
t v0(x)‖

2
2

)

dγF (x)+

−

∫

O

1
√

|∇TF
t v0(x)|

2 + 1
R

〈D2TF
t v0(x)∇ϑR(x),∇T

F
t v0(x)〉dγF (x)+

−

∫

O

ϑR(x)
|∇TF

t v0(x)|
2

√

|∇TF
t v0(x)|

2 + 1
R

dγF (x),

where we have denoted by ‖D2TF
t v0(x)‖ the Euclidean norm of the matrix D2TF

t v0(x).
The second integral in the right hand side is negative because

∣

∣

∣

∣

D2TF
t v0(x)

∇TF
t v0(x)

|∇TF
t v0(x)|

∣

∣

∣

∣

2

is bounded by the square of the largest eigenvalue of D2TF
t v0(x), while ‖D2TF

t v0(x)‖
2
2 is the

sum of the square of all the eigenvalues. In the first integral we have denoted by JνO(x) the
Jacobian matrix of νO at x, and we have used the fact that ∇TF

t v0(x) is orthogonal to ∂O

and any tangential derivative of 〈∇TF
t v0(x), ν

O(x)〉 is equal to 0, that is

0 =〈∇
(

〈∇TF
t v0(x), ν

O(x)〉
)

,∇TF
t v0(x)〉

=〈D2TF
t v0(x)ν

O(x),∇TF
t v0(x)〉+ 〈JνO(x)∇TF

t v0(x),∇T
F
t v0(x)〉.

The convexity of ∂O implies

〈JνOξ, ξ〉 ≥ 0, ∀ξ ∈ (νO(x))⊥

and so we can conclude that

F
′
R,v0(t) ≤−

∫

O

1
√

|∇TF
t v0(x)|

2 + 1
R

〈D2TF
t v0(x)∇ϑR(x),∇T

F
t v0(x)〉dγF (x)

≤
2

R
‖ |D2TF

t v0| ‖
2
L2(O,γF ),
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where the last inequality holds with |D2TF
t v0| the operator norm of D2TF

t v0.
As a consequence, for any t1 < t2

FR,v0(t2) = FR,v0(t1) +

∫ t2

t1

F
′
R,v0(s)ds. ≤ FR,v0(t1) +

2

R

∫ t2

t1

‖ |D2TF
s v0| ‖

2
L2(O,γF )ds;

Letting R→ +∞ we obtain the monotonicity of Fv0 , since

Fv0(t2) = lim
R→+∞

FR,v0(t2) ≤ lim
R→+∞

(

FR,v0(t1) +
2

R

∫ t2

t1

‖ |D2TF
s v0| ‖

2
L2(O,γF )ds

)

= Fv0(t1).

To prove the second part of the statement, let us fix w ∈ W 1,2(O, γF ). Since W 1,2(O, γF )

is the domain of (I − L)1/2, then TF
t is strongly continuous in W 1,2(O, γF ). It follows that

|∇TF
t w| converges to |∇w| in L1(O, γ) as t→ 0, and hence by (2.4)

lim
t→0

∫

O

|∇TF
t w(x)|dγF (x) =

∫

O

|∇w(x)|dγF (x) = |DγFw|(O).

Therefore, for any t > 0 and for w ∈W 1,2(O, γF )

Fw(t) ≤ Fw(0
+) = lim

t→0

∫

O

|∇TF
t w(x)|dγF (x) = |DFw|(O).

Now let v0 ∈ BV (O, γF ) ∩ L2(O, γF ). Thanks to Lemma 2.1, there exists a sequence of
functions (wj)j∈N ⊂W 1,2(O, γF ) such that

lim
j→∞

‖wj −w0‖L2(O,γF ) = 0, lim
j→∞

∫

O

|∇wj(x)|dγF (x) = |DγF v0|(O).

Then, for every t > 0 we have limj→∞ |∇TF
t wj | = |∇TF

t v0| in L
2(O, γF ), and by the first part

of the proof
∫

O

|∇TF
t wj(x)|dγF (x) ≤

∫

O

|∇wj(x)|dγF (x), j ∈ N,

so that
∫

O

|∇TF
t v0(x)|dγF (x) = lim

j→+∞

∫

O

|∇TF
t wj(x)|dγF (x)

≤ lim inf
j→+∞

∫

O

|∇wj(x)|dγF (x) = |DγF v0|(O).

�

Remark 3.2. Some arguments of this section may be related to the approach of Bakry and

Émery [7], that has been widely developed in the last years also in the metric space setting, and

in fact results of this type in such framework can be found in [25], to which we refer for the

details.

3.2. Convex sets as countable intersection of cylindrical convex sets. In this section
we consider a convex open set Ω ⊂ X and a sequence (Ωn)n of open convex cylindrical sets of
the form Ωn = π−1

Fn
(On), where, for every n ∈ N, πFn is a finite dimensional projection from X

onto Fn, such that Ωn ⊂ Ωn+1, ∂On is regular, Ω ⊂ Ωn and

Ω =
⋂

n∈N

Ωn.

13



We give a construction of the approximating sets Ωn in the Appendix.
Since Ω and Ωn are open convex sets, by [12, Prop. 4.2] we know that γ(∂Ω) = γ(∂Ωn) = 0.
Moreover, Ω ⊂ Ωn for any n ∈ N and

γ

(

⋂

n∈N

Ωn \ Ω

)

= 0.

3.3. Approximations of semigroups. We recall that L is the Ornstein-Uhlenbeck operator
in L2(Ω, γ) defined in Section 2.3. Similarly, Ln are the Ornstein-Uhlenbeck operators in
L2(Ωn, γ) associated with the Dirichlet forms

E
(n)(u, v) =

∫

Ωn

[∇Hu,∇Hv]H dγ, u, v ∈W 1,2(Ωn, γ).

The semigroups generated by Ln are denoted by (T
(n)
t )t≥0. We denote by R(λ,A) the resolvent

of the operator A. In the next proposition we deal with complex-valued functions.

Proposition 3.3. Under the above assumptions, for any f ∈ L2(X, γ) and for any λ ∈
C \ (−∞, 0],

lim
n→∞

(

R(λ,Ln)(f|Ωn
)
)

|Ω
= R(λ,L)(f|Ω) in W 1,2(Ω, γ).

It follows

(T
(n)
t u0|Ωn

)|Ω → Ttu0|Ω in W 1,2(Ω, γ)

for any u0 ∈ L2(X, γ) and t > 0.

Proof. Fix λ ∈ C \ (−∞, 0] and set ϑ = argλ. Since each Ln is self–adjoint and dissipative,
λ ∈ ρ(Ln) and

‖R(λ,Ln)‖L(L2(Ωn,γ)) ≤
1

|λ| cos ϑ
2

,

‖LnR(λ,Ln)‖L(L2(Ωn,γ)) = ‖λR(λ,Ln)− I‖L(L2(Ωn,γ)) ≤
1

cos ϑ
2

+ 1.

Setting u = R(λ,L)(f|Ω) and un = R(λ,Ln)(f|Ωn
), such estimates imply

‖un‖L2(Ωn,γ) ≤
1

|λ| cos ϑ
2

‖f‖L2(X,γ)

and
∫

Ωn

|∇Hun|
2
Hdγ = −

∫

Ωn

unLnundγ ≤
1 + cos ϑ

2

|λ| cos2 ϑ
2

‖f‖2L2(X,γ).

Recalling that Ω ⊂ Ωn, we arrive at the estimate

‖un|Ω‖W 1,2(Ω,γ) ≤ ‖un‖W 1,2(Ωn,γ) ≤
‖f‖L2(X,γ)

cos ϑ
2





1

|λ|
+

√

1 + cos ϑ
2

|λ|



 .

Then the sequence (un|Ω) is bounded in W 1,2(Ω, γ), so that it admits a subsequence weakly
convergent to some function u∞. By definition, un = R(λ,Ln)(f|Ωn

) means

λ

∫

Ωn

unϕdγ +

∫

Ωn

[∇Hun,∇Hϕ]H dγ =

∫

Ωn

fϕdγ, ∀ϕ ∈W 1,2(Ωn, γ). (3.1)
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Fix any ϕ ∈W 1,2(X, γ). Notice that
∣

∣

∣

∣

∣

∫

Ωn\Ω
fϕdγ

∣

∣

∣

∣

∣

≤ ‖f‖L2(X,γ)‖ϕ‖L2(Ωn\Ω,γ)

where limn→∞ ‖ϕ‖L2(Ωn\Ω,γ) = 0 since γ(Ωn \ Ω) vanishes as n→ ∞. Then,

lim
n→+∞

∫

Ωn\Ω
fϕdγ = 0.

Recalling that ‖un‖W 1,2(Ωn,γ) is bounded by a constant independent of n, the same argument
yields

lim
n→+∞

∫

Ωn\Ω
unϕdγ = lim

n→+∞

∫

Ωn\Ω
[∇Hun,∇Hϕ]H dγ = 0.

We conclude that

λ

∫

Ω
u∞ϕdγ +

∫

Ω
[∇Hu∞,∇Hϕ]H dγ = lim

n→+∞

(

λ

∫

Ωn

unϕdγ +

∫

Ωn

[∇Hun,∇Hϕ]H dγ

)

= lim
n→+∞

∫

Ωn

fϕdγ =

∫

Ω
fϕdγ.

Since the restrictions to Ω of elements of W 1,2(X, γ) are dense in W 1,2(Ω, γ), we obtain

λ

∫

Ω
u∞ϕdγ +

∫

Ω
[∇Hu∞,∇Hϕ]H dγ =

∫

Ω
fϕdγ, ∀ϕ ∈W 1,2(Ω, γ).

Therefore, the limit function u∞ coincides with u = R(λ,L)(f|Ω) and the whole sequence un|Ω
weakly converges in W 1,2(Ω, γ) to u, with no need of subsequences.

Let us now show that un|Ω converges strongly to u in W 1,2(Ω, γ). To this aim it is enough
to show that

lim sup
n→+∞

‖un‖W 1,2(Ω,γ) ≤ ‖u‖W 1,2(Ω,γ).

To see this we use (3.1) with ϕ = ūn and obtain

λ

∫

Ωn

|un|
2dγ +

∫

Ωn

|∇Hun|
2
Hdγ =

∫

Ωn

fūndγ.

Letting n→ +∞, as before we obtain

lim
n→+∞

(

λ

∫

Ωn

|un|
2dγ +

∫

Ωn

|∇Hun|
2
Hdγ

)

=

∫

Ω
fūdγ

= λ

∫

Ω
|u|2dγ +

∫

Ω
|∇Hu|

2
Hdγ

(3.2)

since λu− Lu = f .
We write λ = α+ iβ with α, β ∈ R. If β 6= 0, taking the imaginary parts in (3.2) we get

lim
n→+∞

β

∫

Ωn

|un|
2dγ = β

∫

Ω
|u|2dγ,

that is

lim
n→+∞

∫

Ωn

|un|
2dγ =

∫

Ω
|u|2dγ,

15



and we deduce

lim
n→+∞

∫

Ωn

|∇Hun|
2
Hdγ =

∫

Ω
|∇Hu|

2
Hdγ.

Therefore,

lim sup
n→+∞

(∫

Ω
|un|

2dγ +

∫

Ω
|∇Hun|

2
Hdγ

)

≤ lim sup
n→+∞

(∫

Ωn

|un|
2dγ +

∫

Ωn

|∇Hun|
2
Hdγ

)

=

∫

Ω
|u|2dγ +

∫

Ω
|∇Hu|

2
Hdγ.

If β = 0, since λ ∈ C \ (−∞, 0], we have α > 0; (3.2) gives

lim
n→∞

α‖un‖
2
L2(Ωn,γ)

+ ‖∇Hun‖
2
L2(Ωn,γ)

= α‖u‖2L2(Ω,γ) + ‖∇Hu‖
2
L2(Ω,γ),

and since the norm u 7→ (α‖u‖2L2(Ω,γ)+‖∇Hu‖
2
L2(Ω,γ))

1/2 is equivalent to the norm ofW 1,2(Ω, γ)

we are done.
Convergence of resolvents implies convergence of semigroups. Indeed, it is sufficient to use

the Dominated Convergence Theorem in the canonical representation formula,

Ttf|Ω =
1

2πi

∫

Γ
R(λ,L)f|Ω dλ = lim

n→+∞

1

2πi

∫

Γ
R(λ,Ln)f|Ωn

dλ = lim
n→+∞

T
(n)
t f|Ωn

,

where Γ is any of the usual integration paths for analytic semigroups. �

3.4. Conclusion: approximation by finite dimensional estimates. In this Subsection
we complete the proof of Theorem 1.1.

Proof. First of all, by lower semicontinuity (Corollary 2.5) we know that

|Dγu0|(Ω) ≤ lim inf
t→0

|DγTtu0|(Ω) = lim inf
t→0

∫

Ω
|∇HTtu0|Hdγ

by the strong continuity in L2(Ω, γ) of the semigroup (Tt)t≥0.
Next, we prove the estimate

∫

Ωn

|∇HT
(n)
t u0|Ωn

|Hdγ ≤ |Dγu0|(Ωn)

where Ωn is the approximation of Ω constructed in the Appendix, (T (n))t≥0 is the semigroup

associated with the Dirichlet form E(n) in L2(Ωn, γ).
Let vj = Eju be the sequence of canonical cylindrical approximations of u0, converging to

u0 in variation. Fixed any n, j we choose a finite dimensional space F ⊂ Q(X∗) such that
On ⊂ F and vj(x) = wj(πF (x)) with wj : F → R. Then, we have the equality

T
(n)
t vj|Ωn

= TF
t (wj ◦ πF )|On

where (TF
t )t≥0 is the semigroup associated with the Dirichlet form

∫

On

〈∇u,∇v〉dγF

in L2(On, γF ). This follows from the fact that the function

g : [0,∞) → L2(Ωn, γ), g(t) = TF
t (wj ◦ πF )|On
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belongs to C([0,∞);L2(Ωn, γ)) ∩ C
1((0,∞);L2(Ωn, γ)) ∩ C((0,∞);D(Ln)) and satisfies







g′(t) = Lng(t), t > 0,

g(0) = wj ◦ πF .

In the language of semigroup theory, g is a classical solution to the above Cauchy problem
in the space L2(Ωn, γ). It is well known that the classical solution is unique; in our case it

coincides with T
(n)
t (wj ◦ πF )|Ωn

= T
(n)
t vj|Ωn

. Proposition 3.1 yields
∫

Ωn

|∇HT
(n)
t vj|Ωn

|Hdγ =

∫

On

|∇TF
t wj|On

|dγF (y) ≤ |DγFwj |(On) = |Dγvj |(Ωn).

Let us recall that vj = Eju → u in L2(X, γ) and in variation. Therefore, taking into account
Proposition 3.1 and (2.9) we obtain

∫

Ωn

|∇HT
(n)
t u0|Ωn

|Hdγ = lim
j→+∞

∫

Ωn

|∇HT
(n)
t vj|Ωn

|Hdγ

≤ lim inf
j→+∞

|Dγvj |(Ωn) = |Dγu0|(Ωn) ≤ |Dγu0|(Ωn).

Now, as a consequence of Proposition 3.3 and the hypothesis |Dγu0|(∂Ω) = 0 we obtain
∫

Ω
|∇HTtu0|Hdγ = lim

n→+∞

∫

Ω
|∇HT

(n)
t u0|Ωn

|Hdγ ≤ lim sup
n→+∞

∫

Ωn

|∇HT
(n)
t u0|Ωn

|Hdγ

≤ lim
n→+∞

|Dγu0|(Ωn) = |Dγu0|(Ω) = |Dγu0|(Ω), (3.3)

which finishes the proof of the Theorem. �

Remark 3.4. It is worth noticing that the proof of Theorem 1.1, estimate (3.3), yields that

also in the infinite dimensional setting the map

t 7→

∫

Ω
|∇HTtu0(x)|Hdγ(x)

is monotone decreasing, for any u0 ∈ BV (X, γ) ∩ L2(X, γ).

Appendix A. Finite dimensional convex analysis

This section is devoted to recall some properties of convex sets and convex functions in
Euclidean spaces. Most of these results can likely be found in the literature, but we recall
here some of the proofs for the reader’s convenience. Let C ⊂ R

d be a closed convex set with
interior part C◦ 6= ∅. Possibly translating C, without loss of generality we may assume that
0 ∈ C◦.

If C is unbounded, then there exists ν ∈ S
d−1 such that tν ∈ C for all t ≥ 0. Indeed, if

(xj)j ⊂ C is a sequence with ‖xj‖ → +∞, then

νj =
xj

‖xj‖
⊂ S

d−1

admits an accumulation point ν; convexity and closedness of C imply that

tν ∈ C, ∀t ≥ 0.

We set

S
d−1
C = {ν ∈ S

d−1 : tν ∈ C, ∀t ≥ 0}
17



and we define the maximal cone with vertex at 0 contained in C,

KC = {tν : t ≥ 0, ν ∈ S
d−1
C },

while we set KC = {0} if C is bounded.
We define the map

m(x) = inf{λ ≥ 0 : x ∈ λC}.

If x ∈ KC we have m(x) = 0. If x 6∈ KC there exists a unique point y ∈ ∂C such that

x = m(x)y.

We set
y = pC(x).

Proposition A.1. Let C ⊂ R
d be a closed convex set and let 0 ∈ C◦. Setting

r = sup{t > 0 : Bt(0) ⊂ C},

m is convex, 1
r–Lipschitz continuous and C = {m ≤ 1}. In addition, if ∂C is C1, m is differen-

tiable at any point x 6∈ ∂KC ; at such points 〈∇m(x), x〉 = m(x).

Proof. First of all we remark that m is positively homogeneous, namely m(tx) = tm(x) for every
t > 0 and x ∈ R

d.
Let us show that m is convex. As a first step we show that for any y1, y2 ∈ R

d

m(y1 + y2) ≤ m(y1) + m(y2).

Indeed, for all ti > m(yi), i = 1, 2, we have yi ∈ tiC. Since C is convex, then y1+y2 ∈ (t1+t2)C,
i.e., m(y1 + y2) ≤ t1 + t2.

Let now x1, x2 ∈ R
d and λ ∈ (0, 1). Using the above inequality and recalling that m is

homogeneous, we obtain

m(λx1 + (1− λ)x2) ≤ m(λx1) + m((1 − λ)x2) = λm(x1) + (1− λ)m(x2).

Let us show that m is Lipschitz continuous. For any t < r and any x ∈ R
d,

t
x

‖x‖
∈ Bt(0) ⊂ C,

that is x ∈ ‖x‖
t C, whence in particular m(x) ≤ ‖x‖

t , and letting t → r, we obtain m(x) ≤ 1
r‖x‖.

As a consequence, for any x, y ∈ R
d,

m(x) = m(y + x− y) ≤ m(y) + m(x− y) ≤ m(y) +
1

r
‖x− y‖,

which implies

|m(x)− m(y)| ≤
1

r
‖x− y‖, ∀x, y ∈ R

d.

Let us prove the statements about the regularity of m. Every p ∈ ∂C has a neighborhood U
such that ∂C ∩ U is the zero level of a C1 function f whose gradient does not vanish at ∂C.
The function of (d+ 1) variables

g(x, λ) = f

(

1

λ
x

)

,

is well defined in a neighborhood of (p, 1). g implicitly defines the Minkowski functional m,
since for every x outside KC and λ > 0, x/λ ∈ ∂C iff λ = m(x). Moreover, ∂g(x, λ)/∂λ =
−λ−2〈x,∇f(x/λ)〉 does not vanish at any (x, 1) with x ∈ ∂C, otherwise the tangent hyperplane
at x would contain the origin, which is impossible since C is convex.
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This shows that m is C1 outside KC . Since m ≡ 0 in KC , it follows that m is C
1 outside ∂KC .

The equality 〈∇m(x), x〉 = m(x) at such points follows from the Euler Theorem on homogeneous
functions. �

We state the following technical lemma that is used in the proof of Lemma A.3.

Lemma A.2. Let Cn, C ⊂ R
d be closed convex sets with Cn converging in L1

loc(R
d) to C 6= ∅,

that is

lim
n→+∞

L
d((Cn∆C) ∩ B̄R) = 0, ∀R > 0;

then for every r > 0 there exists α(r) > 0 such that for any bounded sequence xn ∈ ∂Cn

L
d(Cn ∩Br(xn)) ≥ α(r).

Proof. Let us assume that there exists a sequence xn ∈ ∂Cn ∩BR
2
with R > 2r such that

L
d(Cn ∩Br(xn)) ≤

1

n
;

we define the sets

Sn =

(

Cn − xn
r

)

∩ S
d−1

and the cone

Kn = {xn + tν : ν ∈ Sn, t ≥ 0}.

Since C is convex, then

Kn ∩Br(xn) ⊂ Cn ∩Br(xn), Cn \Br(xn) ⊂ Kn \Br(xn).

So in particular we have

1

n
≥L

d(Cn ∩Br(xn)) ≥ L
d(Kn ∩Br(xn)) =

∫ r

0
H

d−1(tSn)dt =
rd

d
H

d−1(Sn),

and then H d−1(Sn) ≤
d

nrd
. On the other hand, if we set

Kn,R = {xn + tν : ν ∈ Sn, 0 ≤ t ≤ 2R} = Kn ∩B2R(xn),

we also have Cn ∩ (BR \Br(xn)) ⊂ Kn ∩ (BR \Br(xn)) ⊂ Kn,R \Br(xn) and then, since

L
d(Kn,R \Br(xn)) =

∫ 2R

r
H

d−1(tSn)dt =
2dRd − rd

d
H

d−1(Sn),

we obtain

L
d(C ∩ B̄R) = lim

n→+∞

(

L
d(Cn ∩ B̄r(xn)) + L

d(Cn ∩BR \ B̄r(xn))
)

≤ lim
n→+∞

(

1

n
+

2dRd − rd

d
H

d−1(Sn)

)

≤ lim
n→+∞

1

n

(

1 +
2dRd − rd

rd

)

= 0,

and this is a contradiction. �
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In the next lemma we show the connection between the L1 convergence of characteristic
functions of convex sets and the convergence of boundaries. We recall that the Hausdorff
distance between two sets A,B ⊂ F is defined as

dH (A,B) = inf{t : A ⊂ (B)t and B ⊂ (A)t},

where (A)t = {x ∈ F : dist(x,A) < t}. On compact sets this distance induces the Kuratowski
convergence. A sequence of compact sets Kj converges to a set K in the sense of Kuratowski
if

(1) for any sequence (xj)j of elements xj ∈ Kj , if xj → x, then x ∈ K;
(2) for any x ∈ K, there exists a sequence (xj)j of elements xj ∈ Kj such that xj → x.

Indeed, if xj ∈ Kj for every j and xj → x, then x ∈ K because for every ε > 0 the points
xj definitively belong to Kε. Moreover, fixed x ∈ K, for every j ∈ N there is νj such that
Ki ⊂ K1/j for i ≥ νj, hence we may select a sequence of points xj ∈ Kj converging to x.

Lemma A.3. Let C ⊂ R
d be a convex set and let (Cn)n ⊂ R

d be a sequence of convex sets

such that

lim
n→+∞

γF (C∆Cn) = 0.

Then ∂Cn converges uniformly on compact sets to ∂C, that is for every compact set K the

sequence ∂Cn ∩K converges to ∂C ∩K in the Hausdorff distance.

Proof. It suffices to prove the statement for K = BR(0); we have

L
d((Cn∆C) ∩BR+1(0)) ≤ (2π)

d
2 e

(R+1)2

2 γF (Cn∆C).

Assume by contradiction that there exists ε0 > 0 such that for infinitely many n ∈ N, either
∂Cn ∩BR(0) 6⊂ (∂C)ε0 ∩BR(0), or ∂C ∩BR(0) 6⊂ (∂Cn)ε0 ∩BR(0). In the first case there are

infinitely many n ∈ N for which there exists xn ∈ ∂Cn ∩ BR(0) but xn 6∈ (∂C)ε0 ∩ BR(0); we
have two possibilities, either Bε0(xn) ⊂ C◦ or Bε0(xn) ⊂ R

d \ C. If Bε0(xn) ⊂ C◦, then

L
d((Cn∆C) ∩BR+1(0)) ≥ L

d(Bε0(xn) \ Cn) ≥
1

2
ωdε

d
0.

If Bε0(xn) ⊂ R
d \ C, then by Lemma A.2

L
d((Cn∆C) ∩BR+1(0)) ≥ L

d(Bε0(xn) ∩ Cn) ≥ α(ε0);

In both cases

lim sup
n→+∞

L
d((Cn∆C) ∩BR+1(0)) > 0.

Similarly, if there exists x ∈ ∂C∩BR(0) such that for infinitely many n ∈ N, Bε0(x)∩∂Cn = ∅,
then either Bε0(x) ⊂ C◦

n or Bε0(x) ⊂ R
d \ Cn, and then again either

L
d((Cn∆C) ∩BR+1(0)) ≥ L

d(Bε0(x) \ C) ≥
1

2
ωdε

d
0,

or

L
d((Cn∆C) ∩BR+1(0)) ≥ L

d(Bε0(x) ∩ C),

so that, again,

lim sup
n→+∞

L
d((Cn∆C) ∩BR+1(0)) > 0.

contradicting the fact that Ld((Cn∆C) ∩BR+1(0)) → 0 as n→ +∞. �

20



Proposition A.4. Let C ⊂ R
d be a closed convex set. Then for any δ > 0 there exists a closed

convex set Cδ such that C ⊂ C◦
δ , ∂Cδ is smooth and

lim
δ→0

γF (Cδ \ C) = 0.

Proof. Fix δ > 0 and set

(C)δ = {y : d(y,C) ≤ δ}.

Then (C)δ is convex and contains C. A result of Federer [17] implies that the boundary of
(C)δ is C1,1 if δ is sufficiently small; however that is not enough for our aims.

Fix δ > 0, let m be the Minkowski function of (C)δ and let ̺ ∈ C∞
c (Rd) be a standard

mollifier. For η > 0 define as usual ̺η(x) = ̺(x/η)/ηd,

mη = m ∗ ̺η,

and consider the set

Cδ = {x ∈ R
d : mδ(x) ≤ 1}.

Since m is convex, each mη is convex too. Indeed,

mη(λx1 + (1− λ)x2) =

∫

m(λx1 + (1− λ)x2 − y)̺η(y)dy

=

∫

m(λ(x1 − y) + (1− λ)(x2 − y))̺η(y)dy

≤λ

∫

m(x1 − y)̺(y)dy + (1− λ)

∫

m(x2 − y)̺(y)dy

=λmη(x1) + (1− λ)mη(x2).

Therefore, Cδ is a convex set.
Let us prove that C◦

δ ⊃ C. For every x ∈ C, the ball Bδ(x) is contained in (C)δ, and then

mδ(x) =

∫

Bδ(x)
m(y)̺δ(x− y)dy ≤ 1

since m(y) ≤ 1 for all y ∈ Bδ(x). This shows that C ⊂ Cδ. To prove the inclusion C ⊂ C◦
δ we

remark that Bδ(x) ∩ C has positive Lebesgue measure and it is contained in (C)◦δ , therefore

the restriction of m to Bδ(x) ∩ C has maximum strictly less than 1 and the integral above is
strictly less than 1. This shows that C ⊂ C◦

δ .
Let us prove that if δ is sufficiently small then the boundary of Cδ is smooth. We have only

to show that the gradient of mδ does not vanish at the boundary. To this aim it is sufficient to
show that for every x such that mδ(x) = 1 we have 〈∇mδ(x), x〉 6= 0.

Let r > 0 be such that Br(0) ⊂ C and let

(i) δ < r/4, (ii) δ

∫

Rd

|u|̺(u)du < r/2.

For every x such that mδ(x) = 1 there exists x̄ ∈ Bδ(x) such that m(x̄) ≥ 1 (otherwise we would
get mδ(x) < 1). Since Br(0) ⊂ (C)δ, then m is 1/r-Lipschitz, so that for every y ∈ R

d we have
m(y) ≥ m(x̄)− ‖y − x̄‖/r, and hence by (i)

m(y) ≥
1

2
, ∀y ∈ Bδ(x).
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Consequently,

〈∇mδ(x), x〉 =

∫

Rd

〈∇m(y), x− y〉̺δ(x− y)dy +

∫

Rd

〈∇m(y), y〉̺δ(x− y)dy

=

∫

Rd

〈∇m(y), x− y〉̺δ(x− y)dy +

∫

Bδ(x)
m(y)̺δ(x− y)dy.

The modulus of the first integral does not exceed

1

r

∫

Rd

|x− y|̺δ(x− y)dy =
δ

r

∫

Rd

|u|̺(u)du <
1

2

while the second integral is ≥ 1/2. Therefore, 〈∇mδ(x), x〉 > 0.
To prove the last statement it is sufficient to show that for every x /∈ C we have mδ(x) > 1 if

δ is small enough. Indeed, in this case 1lCδ\C goes to 0 pointwise as δ → 0, so that γF (Cδ \C)

vanishes as δ → 0. Let δ0 = dist(x,C) > 0 and let δ < δ0/2. Then Bδ(x) ∩ (C)δ = ∅, so that

m > 1 in Bδ(x) ∩ (C)δ and min{m(y) : y ∈ Bδ(x) ∩ (C)δ} > 1. Consequently,

mδ(x) =

∫

Bx(δ)
m(y)̺δ(x− y)dy > 1.

�

We conclude this section approximating an infinite dimensional open convex set by finite
dimensional regular open convex sets.

Proposition A.5. Let Ω ⊂ X be an open convex set. Then there exists a sequence of open

convex cylindrical sets Ωn ⊃ Ωn+1 ⊃ Ω with smooth boundaries, such that

lim
n→+∞

γ(Ωn \ Ω) = 0.

Proof. Since Ω is an open convex set, then γ(∂Ω) = 0. Since Ω is a closed convex set and X
is separable, by the Lindelöf theorem, see e.g. [16, Theorem I.4.14] we have

Ω =
⋂

j∈N

Sj ,

where

Sj = S(x∗j , aj) = {x ∈ X : x∗j(x) < aj}

with x∗j ∈ X∗ \ {0}, aj ∈ R, are open half-spaces containing Ω. The set

An = S1 ∩ . . . ∩ Sn

is an open convex set containing Ω, and An = S1 ∩ . . . ∩ Sn contains Ω. Then,

γ(Ω) = γ(Ω) = lim
n→+∞

γ(An).

We denote by Fn the linear span of the vectors x∗1, . . . , x
∗
n, which is a subspace of H of di-

mension d ≤ n. We fix an orthonormal (along H) basis {h1, . . . , hd} of Fn contained in

Q(X∗) and we define the projection Πn : X → Fn, Πn(x) =
∑d

j=1 ĥj(x)hj . The induced

measure γ ◦ Π−1
n in Fn is denoted by γn; if Fn is identified with R

d through the isomorphism
h 7→ ([h, h1]H , . . . [h, hd]H), then γn is just the standard Gaussian measure in R

d.
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Then, An = Π−1
n (Cn), Cn is a polyhedral closed convex set in Fn with γ(An) = γn(Cn). By

Proposition A.4, for any n we find a smooth open convex set On with smooth boundary such
that Cn ⊂ On and

γn(On \ Cn) ≤
1

n
.

We may then define Ωn = Π−1
n (On). Such sets are open cylindrical convex sets, and Ω ⊂ Ωn

for any n ∈ N. If Fn = Fn+1, i.e. x
∗
n+1 is a linear combination of x∗1, . . . , x

∗
n, then Cn+1 ⊂ Cn,

otherwise Fn+1 = Fn × R and Cn+1 ⊂ Cn × R. To get the inclusion Ωn+1 ⊂ Ωn, it suffices to
apply Proposition A.4 with decreasing sequences (δn) in place of δ.

Moreover,

γ(Ω) ≤ lim inf
n→+∞

γ(Ωn) = lim inf
n→+∞

γn(On) ≤ lim
n→+∞

(

γn(Cn) +
1

n

)

= lim
n→+∞

γ(An) = γ(Ω) = γ(Ω),

then the conclusion follows. �
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