
Carolina Araujo, Alex Massarenti, Rick Rischter

On non-secant defectivity of Segre-Veronese varieties

Transactions of the American Mathematical Society

DOI: 10.1090/tran/7306

Accepted Manuscript

This is a preliminary PDF of the author-produced manuscript that has been
peer-reviewed and accepted for publication. It has not been copyedited, proofread,
or finalized by AMS Production staff. Once the accepted manuscript has been
copyedited, proofread, and finalized by AMS Production staff, the article will be
published in electronic form as a “Recently Published Article” before being placed
in an issue. That electronically published article will become the Version of Record.

This preliminary version is available to AMS members prior to publication of
the Version of Record, and in limited cases it is also made accessible to everyone
one year after the publication date of the Version of Record.

The Version of Record is accessible to everyone five years after publication in an
issue.

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



ON NON-SECANT DEFECTIVITY OF SEGRE-VERONESE VARIETIES

CAROLINA ARAUJO, ALEX MASSARENTI, AND RICK RISCHTER

Abstract. Let SV nnn
ddd be the Segre-Veronese variety given as the image of Pn1 × · · · × Pnr under

the embedding induced by the complete linear system
∣∣OPn1×···×Pnr (d1, . . . , dr)

∣∣. We prove that

asymptotically SV nnn
ddd is not h-defective for h ≤ (min{ni})blog2(d−1)c, where d = d1 + · · ·+ dr.
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1. Introduction

Secant varieties are classical objects in algebraic geometry. The h-secant variety Sech(X) of a
non-degenerate n-dimensional variety X ⊂ PN is the Zariski closure of the union of all linear spaces
spanned by collections of h points of X. The expected dimension of Sech(X) is

expdim(Sech(X)) := min{nh+ h− 1, N}.

The actual dimension of Sech(X) may be smaller than the expected one. Following [Zak93], we say
that X is h-defective if

dim(Sech(X)) < expdim(Sech(X)).

Determining secant defectivity is an old problem in algebraic geometry, which goes back to the
Italian school (see [Cas37, Chapter 10], [Sco08], [Sev01], [Ter11]).

In this paper we investigate secant defectivity for Segre-Veronese varieties. The problem is spe-
cially interesting in this case, in connection with problems of partially symmetric tensor decompo-
sition (see [CGLM08], [Lan12]). Indeed, Segre-Veronese varieties parametrize rank one tensors. So
their h-secant varieties parametrize tensors of a given rank depending on h. For this reason, they
have been used to construct and study moduli spaces for additive decompositions of a general ten-
sor into a given number of rank one tensors (see [Dol04], [DK93], [Mas16], [MM13], [RS00], [TZ11],
[BGI11]).

The problem of secant defectivity for Veronese varieties was completely solved in [AH95]. In that
paper, Alexander and Hirschowitz showed that, except for the degree 2 Veronese embedding, which
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2 CAROLINA ARAUJO, ALEX MASSARENTI, AND RICK RISCHTER

is almost always defective, the degree d Veronese embedding of Pn is not h-defective except in the
following cases:

(d, n, h) ∈ {(4, 2, 5), (4, 3, 9), (3, 4, 7), (4, 4, 14)}.
For Segre varieties, secant defectivity is classified in some special cases. Segre products of two

factors Pn1 × Pn2 ⊂ Pn1n2+n1+n2
are almost always defective. For Segre products P1 × · · · × P1 ⊂

PN , the problem was completely settled in [CGG11]. In general, h-defectivity of Segre products
Pn1 × · · · × Pnr ⊂ PN is classified only for h ≤ 6 ([AOP09]).

Next we turn to Segre-Veronese varieties. These are products Pn1 × · · · × Pnr embedded by
the complete linear system

∣∣OPn1×···×Pnr (d1, . . . , dr)
∣∣, di > 0. The problem of secant defectivity

for Segre-Veronese varieties has been solved in some very special cases, mostly for products of few
factors (see [CGG05], [AB09], [Abo10], [BCC11], [AB12], [BBC12], [AB13]). Secant defectivity for
Segre-Veronese products P1 × · · · × P1, with arbitrary number of factors and degrees, was classified
in [LP13]. In general, h-defectivity is classified only for small values of h ([CGG05, Proposition
3.2]): except for the Segre product P1 × P1 ⊂ P3, Segre-Veronese varieties Pn1 × · · · × Pnr are never
h-defective for h ≤ min{ni} + 1. In this paper we improve this bound by taking into account the
embedding degrees d1, . . . , dr. We show that, asymptotically for large n1 = min{ni} Segre-Veronese

varieties are never h-defective for h ≤ nblog2(d−1)c
1 , where d = d1 + · · ·+dr. More precisely, our main

result in Theorem 4.8 can be rephrased as follows.

Theorem 1.1. Let nnn = (n1, . . . , nr) and ddd = (d1, . . . , dr) be two r-uples of positive integers, with
n1 ≤ · · · ≤ nr and d = d1 + · · · + dr ≥ 3. Let SV nnnddd ⊂ PN be the product Pn1 × · · · × Pnr embedded

by the complete linear system
∣∣OPn1×···×Pnr (d1, . . . , dr)

∣∣. Write

d− 1 = 2λ1 + · · ·+ 2λs + ε,

with integers λ1 > λ2 > · · · > λs ≥ 1, ε ∈ {0, 1}. Then SV nnnddd is not (h+ 1)-defective for

h ≤ n1((n1 + 1)λ1−1 + · · ·+ (n1 + 1)λs−1) + 1.

Our proof of Theorem 1.1 follows the strategy introduced in [MR16], which we now explain.
Given a non-degenerate n-dimensional variety X ⊂ PN , and general points x1, . . . , xh ∈ X ⊂ PN ,
consider the linear projection with center 〈Tx1

X, . . . , Txh
X〉,

τX,h : X ⊆ PN 99K PNh ,

where Nh := N−1−dim(〈Tx1
X, . . . , Txh

X〉). By [CC02, Proposition 3.5], if τX,h is generically finite
then X is not (h+ 1)-defective. In general, however, it is hard to control the dimension of the fibers
of the tangential projections τX,h as h gets larger. In [MR16] a new strategy was developed, based
on the more general osculating projections instead of just tangential projections. For a smooth point
x ∈ X ⊂ PN , the k-osculating space T kxX of X at x is roughly the smaller linear subspace where X
can be locally approximated up to order k at x (see Definition 2.1). Given x1, . . . , xl ∈ X general
points, we consider the linear projection with center

〈
T k1x1

X, . . . , T klxl
X
〉
,

Π
T

k1,...,kl
x1,...,xl

: X ⊂ PN 99K PNk1,...,kl ,

and call it a (k1 + · · ·+kl)-osculating projection, where Nk1,...,kl := N−1−dim(
〈
T k1x1

X, . . . , T klxl
X
〉
).

Under suitable conditions, one can degenerate the linear span of several tangent spaces Txi
X into a

subspace contained in a single osculating space T kxX. So the tangential projections τX,h degenerates
to a linear projection with center contained in the linear span of osculating spaces,

〈
T kp1X, . . . , T

k
pl
X
〉
.

If ΠTk,...,k
p1,...,pl

is generically finite, then τX,h is also generically finite, and one concludes that X is not

(h + 1)-defective. The advantage of this approach is that one has to consider osculating spaces at
much less points than h, allowing to control the dimension of the fibers of the projection. In [MR16],
this strategy was successfully applied to study the problem of secant defectivity for Grassmannians.
Here we apply it to Segre-Veronese varieties.
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ON NON-SECANT DEFECTIVITY OF SEGRE-VERONESE VARIETIES 3

The paper is organized as follows. In Section 2 we describe explicitly osculating spaces of Segre-
Veronese varieties. In Section 3 we study the relative dimension of general osculating projections.
In Section 5 we study how many general tangent projections degenerate to osculating projections.
Finally, in Section 4 we apply these result and the techniques developed in [MR16] to prove our
main result on the dimension of secant varieties of Segre-Veronese varieties.

Notation and conventions. We always work over the field C of complex numbers. Varieties
are always assumed to be irreducible. For a vector space V , we denote by P(V ) its Grothendieck
projectivization, i.e., the projective space of nonzero linear forms on V up to scaling.

Acknowledgments. We would like to thank Maria Chiara Brambilla for a detailed account on
the state of the art about secant defectivity of Segre-Veronese varieties, and the anonymous referees
who helped us to improve this paper. In particular, one of them pointed out a mistake in a previous
version of Example 4.12 and helped us in producing a family of smooth surfaces which do not have
3-osculating regularity.

The first named author was partially supported by CNPq and Faperj Research Fellowships. The
second named author is a member of the Gruppo Nazionale per le Strutture Algebriche, Geometriche
e le loro Applicazioni of the Istituto Nazionale di Alta Matematica ”F. Severi” (GNSAGA-INDAM).
The third named author would like to thank CNPq for the financial support.

2. Osculating spaces of Segre-Veronese varieties

In this section we describe osculating spaces of Segre-Veronese varieties. We start by defining
osculating spaces. They can also be defined intrinsically via jet bundles (see [MR16, Section 3]).

Definition 2.1. Let X ⊂ PN be a projective variety of dimension n, and p ∈ X a smooth point.
Choose a local parametrization of X at p:

φ : U ⊆ Cn −→ CN
(t1, . . . , tn) 7−→ φ(t1, . . . , tn)

0 7−→ p

For a multi-index I = (i1, . . . , in), set

(2.2) φI =
∂|I|φ

∂ti11 . . . ∂tinn
.

For any m ≥ 0, let Omp X be the affine subspace of CN centered at p and spanned by the vectors
φI(0) with |I| ≤ m.

The m-osculating space Tmp X of X at p is the projective closure of Omp X in PN . Note that

T 0
pX = {p}, and T 1

pX is the usual tangent space of X at p. The m-osculating dimension of X at p
is

dim(Tmp X) =

(
n+m

n

)
− 1− δm,p,

where δm,p is the number of independent differential equations of order ≤ m satisfied by X at p.

Next we turn to Segre-Veronese varieties. In Proposition 2.5 below, we describe explicitly their
osculating spaces at coordinate points by computing (2.2) for a suitable rational parametrization.
Note that after a base change any point of a Segre-Veronese variety becomes a coordinate point. In
order to do so, we recall the definition of Segre-Veronese varieties and fix some notation to be used
throughout the paper.

Notation 2.3. In the rest of the paper, by a slight abuse of notation, we will denote by v both a
vector in a vector space V and the corresponding point in P(V ).
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4 CAROLINA ARAUJO, ALEX MASSARENTI, AND RICK RISCHTER

Let nnn = (n1, . . . , nr) and ddd = (d1, . . . , dr) be two r-uples of positive integers, with n1 ≤ · · · ≤ nr.
Set d = d1 + · · ·+ dr, n = n1 + · · ·+ nr, and N(nnn,ddd) =

∏r
i=1

(
ni+di
ni

)
− 1.

Let V1, . . . , Vr be vector spaces of dimensions n1 + 1 ≤ n2 + 1 ≤ · · · ≤ nr + 1, and consider the
product

Pnnn = P(V ∗1 )× · · · × P(V ∗r ).

The line bundle

OPnnn(d1, . . . , dr) = OP(V ∗1 )(d1)� · · ·�OP(V ∗1 )(dr)

induces an embedding

σνnnnddd : P(V ∗1 )× · · · × P(V ∗r ) −→ P(Symd1 V ∗1 ⊗ · · · ⊗ Symdr V ∗r ) = PN(nnn,ddd),

(v1, . . . , vr) 7−→ vd11 ⊗ · · · ⊗ vdrr
where vi ∈ Vi. We call the image

SV nnnddd = σνnnnddd (Pnnn) ⊂ PN(nnn,ddd)

a Segre-Veronese variety. It is a smooth variety of dimension n and degree (n1+···+nr)!
n1!...nr! dn1

1 . . . dnr
r in

PN(nnn,ddd).
When r = 1, SV nd is a Veronese variety. In this case we write V nd for SV nd , and vnd for the

Veronese embedding. When d1 = · · · = dr = 1, SV nnn1,...,1 is a Segre variety. In this case we write Snnn

for SV nnn1,...,1, and σnnn for the Segre embedding. Note that

σνnnnddd = σnnn
′
◦
(
νn1

d1
× · · · × νnr

dr

)
,

where nnn′ = (N(n1, d1), . . . , N(nr, dr)), and N(ni, di) =
(
ni+di
ni

)
− 1.

Given v1, . . . , vdj ∈ Vj , we denote by v1 · · · · · vdj ∈ Symdj Vj the symmetrization of v1⊗ · · ·⊗ vdj .
Hoping that no confusion will arise, we write (e0, . . . , enj ) for a fixed basis of each Vj . Given a

dj-uple I = (i1, . . . , idj ), with 0 ≤ i1 ≤ · · · ≤ idj ≤ nj , we denote by eI ∈ Symdj Vj the symmetric
product ei1 · · · · · eidj .

For each j ∈ {1, . . . , r}, consider a dj-uple Ij = (ij1, . . . , i
j
dj

), with 0 ≤ ij1 ≤ · · · ≤ ijdj ≤ nj , and
set

I = (I1, . . . , Ir) = ((i11, . . . , i
1
d1), (i21, . . . , i

2
d2), . . . , (ir1, . . . , i

r
dr )).

We denote by eI the vector

eI = eI1 ⊗ eI2 ⊗ · · · ⊗ eIr ∈ Symd1 V1 ⊗ · · · ⊗ Symdr Vr,

as well as the corresponding point in P(Symd1 V ∗1 ⊗· · ·⊗Symdr V ∗r ) = PN(nnn,ddd). When Ij = (ij , . . . , ij)
for every j ∈ {1, . . . , r}, for some 0 ≤ ij ≤ nj , we have

eI = σνnnnddd (ei1 , . . . , eir ) ∈ SV nnnddd ⊂ PN(nnn,ddd).

In this case we say that eI is a coordinate point of SV nnnddd .

Definition 2.4. Let n and d be positive integers, and set

Λn,d = {I = (i1, . . . , id), 0 ≤ i1 ≤ · · · ≤ id ≤ n}.

For I, J ∈ Λn,d, we define their distance d(I, J) as the number of different coordinates. More
precisely, write I = (i1, . . . , id) and J = (j1, . . . , jd). There are r ≥ 0, distinct indices λ1, . . . , λr ⊂
{1, . . . , d}, and distinct indices τ1, . . . , τr ⊂ {1, . . . , d} such that iλk

= jτk for every 1 ≤ k ≤ r, and
{iλ|λ 6= λ1, . . . , λr} ∩ {jτ |τ 6= τ1, . . . , τr} = ∅. Then d(I, J) = d− r. Note that Λn,d has diameter d

and size
(
n+d
n

)
= N(n, d) + 1.

Let nnn = (n1, . . . , nr) and ddd = (d1, . . . , dr) be two r-uples of positive integers, and set

Λ = Λnnn,ddd = Λn1,d1 × · · · × Λnr,dr .
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ON NON-SECANT DEFECTIVITY OF SEGRE-VERONESE VARIETIES 5

For I = (I1, . . . , Ir), J = (J1, . . . , Jr) ∈ Λ, we define their distance as

d(I, J) = d(I1, J1) + · · ·+ d(Ir, Jr).

Note that Λ has diameter d and size
∏r
i=1

(
ni+di
ni

)
= N(nnn,ddd) + 1.

Such a distance, called the Hamming distance, was defined in [CGG02, Section 2] for Segre
varieties. We can now state the main result of this section.

Proposition 2.5. Let the notation and assumptions be as in Notation 2.3 and Definition 2.4. Set
I1 = (i1, . . . , i1), . . . , Ir = (ir, . . . , ir), with 0 ≤ ij ≤ nj, and I = (I1, . . . , Ir). Consider the point

eI = σνnnnddd (ei1 , . . . , eir ) ∈ SV nnnddd .

For any s ≥ 0, we have

T seI (SV nnnddd ) = 〈eJ | d(I, J) ≤ s〉 .

In particular, T seI (SV nnnddd ) = PN(nnn,ddd) for any s ≥ d.

Proof. We may assume that I1 = (0, . . . , 0), . . . , Ir = (0, . . . , 0). Write
(
zK
)
K∈Λ

, for coordinates in

PN(nnn,ddd), and consider the rational parametrization

φ : A
∑
ni → SV nnnddd ∩

(
zI 6= 0

)
⊂ AN(nnn,ddd)

given by

A = (aj,i)j=1,...,r,i=1,...,nj
7→

 r∏
j=1

dj∏
k=1

aj,ijk


K=(K1,...,Kr)∈Λ\{I}

,

where Kj = (ij1, . . . , i
j
dj

) ∈ Λnj ,dj for each j = 1, ..., r.

For integers l and m, we write degl,mK for the degree of the polynomial

φ(A)K :=

r∏
j=1

dj∏
k=1

aj,ijk

with respect to al,m. Then 0 ≤ degl,mK ≤ dl, and the degree of φ(A)K with respect to all the
variables aj,i is at most d. One computes:

(
∂λ1+···+λtφ(A)

∂λ1al1,m1 . . . ∂
λtalt,mt

)
K

=


0 if deglj ,mj

K < λj for some j.∏t
j=1(deglj ,mj

K)!φ(A)K∏t
j=1(deglj ,mj

K − λj)!a
λj

lj ,mj

otherwise.

For A = 0 we get(
∂λ1+···+λtφ(0)

∂λ1al1,m1
. . . ∂λtalt,mt

)
K

=

{
0 if deglj ,mj

K 6= λj for some j.∏t
j=1(deglj ,mj

K)! otherwise.

Therefore
∂λ1+···+λtφ(0)

∂λ1al1,m1 . . . ∂
λtalt,mt

= (λ1!) · · · (λt!) eJ ,

where J ∈ Λ is characterized by

degl,m J =

{
λj if (l,m) = (lj ,mj) for some j.

0 otherwise.
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6 CAROLINA ARAUJO, ALEX MASSARENTI, AND RICK RISCHTER

Note that d(J, I)=λ1 + · · ·+λt. Conversely every J ∈ Λ with d(J, I)=λ1 + · · ·+λt can be obtained
in this way. Therefore, for every 0 ≤ s ≤ d, we have〈

∂sφ(0)

∂λ1al1,m1 . . . ∂
λtalt,mt

∣∣ 1 ≤ l1, . . . , lt ≤ r, 1 ≤ mj ≤ nj , j = 1, . . . , t

〉
= 〈eJ |d(J, I) = s〉 ,

and hence T seI (SV nnnddd ) = 〈eJ | d(I, J) ≤ s〉. �

Corollary 2.6. For any point p ∈ SV nnnddd we have

dimT spSV
nnn
ddd =

s∑
l=1

∑
0≤l1≤d1,...,0≤lr≤dr

l1+···+lr=l

(
n1 + l1 − 1

l1

)
· · ·
(
nr + lr − 1

lr

)

for any 0 ≤ s ≤ d, while T sp (SV nnnddd ) = PN(nnn,ddd) for any s ≥ d.
In particular, for the Veronese variety V nd we have

dimT spV
n
d = n+

(
n+ 1

2

)
+ · · ·+

(
n+ s− 1

s

)
for any 0 ≤ s ≤ d.

3. Osculating projections

In this section we study linear projections of Segre-Veronese varieties from their osculating spaces.
We follow the notation introduced in the previous section.

We start by analyzing projections of Veronese varieties from osculating spaces at coordinate
points. We consider a Veronese variety V nd ⊂ PN(n,d), d ≥ 2, and a coordinate point ei = e(i,...,i) ∈
V nd for some i ∈ {0, 1, . . . , n}. We write (zI)I∈Λn,d

for the coordinates in PN(n,d). The linear
projection

πi : Pn 99K Pn−1

(xj) 7→ (xj)j 6=i

induces the linear projection

Πi : V nd 99K V
n−1
d(3.1)

(zI)I∈Λn,d
7→ (zI)I∈Λn,d | i/∈I

making the following diagram commute

Pn V nd ⊆ PN(n,d)

Pn−1 V n−1
d ⊆ PN(n−1,d)

νn
d

νn−1
d

Πiπi

Lemma 3.2. Consider the projection of the Veronese variety V nd ⊂ PN(n,d), d ≥ 2, from the
osculating space T sei of order s at the point ei = e(i,...,i) ∈ V nd , 0 ≤ s ≤ d− 1:

Γsi : V nd 99K PN(n,d,s).

Then Γsi is birational for any s ≤ d− 2, while Γd−1
i = Πi.
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ON NON-SECANT DEFECTIVITY OF SEGRE-VERONESE VARIETIES 7

Proof. The case s = d− 1 follows from Proposition 2.5 and the expression in (3.1) above, observing
that, for any J ∈ Λn,d,

d(J, (i, . . . , i)) = d⇔ i /∈ J.
Since Γd−2

i factors through Γji for every 0 ≤ j ≤ d−3, it is enough to prove birationality of Γd−2
i .

We may assume that i 6= 0, and consider the collection of indices

J0 = (0, . . . , 0, 0), J1 = (0, . . . , 0, 1), . . . , Jn = (0, . . . , 0, n) ∈ Λ(n,d).

Note that d(Jj , (i, . . . , i)) ≥ d− 1 for any j ∈ {1, . . . , n}. So we can define the linear projection

γ : PN(n,d,s) 99K Pn

(zJ)J | d(I,J)>d−2 7→ (zJ0 , . . . , zJn).

The composition

γ ◦ Γd−2
i ◦ νnd : Pn 99K Pn

(x0 : · · · : xn) 7→ (xd−1
0 x0 : · · ·xd−1

0 xn) = (x0 : · · · : xn)

is the identity, and thus Γd−2
i is birational. �

Now we turn to Segre-Veronese varieties. Let SV nnnddd ⊂ PN(nnn,ddd) be a Segre-Veronese variety, and
consider a coordinate point

eI = ed1i1 ⊗ e
d2
i2
⊗ · · · ⊗ edrir ∈ SV

nnn
ddd ,

with 0 ≤ ij ≤ nj , I =
(
(i1, . . . , i1), . . . , (ir, . . . , ir)

)
. We write (zI)I∈Λ for the coordinates in PN(nnn,ddd).

Recall from Proposition 2.5 that the linear projection of SV nnnddd from the osculating space T seI of order
s at eI is given by

ΠT s
eI

: SV nnnddd 99K PN(nnn,ddd,s)(3.3)

(zJ) 7→ (zJ)J∈Λ | d(I,J)>s

for every s ≤ d− 1. In order to study the fibers of ΠT s
eI

, we define auxiliary rational maps

Σl : SV nnnddd 99K PNl

for each l ∈ {1, . . . , r} as follows. The map Σ1 is the composition of the product map

Γd1−2
i1

×
r∏
j=2

Πij : V n1

d1
× · · · × V nr

dr
99K PN(n1,d1,d1−2) ×

r∏
j=2

PN(nj−1,dj)

with the Segre embedding

PN(n1,d1,d1−2) ×
r∏
j=2

PN(nj−1,dj) ↪→ PN1 .

The other maps Σl, 2 ≤ l ≤ r, are defined analogously. In coordinates we have:

Σl : SV nnnddd 99K PNl ,(3.4)

(zJ) 7→ (zJ)J∈Λl

where Λl =
{
J = (J1, . . . , Jr) ∈ Λ

∣∣ d(J l, (il, . . . , il)) ≥ dl − 1 and ij 6∈ Jj for j 6= l}.

Proposition 3.5. Consider the projection of the Segre-Veronese variety SV nnnddd ⊂ PN(nnn,ddd) from the

osculating space ΠT s
eI

of order s at the point eI = ed1i1 ⊗ e
d2
i2
⊗ · · · ⊗ edrir ∈ SV

nnn
ddd , 0 ≤ s ≤ d− 1:

ΠT s
eI

: SV nnnddd 99K PN(nnn,ddd,s).
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8 CAROLINA ARAUJO, ALEX MASSARENTI, AND RICK RISCHTER

Then ΠT s
eI

is birational for any s ≤ d− 2, while ΠTd−1
eI

fits in the following commutative diagram:

Pn1 × · · · × Pnr SV nnnddd ⊆ PN(ddd,nnn)

Pn1−1 × · · · × Pnr−1 SV nnn−111
ddd ⊆ PN(ddd,nnn−111)

σνnnnddd

σνnnn−111
ddd

Π
T

d−1
eI

πi1
×···×πir

where nnn−111 = (n1−1, . . . , nr−1). Furthermore, the closure of the fiber of ΠTd−1
eI

is the Segre-Veronese

variety SV 1,...,1
ddd .

Proof. The case s = d− 1 follows from the expressions in (3.1) and (3.3), and Lemma 3.2.
Since ΠTd−2

eI
factors through ΠT j

eI
for every 0 ≤ j ≤ d − 3, it is enough to prove birationality of

ΠTd−2
eI

.

First note that ΠTd−2
eI

factors the map Σl for any l = 1, . . . , r. This follows from the expressions

in (3.3) and (3.4), observing that

J = (J1, . . . , Jr) ∈ Λl ⇒ d(J, I) ≥ dl − 1 +
∑
j 6=l

dj = d− 1 > d− 2.

We write τl : PN(nnn,ddd,d−2) 99K PNl for the projection making the following diagram commute:

SV nnnddd

PNl

PN(nnn,ddd,d−2)

Σl

τl

Π
T

d−2
eI

Take a general point

x ∈ ΠTd−2
eI

(
SV nnnddd

)
⊆ PN(nnn,ddd,d−2),

and set xl = τl(x), l = 1, . . . , r. Denote by F ⊂ Pnnn the closure of the fiber of ΠTd−2
eI

over x,

and by Fl the closure of the fiber of Σl over xl. Let y ∈ F ⊂ Fl be a general point, and write
y = σνnnnddd (y1, . . . , yr), with yj ∈ Pnj , j = 1, . . . , r. By Lemma 3.2, Fl is the image under σνnnnddd of

〈y1, ei1〉 × · · · × 〈yl−1, eil−1
〉 × yl × 〈yl+1, eil+1

〉 × · · · × 〈yr, eir 〉 ⊂ Pnnn,

l = 1, . . . , r. It follows that F = {y}, and so ΠTd−2
eI

is birational. �

Next we study the case of linear projections from the span of several osculating spaces at coor-
dinate points, and investigate when they are birational.

We start with the case of a Veronese variety V nd ⊂ PN(n,d), with coordinate points ei = e(i,...,i) ∈
V nd , i ∈ {0, 1, . . . , n}. For m ∈ {1, . . . , n}, let sss = (s0, . . . , sm) be an (m + 1)-uple of positive
integers, and set s = s0 + · · ·+ sm. Let ei0 , . . . , eim ∈ V

n
d be distinct coordinate points, and denote

by T s0,...,smei0 ,...,eim
⊂ PN(n,d) the linear span

〈
T s0ei0

, . . . , T smeim

〉
. By Proposition 2.5, the projection of V nd

from T s0,...,smei0 ,...,eim
⊂ PN(n,d) is given by:

Γs0,...,smei0 ,...,eim
: V nd 99K PN(n,d,sss),(3.6)

(zI)I∈Λn,d
7→ (zJ)J∈Λsss

n,d

whenever Λsssn,d = {J ∈ Λn,d | d
(
J, (j, . . . , j)

)
> sj for j = 0, . . . ,m} is not empty.

Jun 7 2017 05:08:16 EDT
Version 2 - Submitted to TRAN

AlgGeomThis is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



ON NON-SECANT DEFECTIVITY OF SEGRE-VERONESE VARIETIES 9

Lemma 3.7. Let the notation be as above, and assume that d ≥ 2 and 0 ≤ sj ≤ d − 2 for
j = 0, . . . ,m.

(a) If n ≤ d and s ≤ n(d− 1)− 2, then Γs0,...,smei0 ,...,eim
is birational onto its image.

(b) If n ≤ d and s = n(d− 1)− 1, then Γs0,...,smei0 ,...,eim
is a constant map.

(c) If n > d, then Γd−2,...,d−2
ei0 ,...,ein

is birational onto its image.

Proof. Assume that n ≤ d and s ≤ n(d− 1)− 2. In order to prove that Γs0,...,smei0 ,...,eim
is birational, we

will exhibit J0, . . . , Jn ∈ Λsssn,d , and linear projection

γ : PN(n,d) 99K Pn(3.8)

(zI)I∈Λsss
n,d
7→ (zJj )j=0,...,n

such that the composition γ ◦Γs0,...,smei0 ,...,eim
◦νnd : Pn 99K Pn is the standard Cremona transformation of

Pn. The d-uples Jj ∈ Λsssn,d are constructed as follows. Since n ≤ d we can take n of the coordinates

of Jj to be 0, 1, . . . , ĵ, . . . , n. The condition s ≤ n(d − 1) − 2 assures that we can complete the
Jj ’s by choosing d − n common coordinates in such a way that, for every i, j ∈ {0, . . . , n}, we
have d

(
Jj , (i, . . . , i)

)
> si (i.e., Jj has at most (d − si − 1) coordinates equal to to i). This gives

Jj ∈ Λsssn,d for every j ∈ {0, . . . , n}. For the linear projection (3.8) given by these Jj ’s, we have that
γ ◦ Γs0,...,smei0 ,...,eim

◦ νnd : Pn 99K Pn is the standard Cremona transformation of Pn.

Now assume that n ≤ d and s = n(d − 1) − 1. If J ∈ Λsssn,d, then J has at most d − si − 1

coordinates equal to i for any i ∈ {0, . . . , n}. Since
n∑
j=0

(d− sj − 1) = (n+ 1)(d− 1)− s = d,

there is only one possibility for J , i.e., Λsssn,d has only one element, and so Γs0,...,smei0 ,...,eim
is a constant

map.
Finally, assume that n > d. Set K0 = {0, . . . , n− d}. For any j ∈ K0, set

(JK0)j := (j, n− d+ 1, . . . , n),

and note that d
(
(JK0

)j , (i, . . . , i)
)
> d − 2 for every i ∈ {0, . . . , n}. Thus (JK0

)j ∈ Λd−2d−2d−2
n,d for every

j ∈ K0. So we can define the linear projection

γK0
: PN(n,d,d−2d−2d−2) 99K Pn−d.

(zI)I∈Λd−2d−2d−2
n,d
7→ (z(JK0

)j )j∈K0

The composition γK0
◦ Γd−2,...,d−2

ei0 ,...,ein
◦ νnd : Pn 99K Pn−d is the linear projection given by

γK0 ◦ Γd−2,...,d−2
ei0 ,...,ein

◦ νnd : Pn 99K Pn−d.
(xi)i∈{0,...,n} 7→ (xi)i∈K0

Analogously, for each subset K ⊂ {0, . . . , n} with n − d + 1 distinct elements, we define a linear
projection γK : PN(n,d,d−2d−2d−2) 99K Pn−d such that the composition γK ◦ Γd−2,...,d−2

ei0 ,...,ein
◦ νnd : Pn 99K Pn−d

is the linear projection given by

γK ◦ Γd−2,...,d−2
ei0 ,...,ein

◦ νnd : Pn 99K Pn−d.
(xi)i∈{0,...,n} 7→ (xi)i∈K

This shows that Γd−2,...,d−2
ei0 ,...,ein

is birational. �

The following is an immediate consequence of Lemma 3.7.

Corollary 3.9. Let the notation be as above, and assume that d ≥ 2. Then
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10 CAROLINA ARAUJO, ALEX MASSARENTI, AND RICK RISCHTER

(a) Γd−2,...,d−2
ei0 ,...,ein−1

is birational.

(b) If n ≥ 2 then Γ
d−2,...,d−2,min{n,d}−2
ei0 ,...,ein

is birational, while Γ
d−2,...,d−2,min{n,d}−1
ei0 ,...,ein

is not.

(c) If d ≥ 3 then Γ
d−3,...,d−3,min{2n,d}−2
ei0 ,...,ein

is birational, while Γ
d−3,...,d−3,min{2n,d}−1
ei0 ,...,ein

is not.

Now we turn to Segre-Veronese varieties. Let SV nnnddd ⊂ PN(nnn,ddd) be a Segre-Veronese variety, and

write (zI)I∈Λn,d
for coordinates in PN(n,d). Consider the coordinate points eI0 , eI1 , . . . , eIn1

∈ SV nnnddd ,
where

Ij = ((j, . . . , j), . . . , (j, . . . , j)) ∈ Λ.

(Recall that n1 ≤ · · · ≤ nr). Let sss = (s0, . . . , sm) be an (m + 1)-uple of positive integers, and
set s = s0 + · · · + sm. Denote by T s0,...,smeI0 ,...,eIm

⊂ PN(nnn,ddd) the linear span of the osculating spaces

T s0eI0 , . . . , T
sm
eIm

. By Proposition 2.5, the projection of SV nnnddd from T s0,...,smeI0 ,...,eIm
is given by:

ΠT
s0,...,sm
eI0

,...,eIm

: SV nnnddd 99K PN(ddd,nnn,sss)(3.10)

(zJ)J∈Λ 7→ (zJ)J∈Λsss

whenever Λsss={J ∈ Λ | d(Ij , J) > sj ∀j} is not empty.

Proposition 3.11. Let the notation be as above, and assume that r, d ≥ 2. Then the projection
ΠTd−2,...,d−2

eI0
,...,eIn1−1

: SV nnnddd 99K PN(ddd,nnn,d−2d−2d−2) is birational.

Proof. For each l ∈ {1, . . . , r}, set

Λl =

{
J=(J1, . . . , Jr) ∈ Λ

∣∣ {0, . . . , n1 − 1 6∈ Jj if j 6= l

d
(
J l, (i, . . . , i)

)
≥ dl − 1 ∀i ∈ {0, . . . , n1 − 1}

}
,

and consider the linear projection

Σl : SV nnnddd 99K PNl .(3.12)

(zJ)J∈Λ 7→ (zJ)J∈Λl

Note that Λl ⊂ Λd−2d−2d−2, and so there is a linear projection τl : PN(ddd,nnn,d−2d−2d−2) 99K PNl such that Σl =
τl ◦ΠTd−2,...,d−2

p0,...,pn1−1
.

The restriction of Σl ◦ σνnnnddd to

{pt} × . . . {pt} × Pnl × {pt} × . . . {pt}

is isomorphic to the osculating projection

Γdl−2,...,dl−2
ei0 ,...,ein1−1

: V nl

dl
99K PN(nl,dl,dl−2dl−2dl−2).

This is birational by Corollary 3.9. For j 6= l, the restriction of Σl ◦ σνnnnddd to

{pt} × . . . {pt} × Pnj × {pt} × . . . {pt}

is isomorphic to the projection with center 〈e0, . . . , en1−1〉. Arguing as in the last part of the proof
of Proposition 3.5, we conclude that ΠTd−2,...,d−2

eI0
,...,eIn1−1

is birational. �

4. Non-secant defectivity of Segre-Veronese varieties

In this section we explain how osculating projections can be used to establish non-secant defec-
tivity of Segre-Veronese varieties. We start by recalling the definition of secant varieties and secant
defectivity.
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ON NON-SECANT DEFECTIVITY OF SEGRE-VERONESE VARIETIES 11

Definition 4.1 (Secant varieties). Let X ⊂ PN be a non-degenerate projective variety of dimension
n. Consider the rational map α : X × · · · ×X 99K G(h − 1, N) mapping h general points to their
linear span 〈x1, . . . , xh〉. Let

Γh(X) ⊂ X × · · · ×X ×G(h− 1, N)

be the closure of the graph of α, with the natural projection π2 : Γh(X)→ G(h− 1, N). Set

Sh(X) = π2(Γh(X)) ⊂ G(h− 1, N).

Both Γh(X) and Sh(X) are irreducible of dimension hn. Now consider the incidence variety

Ih = {(x,Λ) | x ∈ Λ} ⊂ PN ×G(h− 1, N),

and the associated diagram

Ih
πh

zz

ψh

''
PN G(h− 1, N).

Note that ψh : Ih → G(h− 1, N) is a Ph−1-bundle. The variety

(ψh)−1(Sh(X)) ⊂ Ih ⊂ PN ×G(h− 1, N)

is an (hn+ h− 1)-dimensional variety with a Ph−1-bundle structure over Sh(X).
The h-secant variety of X is the variety

Sech(X) = πh
(
(ψh)−1(Sh(X))

)
⊂ PN .

We say that X is h-defective if

dimSech(X) < min{nh+ h− 1, N}.

Determining secant defectivity is a classical problem in algebraic geometry. The following char-
acterization of secant defectivity in terms of tangential projections is due to Chiantini and Ciliberto.

Definition 4.2. Let x1, . . . , xh ∈ X ⊂ PN be general points, with tangent spaces Txi
X. We say

that the linear projection

τX,h : X ⊆ PN 99K PNh

with center 〈Tx1X, . . . , Txh
X〉 is a general h-tangential projection.

Proposition 4.3. [CC02, Proposition 3.5] Let X ⊂ PN be a non-degenerate projective variety of
dimension n, and x1, . . . , xh ∈ X general points. Assume that

N − dim(〈Tx1
X, . . . , Txh

X〉)− 1 ≥ n.

Then the general h-tangential projection τX,h : X 99K Xh is generically finite if and only if X is not
(h+ 1)-defective.

In general, however, it is hard to control the dimension of the fibers of tangential projections τX,h
when h is large. In [MR16] a new strategy was introduced, based on degenerating the linear span of
several tangent spaces Txi

X into a subspace contained in a single osculating space T kxX. The more
points one can use in this degeneration, the better the method works. To count the number of points
that can be used, the following notion was introduced in [MR16, Definition 4.6 and Assumption 4.3].

Definition 4.4. Let X ⊂ PN be a projective variety.
We say that X has m-osculating regularity if the following property holds. Given general points

p1, . . . , pm ∈ X and integer k ≥ 0, there exists a smooth curve C and morphisms γj : C → X,
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12 CAROLINA ARAUJO, ALEX MASSARENTI, AND RICK RISCHTER

j = 2, . . . ,m, such that γj(t0) = p1, γj(t∞) = pj , and the flat limit T0 in G(dim(Tt), N) of the
family of linear spaces

Tt =
〈
T kp1 , T

k
γ2(t), . . . , T

k
γm(t)

〉
, t ∈ C\{t0}

is contained in T 2k+1
p1 .

We say that X has strong 2-osculating regularity if the following property holds. Given general
points p, q ∈ X and integers k1, k2 ≥ 0, there exists a smooth curve γ : C → X such that γ(t0) = p,
γ(t∞) = q and the flat limit T0 in G(dim(Tt), N) of the family of linear spaces

Tt =
〈
T k1p , T k2γ(t)

〉
, t ∈ C\{t0}

is contained in T k1+k2+1
p .

The method of [MR16] goes as follows. If X ⊂ PN has m-osculating regularity, one degenerates
a general m-tangential projection into a linear projection with center contained in T 3

pX. Then one

further degenerates a general osculating projection T
(3,...,3)
p1,...,pm into a linear projection with center

contained in T 7
qX. By proceeding recursively, one degenerates a general h-tangential projection

into a linear projection with center contained in a suitable linear span of osculating spaces, and
then checks whether this projection is generically finite (see the proof of [MR16, Theorem 5.3] for
details). So one gets the following criterion:

Theorem 4.5. Let X ⊂ PN be a projective variety having m-osculating regularity. Let k1, . . . , kl ≥ 1
be integers such that the general osculating projection Π

T
k1,...,kl
p1,...,pl

is generically finite. Then X is not

h-defective for h ≤

 l∑
j=1

mblog2(kj+1)c−1

+ 1.

If X in addition has strong 2-osculating regularity, then this can be done even more effectively.
To state the criterion of [MR16], we introduce a function hm : N≥0 → N≥0 counting how many
tangent spaces can be degenerated into a higher order osculating space in this way.

Definition 4.6. Let m ≥ 2 be an integer. Define the function

hm : N≥0 → N≥0

as follows: hm(0) = 0. For any k ≥ 1, write

k + 1 = 2λ1 + 2λ2 + · · ·+ 2λl + ε,

where λ1 > λ2 > · · · > λl ≥ 1 are integers, and ε ∈ {0, 1}. Then set

hm(k) = mλ1−1 +mλ2−1 + · · ·+mλl−1.

Theorem 4.7. [MR16, Theorem 5.3] Let X ⊂ PN be a projective variety having m-osculating
regularity and strong 2-osculating regularity. Let k1, . . . , kl ≥ 1 be integers such that the general

osculating projection Π
T

k1,...,kl
p1,...,pl

is generically finite. Then X is not h-defective for h ≤
l∑

j=1

hm(kj)+1.

We now prove our main result on non-defectivity of Segre-Veronese varieties. We follow the
notation introduced in the previous sections.

Theorem 4.8. Let the notation be as above. The Segre-Veronese variety SV nnnddd is not h-defective for

h ≤ n1hn1+1(d− 2) + 1.

Proof. We will show in Propositions 5.1 and 5.10 that the Segre-Veronese variety SV nnnddd has strong
2-osculating regularity, and (n1 +1)-osculating regularity. The result then follows immediately from
Proposition 3.11 and Theorem 4.7. �
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ON NON-SECANT DEFECTIVITY OF SEGRE-VERONESE VARIETIES 13

Remark 4.9. Write

d− 1 = 2λ1 + 2λ2 + · · ·+ 2λs + ε

with integers λ1 > λ2 > · · · > λs ≥ 1, ε ∈ {0, 1}, so that λ1 = blog2(d− 1)c. By Theorem 4.8 SV nnnddd
is not h-defective for

h ≤ n1((n1 + 1)λ1−1 + · · ·+ (n1 + 1)λs−1) + 1.

So we have that asymptotically SV nnnddd is not h-defective for

h ≤ nblog2(d−1)c
1 .

Recall [CGG05, Proposition 3.2]: except for the Segre product P1 × P1 ⊂ P3, the Segre-Veronese
variety SV nnnddd is not h-defective for h ≤ n1 + 1, independently of ddd. In the following table, for a few
values of d, we compute the highest value of h for which Theorem 4.8 gives non h-defectivity of
SV nnnddd .

d = d1 + · · ·+ dr h
3 n1 + 1
5 n1(n1 + 1) + 1
7 n1((n1 + 1) + 1) + 1
9 n1(n1 + 1)2 + 1
11 n1((n1 + 1)2 + 1) + 1
13 n1((n1 + 1)2 + n1 + 1) + 1
15 n1((n1 + 1)2 + (n1 + 1) + 1) + 1
17 n1(n1 + 1)3 + 1

Remark 4.10. Note that the bound of Theorem 4.8 is sharp in some cases. For instance, it is well

known that SV
(1,1)
(2,2) , SV

(1,1,1)
(1,1,2) , SV

(1,1,1,1)
(1,1,1,1) are 3-defective, and SV

(2,2,2)
(1,1,1) is 4-defective. On the other

hand SV
(1,1)
(2,2) , SV

(1,1,1)
(1,1,2) , SV

(1,1,1,1)
(1,1,1,1) are not 2-defective, and SV

(2,2,2)
(1,1,1) is not 3-defective.

Remark 4.11. By Proposition 5.10, the Segre-Veronese variety SV nnnddd , nnn = (n1 ≤ · · · ≤ nr), has
(n1 + 1)-osculating regularity. We do not know in general what is the highest osculating regularity
of SV nnnddd . Better osculating regularity results would yield better bounds for h in Theorem 4.8.
Determining the highest osculating regularity of a variety can be a difficult problem. There are
examples of singular ruled surfaces that do not have 2-osculating regularity (see [MR16, Example
4.4]). In the smooth case, we exhibit below a family of surfaces which do not have 3-osculating
regularity, and a surface having 2-osculating regularity but not 3-osculating regularity. We do not
have an example of a smooth surface that does not have 2-osculating regularity.

Example 4.12. Consider the rational normal scroll X(1,a) ⊂ Pa+2 with a ≥ 3, which is locally
parametrized by

φ : A2 −→ Aa+2

(u, α) 7→ (αua, αua−1, . . . , αu, α, u).

Note that ∂sφ
∂αj∂us−j = 0 for any s ≥ j ≥ 2, and α ∂sφ

∂us−1∂α = ∂s−1φ
∂us−1 for any s ≥ 3. Therefore, at a

general point p ∈ X(1,a) we have

dim(Tmp X(1,a)) = m+ 2

for 2 ≤ m ≤ a. On the other hand, by [DeP96, Lemma 4.10] if a ≥ 5 we have that

dim(Sec3(X(1,a))) = 7.

Hence by Terracini’s lemma [Rus03, Theorem 1.3.1] the span of three general tangent spaces of
X(1,a) has dimension seven, and since dim(T 3

pX(1,a)) = 5 then X(1,a) does not have 3-osculating
regularity for a ≥ 5. Furthermore, we can check via a direct computation that three general tangent
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14 CAROLINA ARAUJO, ALEX MASSARENTI, AND RICK RISCHTER

spaces to X(1,4) span the whole of P6. Therefore, we conclude that X(1,a) does not have 3-osculating
regularity for a ≥ 4.

An interesting question is whether X(1,a) has 2-osculating regularity. Using Maple computations,
we have checked that X(1,a) has 2-osculating regularity for small values of a.

For example, consider the case a = 4. Let (u0, α0), (u1, α1) ∈ A2 be two general points, and
pt = φ(u0 + tu1, α0 + tα1). Let [X0 : · · · : X6] be the homogeneous coordinates on P6. A direct
Maple computation shows that the span Tt =

〈
T 1
p0X(1,4), T

1
ptX(1,4)

〉
is cut out by a polynomial

F (Xi, t) which evaluated in t = 0 gives that

(4.13) T0 = lim
t7→0

Tt = {X0 − 4u0X1 + 6u2
0X2 − 4u3

0X3 + u4
0X4 = 0}.

Note that the equation above does not depend on (u1, α1). Furthermore, via another standard
Maple computation we can show that T 3

p0X(1,4) ⊂ P6 is the hyperplane define by the equation in

(4.13), and hence T0 = T 3
p0X(1,4). Finally, since Tmp0X(1,4) = P6 for any m ≥ 4 we conclude that

X(1,4) has 2-osculating regularity.

5. Osculating regularity of Segre-Veronese varieties

In this section we show that the Segre-Veronese variety SV nnnddd ⊆ PN(nnn,ddd) has strong 2-osculating
regularity, and (n1 + 1)-osculating regularity. We follow the notation introduced in the previous
sections.

Proposition 5.1. The Segre-Veronese variety SV nnnddd ⊆ PN(nnn,ddd) has strong 2-osculating regularity.

Proof. Let p, q ∈ SV nnnddd ⊆ PN(nnn,ddd) be general points. There is a projective automorphism of SV nnnddd ⊆
PN(nnn,ddd) mapping p and q to the coordinate points eI0 and eI1 . These points are connected by the
degree d rational normal curve defined by

γ([t : s]) = (seI0 + teI1)d1 ⊗ · · · ⊗ (seI0 + teI1)dr .

We work in the affine chart (s = 1), and set t = (t : 1). Given integers k1, k2 ≥ 0, consider the
family of linear spaces

Tt =
〈
T k1eI0 , T

k2
γ(t)

〉
, t ∈ C\{0}.

We will show that the flat limit T0 of {Tt}t∈C\{0} in G(dim(Tt), N(nnn,ddd)) is contained in T k1+k2+1
eI0

.

We start by writing the linear spaces Tt explicitly. For j = 1, . . . , r, we define the vectors

et0 = e0 + te1, e
t
1 = e1, e

t
2 = e2, . . . , e

t
nj

= enj
∈ Vj .

Given Ij = (i1, . . . , idj ) ∈ Λnj ,dj , we denote by etIj ∈ Symdj Vj the symmetric product eti1 · . . . · e
t
idj

.

Given I = (I1, . . . , Ir) ∈ Λ = Λnnn,ddd, we denote by etI ∈ PN(nnn,ddd) the point corresponding to

etI1 ⊗ · · · ⊗ etIr ∈ Symd1 V1 ⊗ · · · ⊗ Symdr Vr.

By Proposition 2.5 we have

Tt =
〈
eI | d(I, I0) ≤ k1; etI | d(I, I0) ≤ k2

〉
, t 6= 0.

We shall write Tt in terms of the basis {eJ |J ∈ Λ}. Before we do so, it is convenient to introduce
some additional notation.

Notation 5.2. Let I ∈ Λn,d, and write:

(5.3) I = (0, . . . , 0︸ ︷︷ ︸
a times

, 1, . . . , 1︸ ︷︷ ︸
b times

, ia+b+1, . . . , id),
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ON NON-SECANT DEFECTIVITY OF SEGRE-VERONESE VARIETIES 15

with a, b ≥ 0 and 1 < ia+b+1 ≤ · · · ≤ id. Given l ∈ Z, define δl(I) ∈ Λn,d as

δl(I) = (0, . . . , 0︸ ︷︷ ︸
a−l times

, 1, . . . , 1︸ ︷︷ ︸
b+l times

, ia+b+1, . . . , id),

provided that −b ≤ l ≤ a.
Given I = (I1, . . . , Ir) ∈ Λ and lll = (l1, . . . , lr) ∈ Zr, define

δlll(I) = (δl1(I1), . . . , δlr (Ir)) ∈ Λ,

provided that each δlj (Ij) is defined. Let l ∈ Z. If l ≥ 0, set

∆(I, l) =
{
δlll(I)|lll = (l1, . . . , lr), l1, . . . , lr ≥ 0, l1 + · · ·+ lr = l

}
⊂ Λ.

If l < 0, set
∆(I, l) = {J | I ∈ ∆(J,−l)} ⊂ Λ.

Define also:
s+
I = max{ l ; ∆(I, l) 6= ∅} ∈ {0, . . . , d} = d− d(I, I0),

s−I = max{ l ; ∆(I,−l) 6= ∅} ∈ {0, . . . , d} = d− d(I, I1),

∆(I)+ =
⋃
0≤l

∆(I, l) =
⋃

0≤l≤s+I

∆(I, l), and

∆(I)− =
⋃
0≤l

∆(I,−l) =
⋃

0≤l≤s−I

∆(I,−l).

Note that if J ∈ ∆(I, l), then d(J, I) = |l|, d(J, I0) = d(I, I0) + l, and d(J, I1) = d(I, I1) − l. Note
also that, if J ∈ ∆(I)− ∩∆(K)+, then d(I,K) = d(I, J) + d(J,K).

Now we write each vector etI with d(I, I0) < k2 in terms of the basis {eJ |J ∈ Λ}.
First, we consider the Veronese case. Let I = (i1, . . . , id) ∈ Λn,d be as in (5.3), so that s+

I = a.
We have:

etI = (et0)a(et1)betia+b+1
· · · etid = (e0 + te1)aeb1eia+b+1

· · · eid =

= ea0e
b
1eia+b+1

· · · eid + t

(
a

1

)
ea−1

0 eb+1
1 eia+b+1

· · · eid + · · ·+ taeb+a1 eia+b+1
· · · eid =

=

a∑
l=0

tl
(
a

l

)
ea−l0 eb+l1 eia+b+1

· · · eid =

a∑
l=0

tl
(
a

l

)
eδl(I).

In the Segre-Veronese case, for any I = (I1, . . . , Ir) ∈ Λ, we have

etI =
∑

J=(J1,...,Jr)∈∆(I)+

td(I,J)c(I,J)eJ ,(5.4)

where c(I,J) =
( s+

I1

d(I1,J1)

)
· · ·
( s+

Ir

d(Ir,Jr)

)
. So we can rewrite the linear subspace Tt as

Tt =
〈
eI | d(I, I0) ≤ k1;

∑
J∈∆(I)+

td(I,J)c(I,J)eJ | d(I, I0) ≤ k2

〉
.(5.5)

For future use, we define the set indexing coordinates zI that do not vanish on some generator of
Tt:

∆ = {I | d(I, I0) ≤ k1}
⋃ ⋃

d(I,I0)≤k2

∆(I)+

 ⊂ Λ.

On the other hand, by Proposition 2.5, we have

T k1+k2+1
eI0

= 〈eI | d(I, I0) ≤ k1 + k2 + 1〉 = {zI = 0 | d(I, I0) > k1 + k2 + 1}.
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16 CAROLINA ARAUJO, ALEX MASSARENTI, AND RICK RISCHTER

In order to prove that T0 ⊂ T k1+k2+1
eI0

, we will define a family of linear subspaces Lt whose flat

limit at t = 0 is T k1+k2+1
eI0

, and such that Tt ⊂ Lt for every t 6= 0. (Note that we may assume

that k1 + k2 ≤ d− 2, for otherwise T k1+k2+1
eI0

= PN(nnn,ddd).) For that, it is enough to exhibit, for each

pair (I, J) ∈ Λ2 with d(I, I0) > k1 + k2 + 1, a polynomial f(t)(I,J) ∈ C[t] so that the hyperplane

(HI)t ⊂ PN(nnn,ddd) defined by

zI + t

 ∑
J∈Λ, J 6=I

f(t)(I,J)zJ

 = 0

satisfies Tt ⊂ (HI)t for every t 6= 0. If I /∈ ∆, then we can take f(t)(I,J) ≡ 0 ∀J ∈ Λ. So from now
on we assume that I ∈ ∆. We claim that it is enough to find a hyperplane of type

FI =
∑

J∈∆(I)−

td(I,J)cJzJ = 0,(5.6)

with cJ ∈ C for J ∈ ∆(I)−, cI 6= 0, and such that Tt ⊂ (FI = 0) for t 6= 0. Indeed, once we find
such FI ’s, we can take (HI)t to be

zI +
t

cI

 ∑
J∈∆(I)−, J 6=I

td(J,I)−1cJzJ

 = 0.

In (5.6), there are |∆(I)−| indeterminates cJ . Let us analyze what conditions we get by requiring
that Tt ⊆ (FI = 0) for t 6= 0. For any etK with non-zero coordinate zI , we have I ∈ ∆(K)+, and so
K ∈ ∆(I)−. Given K ∈ ∆(I)− we have

FI(e
t
K)

(5.4)
= FI

 ∑
J∈∆(K)+

td(K,J)c(K,J)eJ

 =

(5.6)
=

∑
J∈∆(I)−∩∆(K)+

td(I,K)−d(K,J)cJ

(
td(K,J)c(K,J)

)
= td(I,K)

 ∑
J∈∆(I)−∩∆(K)+

c(K,J)cJ

 .
Thus:

FI(e
t
K) = 0 ∀ t 6= 0⇔

∑
J∈∆(I)−∩∆(K)+

c(K,J)cJ = 0.

This is a linear condition on the coefficients cJ , with J ∈ ∆(I)−. Therefore

Tt ⊂ (FI = 0) for t 6= 0⇔

{
FI(eL) = 0 ∀L ∈ ∆(I)− ∩B[I0, k1]

FI(e
t
K) = 0 ∀t 6= 0 ∀K ∈ ∆(I)− ∩B[I0, k2]

(5.7)

⇔


cL = 0 ∀L ∈ ∆(I)− ∩B[I0, k1]∑
J∈∆(I)−∩∆(K)+

c(K,J)cJ = 0 ∀K ∈ ∆(I)− ∩B[I0, k2],

where B[J, u] = {K ∈ Λ| d(J,K) ≤ u}. Set

c =
∣∣∆(I)− ∩B[I0, k1]

∣∣+
∣∣∆(I)− ∩B[I0, k2]

∣∣ .
The problem is now reduced to finding a solution (cJ)J∈∆(I)− of the linear system given by the c
equations (5.7) with cI 6= 0.
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ON NON-SECANT DEFECTIVITY OF SEGRE-VERONESE VARIETIES 17

In the following we write for short s = s−I , s = s+
I and D = d(I, I0) > k1 + k2 + 1. We want to

find s+ 1 complex numbers cI = c0, c1, . . . , cs satisfying the following conditions
cj = 0 ∀j = s, . . . , D − k1

d(I,K)∑
l=0

cd(I,K)−l
∑

J∈∆(I)−∩∆(K,l)

c(K,J)

 = 0 ∀K ∈ ∆(I)− ∩B[I0, k2].
(5.8)

For 0 ≤ l ≤ d(I,K), we have

∑
J∈∆(I)−∩∆(K,l)

c(K,J) =
∑

J∈∆(I)−∩∆(K,l)

(
s+
K1

d(K1, J1)

)
· · ·
(

s+
Kr

d(Kr, Jr)

)
=

∑
lll=(l1,...,lr)
0≤l1,...,lr
l1+···+lr=l

(
s+
K1

l1

)
· · ·
(
s+
Kr

lr

)
=

=

(
s+
K1 + · · ·+ s+

Kr

l

)
=

(
s+
K

l

)
=

(
s+
I + d(I,K)

l

)
.

Thus the system (5.8) can be written as


cj = 0 ∀j = s, . . . , D − k1
j∑

k=0

(
s+ j

j − k

)
ck = 0 ∀j = s, . . . , D − k2,

that is 
cs = 0
...

cD−k1 = 0


(
s+s

0

)
cs +

(
s+s

1

)
cs−1 + · · ·+

(
s+s
s

)
c0 = 0

...(
s+D−k2

0

)
cD−k2 +

(
s+D−k2

1

)
cD−k2−1 + · · ·+

(
s+D−k2
D−k2

)
c0 = 0.

(5.9)

We will show that the linear system (5.9) admits a solution with c0 6= 0. If s < D − k2, then the
system (5.9) reduces to cs = · · · = cD−k1 = 0. In this case we can take c0 = 1, c1 = . . . , cs = 0.

From now on assume that s ≥ D − k2. Since cs = · · · = cD−k1 = 0 in (5.9), we are reduced to
checking that the following system admits a solution (ci)0≤i≤D−k1+1 with c0 6= 0:

(
s+s

s−(D−k1+1)

)
cD−k1+1 +

(
s+s

s−(D−k1)

)
cD−k1 + · · ·+

(
s+s
s

)
c0 = 0

...(
s+D−k2
k1−1−k2

)
cD−k1+1 +

(
s+D−k2
k1−k2

)
cD−k1 + · · ·+

(
s+D−k2
D−k2

)
c0 = 0.

Since s ≤ D and D > k1 + k2 + 1, we have s−D + k2 + 1 < D − k1 + 1. Therefore, it is enough to
check that the (s−D + k2 + 1)× (D − k1 + 1) matrix

M =


(

s+s
s−(D−k1+1)

) (
s+s

s−(D−k1)

)
· · ·

(
s+s
s−1

)
...

...
. . .

...(
s+D−k2
k1−1−k2

) (
s+D−k2
k1−k2

)
· · ·

(
s+D−k2
D−k2−1

)

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18 CAROLINA ARAUJO, ALEX MASSARENTI, AND RICK RISCHTER

has maximal rank. So it is enough to show that the (s−D + k2 + 1)× (s−D + k2 + 1) submatrix
of M

M ′ =


(

s+s
s−(s−D+k2+1)

) (
s+s

s−(s−D+k2)

)
· · ·

(
s+s
s−1

)
...

...
. . .

...(
s+D−k2

D−k2−(s−D+k2+1)

) (
s+D−k2

D−k2−(s−D+k2)

)
· · ·

(
s+D−k2
D−k2−1

)
 =

=


(

s+s
s+s+1−D+k2

) (
s+s

s+s−D+k2

)
· · ·

(
s+s
s+1

)
...

...
. . .

...(
s+D−k2

s+s+1−D+k2

) (
s+D−k2
s+s−D+k2

)
· · ·

(
s+D−k2
s+1

)


has non-zero determinant. To conclude, observe that the determinant of M ′ is equal to the deter-
minant of the matrix of binomial coefficients

M ′′ :=

((
i

j

))
s+D−k2≤i≤s+s
s+1≤j≤s+s+1−D+k2

.

Since D − k2 > k1 + 1 ≥ 1, det(M ′) = det(M ′′) 6= 0 by [GV85, Corollary 2]. �

Proposition 5.10. The Segre-Veronese variety SV nnnddd ⊆ PN(nnn,ddd) has (n1 + 1)-osculating regularity.

Proof. We follow the same argument and computations as in the proof of Proposition 5.1. Given
general points p0, . . . , pn1

∈ SV nnnddd ⊆ PN(nnn,ddd), we may apply a projective automorphism of SV nnnddd ⊆
PN(nnn,ddd) and assume that pj = eIj for every j. Each pj , j ≥ 1, is connected to p0 by the degree d
rational normal curve defined by

γj([t : s]) = (se0 + tej)
d1 ⊗ · · · ⊗ (se0 + tej)

dr .

We work in the affine chart (s = 1), and set t = (t : 1). Given k ≥ 0, consider the family of linear
spaces

Tt =
〈
T kp0 , T

k
γ1(t), . . . , T

k
γn1 (t)

〉
, t ∈ C\{0}.

We will show that the flat limit T0 of {Tt}t∈C\{0} in G(dim(Tt), N(nnn,ddd)) is contained in T 2k+1
p0 .

We start by writing the linear spaces Tt explicitly in terms of the basis {eJ |J ∈ Λ}. As in the
proof of Proposition 5.1, it is convenient to introduce some additional notation. Given I ∈ Λn,d, we
define δlj(I), l ≥ 0, as in Notation 5.2, with the only difference that this time we substitute 0’s with

j’s instead of 1’s. Similarly, for I = (I1, . . . , Ir) ∈ Λ, lll = (l1, . . . , lr) ∈ Zr, and l ∈ Z, we define the
sets ∆(I, l)j ,∆(I)+

j ,∆(I)−j ⊂ Λ, and the integers s(I)+
j , s(I)−j ∈ {0, . . . , d}.

For j = 1, . . . , r, we define the vectors

ej,t0 = e0 + tej , e
j,t
1 = e1, e

j,t
2 = e2, . . . , e

j,t
nj

= enj
∈ Vj .

Given I l = (i1, . . . , idj ) ∈ Λnj ,dj , we denote by ej,tIj ∈ Symdj Vj the symmetric product ej,ti1 · . . . · e
j,t
idj

.

Given I = (I1, . . . , Ir) ∈ Λ = Λnnn,ddd, we denote by ej,tI ∈ PN(nnn,ddd) the point corresponding to

ej,tI1 ⊗ · · · ⊗ e
j,t
Ir ∈ Symd1 V1 ⊗ · · · ⊗ Symdr Vr.

By Proposition 2.5 we have

Tt =
〈
eI | d(I, I0) ≤ k; ej,tI | d(I, I0) ≤ k, j = 1, . . . , n1

〉
, t 6= 0.

Now we write each vector ej,tI , with I = (I1, . . . , Ir) ∈ Λ such that d(I, I0) ≤ k, in terms of the basis
{eJ |J ∈ Λ}:

ej,tI =
∑

J=(J1,...,Jr)∈∆(I)+j

td(I,J)c(I,J)eJ
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ON NON-SECANT DEFECTIVITY OF SEGRE-VERONESE VARIETIES 19

where c(I,J) =
( s(I1)+j
d(I1,J1)

)
· · ·
( s(Ir)+j
d(Ir,Jr)

)
. So we can rewrite the linear subspace Tt as

Tt =

〈
eI | d(I, I0) ≤ k;

∑
J∈∆(I)+j

td(I,J)c(I,J)eJ | d(I, I0) ≤ k, j = 1, . . . , n1

〉
,

and define the set

∆ =
⋃

1≤j≤n1

⋃
d(J,I0)≤k

∆(J)+
j ⊂ Λ.

On the other hand, by Proposition 2.5, we have

T 2k+1
p0 = 〈eI | d(I, I0) ≤ 2k + 1〉 = {zI = 0 | d(I, I0) > 2k + 1}.

As in the proof of Proposition 5.1, in order to prove that T0 ⊂ T 2k+1
p0 , it is enough to exhibit, for

each I ∈ ∆ with d(I, I0) > 2k + 1, a family of hyperplanes of the form

(5.11)

FI =
∑

J∈Γ(I)

td(I,J)cJzJ = 0


such that Tt ⊂ (FI = 0) for t 6= 0, and cI 6= 0. Here Γ(I) ⊂ Λ is a suitable subset to be defined
later. Let I ∈ ∆ be such that d(I, I0) > 2k + 1. We claim that there is a unique j such that

(5.12) I ∈
⋃

d(J,I0)≤k

∆(J)+
j .

Indeed, assume that I ∈ ∆(J, l)i and I ∈ ∆(K,m)j , with d(J, I0), d(K, I0) ≤ k. If i 6= j, then we
must have

d(J, I0) ≥ m and d(K, I0) ≥ l.
But then d(I, I0) = d(J, I0) + l ≤ d(J, I0) + d(K, I0) ≤ 2k, contradicting the assumption that
d(I, I0) > 2k+1. Let J and j be such that d(J, I0) ≤ k and I ∈ ∆(J)+

j . Note that d(I, I0)−s(I)−j =

d(J, I0)− s(J)−j ≤ k, and hence k + 1− d(I, I0) + s(I)−j > 0. We set D = d(I, I0) and define

(5.13) Γ(I) =
⋃

0≤l≤k+1−D+s(I)−j

∆(I,−l)j ⊂ Λ.

This is the set to be used in (5.11). First we claim that

(5.14) J ∈ Γ(I)⇒ J /∈
⋃

1≤i≤n1
i 6=j

⋃
d(I,I0)≤k

∆(I)+
i .

Indeed, assume that J ∈ ∆(I,−l)j with 0 ≤ l ≤ k + 1 − D + s(I)−j , and J ∈ ∆(K)+
i for some K

with d(K, I0) ≤ k. If i 6= j, then

s(K)−j = s(J)−j = s(I)−j − l ≥ D − (k + 1) > k,

contradicting the assumption that d(K, I0) ≤ k. Therefore, if FI is as in (5.11) with Γ(I) as in
(5.13), then we have〈

eI | d(I, I0) ≤ k;
∑

J∈∆(I)+i

td(I,J)c(I,J)eJ | d(I, I0) ≤ k, i = 1, . . . , n1, i 6= j

〉
⊂ (FI = 0), t 6= 0,

and thus

Tt ⊂ (FI = 0), t 6= 0⇐⇒

〈 ∑
J∈∆(I)+j

td(I,J)c(I,J)eJ | d(I, I0) ≤ k

〉
⊂ (FI = 0), t 6= 0.
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20 CAROLINA ARAUJO, ALEX MASSARENTI, AND RICK RISCHTER

The same computations as in the proof of Proposition 5.1 yield

(5.15) Tt ⊂ (FI = 0), t 6= 0⇐⇒
∑

J∈∆(K)+j ∩Γ(I)

cJc(K,J) = 0 ∀K ∈ ∆(I)−j ∩B[I0, k].

So the problem is reduced to finding a solution (cJ)J∈Γ(I) for the linear system (5.15) such that
cI 6= 0. We set cJ = cd(I,J) and reduce, as in the proof of Proposition 5.1, to the linear system

(5.16)

k+1−D+s(I)−j∑
l=0

(
d− i

D − l − i

)
cl = 0, D − s(I)−j ≤ i ≤ k

in the variables c0, . . . , ck+1−D+s(I)−j
. The argument used in the end of Proposition 5.1 shows that

the linear system (5.16) admits a solution with c0 6= 0. �
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[Sco08] G. Scorza, Determinazione delle varietà a tre dimensioni di sr, r ≥ 7, i cui s3 tangenti si intersecano a
due a due, Rend. Circ. Mat. Palermo, 31 (1908), 193–204.
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