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Abstract. In this paper, we introduce a large system of interacting financial

agents in which all agents are faced with the decision of how to allocate their
capital between a risky stock or a risk-less bond. The investment decision of

investors, derived through an optimization, drives the stock price. The model

has been inspired by the econophysical Levy-Levy-Solomon model [30]. The
goal of this work is to gain insights into the stock price and wealth distribution.

We especially want to discover the causes for the appearance of power-laws

in financial data. We follow a kinetic approach similar to [33] and derive
the mean field limit of the microscopic agent dynamics. The novelty in our

approach is that the financial agents apply model predictive control (MPC) to

approximate and solve the optimization of their utility function. Interestingly,
the MPC approach gives a mathematical connection between the two opposing

economic concepts of modeling financial agents to be rational or boundedly
rational. Furthermore, this is to our knowledge the first kinetic portfolio model

which considers a wealth and stock price distribution simultaneously. Due to

the kinetic approach, we can study the wealth and price distribution on a
mesoscopic level. The wealth distribution is characterized by a log-normal law.

For the stock price distribution, we can either observe a log-normal behavior
in the case of long-term investors or a power-law in the case of high-frequency
trader. Furthermore, the stock return data exhibit a fat-tail, which is a well

known characteristic of real financial data.

1. Introduction. The question of allocating capital between a risky and risk-less
asset is a well-known issue for private and institutional investors. This research
question has a long tradition in economics: for example the famous works of
Markowitz [34] or Merton [37]. Another research field which has received a lot
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of attention in the last decade is the modeling of financial markets. Several finan-
cial crashes (Black Monday 1987, Dot-com Bubble 2000, Global Financial Crisis
2007) have shown the difficulties encountered by many financial market models in
replicating financial data properly [15,24].

Since the 1970s, econometricians have detected persistent empirical patterns in
financial data known as stylized facts. Stylized facts are universal statistical prop-
erties of financial data which can be observed all over the world [16]. The most
prominent examples are: the inequality of wealth and fat-tails in the stock return
distribution. Several researchers point out that stylized facts play an important
role in the creation of financial crisis [31, 44]. For that reason, the discovery of the
origin of stylized facts has become a prospering field of economic research. Up to
now, this question could only be answered partially and remains widely open [40].

Besides other approaches in the financial literature, agent-based financial mar-
ket models aim to reproduce and therefore understand the origins of stylized facts.
These models consider a large number of interacting financial agents and share
more similarities with particle models in physics than with classical asset-pricing
models [32, 44]. These models use tools from statistical physics like Monte Carlo
simulations and are part of the new research field econophysics. Major contribu-
tions in this field are [30, 32]. These complex systems of interacting agents are not
only inspired by physical theories but also by behavioral finance. Thus, agents are
modeled to be boundedly rational in the sense of Simon [43]. These modern market
models are capable of reproducing scaling laws [32]. Although there is a controver-
sial discussion if stylized facts can be generally interpreted as scaling laws, this is
one motivation to apply tools from physics onto financial models. Numerical experi-
ments of agent-based models indicate that psychological misperceptions of investors
can be accounted to be one reason for the appearance of stylized facts [19,31].

The disadvantage of these particle models is the need to study the complex be-
havior empirically through computer simulations. In addition, many studies have
shown [23,25,29,49] that in several agent-based models stylized facts may be caused
by finite-size effects of the model and are thus only numerical artifacts. To overcome
these problems, it is possible to derive kinetic models based on partial differential
equations (PDEs) out of the microscopic particle models, which give us the possibil-
ity to study the appearance of stylized facts analytically. There are several examples
of such a kinetic approach in the literature [5,6,9,12,13,17,18,20,22,27,28,33,35,46].
We refer also to [42] for a recent survey.

The starting point of our work is an agent-based model of financial agents which
aim to optimize their investment decision. They are faced with the decision of how
to allocate their capital in a risky stock or a risk-less bond. To determine the in-
vestment strategy, agents minimize expected missed revenue of their portfolio where
they estimate the future stock return by a convex combination of a fundamental
and chartist return estimate. The stock price is driven by the aggregated demand
of financial agents. To fix the stock price, we use a relaxation of Walras equilibrium
law [48], utilized in many econophysical models [3, 19, 32]. The microscopic model
is inspired by the famous Levy-Levy-Solomon model [30]. Further, closely related
agent-based models have been studied in [8, 14].

Thanks to a model predictive control (MPC) approximation we are able to obtain
an explicit feedback control of the optimization process and derive the investment
decision of agents. This methodology, often applied in the engineering community
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[10,36], has been recently applied to kinetic opinion formation models [1,2] but, to
our knowledge, never before to a kinetic financial market model.

More precisely, we consider a large system of coupled constrained optimization
problems and, in order to reduce this system to an explicit set of ordinary differential
equations (ODEs), we introduce the game-theoretic concept of Nash equilibria and
apply MPC. From the perspective of agent modeling, we first consider rational
financial agents and derive through the MPC approach boundedly rational agents.

Mathematically, we perform the mean field limit of the microscopic model to
derive a mesoscopic description of the dynamics. This means that we look at the
limiting case of infinitely many agents and instead of considering each agent indi-
vidually we can study the dynamics through probability densities. This limit often
provides us with Fokker-Planck type equations which enable us to derive analytic
solutions and study the long time behavior of the model. Besides other approaches,
we apply the Boltzmann methodology as performed in [33] and well described in [42].

We can emphasize the main novelties of the present approach in the following:

• The portfolio dynamic in the model is a consequence of an optimization pro-
cess and is not postulated a-priori accordingly to some heuristic arguments as
in [33] and in most agent based models [42]. This provides a natural framework
for future generalizations and extensions.

• To our knowledge, this is the first attempt to translate a portfolio model into a
kinetic model which contains both wealth and stock price evolutions. Previous
results where limited to the separate study of wealth distributions [17] or
stock price dynamic [33]. We thus are able to analyze wealth and stock price
distributions simultaneously and study possible interrelations.

In the presentation, we consider three modeling stages. First, we analyze an
optimal control problem for a deterministic portfolio model. The motivation behind
this is that the optimization process based on the individual agents’ strategies has
a deterministic nature and must not influence the stochasticity of the model. In
other words, the noise in the model can not be controlled by the agents and therefore
must appear after the optimization process to characterize the agents’ deviations
with respect to their optimal behavior. Secondly, we add noise to the investment
decision of investors and study the outcome on the mesoscopic level. We show
that the distribution of wealth in bonds and stocks can be represented in special
cases by log-normal distributions. At the final modeling stage, we introduce a
new population of financial brokers, equipped with microscopic stock prices. These
stock prices are modeled as stochastic differential equations (SDEs). In the mean
field limit of infinitely many brokers, we derive a Fokker-Planck equation which
enables us to study the stock price distribution. We distinguish between long-
term investors and high-frequency traders. In the case of long-term investors, the
stock price distribution is of log-normal type, whereas in the case of high-frequency
traders we observe an inverse-gamma distribution which satisfies a power-law for
large stock prices [6,18,33]. In addition, we show numerically that the stock return
distributions have a fat-tail.

The rest of the manuscript is organized as follows. In the next section, we
first define the microscopic portfolio model. We then apply the MPC approach to
simplify the optimization and derive the investment decision of each financial agent.
Then, we derive the mean field limit equation in section 3 and analyze the portfolio
distribution. As a next step, in section 4, we extend our model by adding noise to the
investment decision and analyze the resulting PDE-ODE system. In section 5, we
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introduce a population of broker, so that the microscopic stock prices are described
by a stochastic process. As it has been done for the previous modeling stages, we
perform the mean field limit in order to analyze the stock price distribution. In
the last section, we give several numerical examples which confirm our analytical
findings. We finish the paper with a short discussion of our results and possible
model extensions.

2. Microscopic model. We consider N financial agents equipped with their per-
sonal monetary wealth wi ≥ 0. We assume non-negative wealth, and thus do not
allow debts. Agents have to allocate their wealth between a risky asset (stock) and
a risk-free asset (bond). The wealth in the risky asset is denoted by xi ≥ 0 and the
wealth in the risk-free asset by yi ≥ 0. Thus, the wealth of the i-th agent at time
t > 0 is given by wi(t) = xi(t) + yi(t).

The time evolution of the risk-free asset is described by a fixed non-negative
interest rate r ≥ 0 and the evolution of the risky asset by the stock return,

Ṡ(t) +D(t)

S(t)
,

where S(t) is the stock price at time t and D(t) ≥ 0 the dividend. We denote
all macroscopic quantities with capital letters. For now, we assume that the stock
price and the dividend are given and that the stock price is a differentiable function
of time. Agents can shift capital between the two assets. We denote the shift
from bonds into stocks by ui. Notice, that the investment decision ui implicitly
determines the asset allocation of the capital between both portfolios. Thus, we
have the dynamics

ẋi(t) =
Ṡ(t) +D(t)

S(t)
xi(t) + ui(t) (1a)

ẏi(t) = r yi(t)− ui(t) (1b)

Ṡ(t) = κ EDN (t) S(t), (1c)

where the constant κ > 0 measures the market depth and the investment decisions
of agents drive the price through the excess demand

EDN (t) :=
1

N

N∑
i=1

ui(t).

The excess demand is positive if the investors buy more stocks than they sell. The
ODE (1c) can be interpreted as a relaxation of the well known equilibrium law,
supply equals demand, dating back to the economist Walras [48].
Investment strategy. Next, we describe how agents determine their investment strat-
egy. As in classical economic theory, ui will be a solution of a risk or cost mini-
mization. First, in order to make an investment decision, an agent has to estimate
future returns. We take two possible strategies into account, a chartist estimate
and a fundamentalist estimate. The estimates need to depend on the current stock
price.

Fundamentalists believe in a fundamental value of the stock price denoted by
sf > 0 and assume that the stock price will converge in the future to this specific
value. The investor therefore estimates the future return of stocks versus the return
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of bonds as

Kf := Uγ

(
ω
sf − S
S

)
− r.

Here, Uγ is a value function in the sense of Kahnemann and Tversky [26] which
depends on the risk tolerance γ of an investor. A typical example is Uγ(x) =
sgn(x)|x|γ with 0 < γ < 1 and sign function sgn. The constant ω > 0 measures the
expected speed of mean reversion to the fundamental value sf . We want to point
out that this stock return estimate is a rate and thus ω needs to scale with time.

Chartists assume that the future stock return is best approximated by the current
or past stock return. They estimate the return rate of stocks over bonds by

Kc := Uγ

(
Ṡ/ρ+D

S

)
− r.

The constant ρ > 0 measures the frequency of exchange rates and D is the nominal
dividend [33]. Both estimates are aggregated into one estimate of stock return over
bond return by a convex combination

K = χ Kf + (1− χ) Kc.

As a result, if K > 0, the investor believes that stocks will perform better and
if K < 0 that bonds will perform better. The weight χ is determined from an
instantaneous comparison between the two investment strategies as modeled in [32].
We let

χ = W (Kf −Kc),

where W : R→ [0, 1] is a continuous function. If for example, W (x) = 1
2 (tanh(x)+

1), the investor optimistically believes in the higher estimate. Therefore, in our
modeling, agents are not split, as usual, into chartists and fundamentalist, but each
agent, individually has a potential chartist/fundamentalist behavior accordingly to
the value of the weight χ.
Objective function. Finally, we define the minimization problem that determines
agent’s actions. We assume that agents minimize a quantity proportional to the
expected missed revenues in each portfolio. If stocks are believed to be better
(K > 0), then being invested in bonds is bad, and vice versa. Then, |K| yi for
K > 0 is the expected missed revenue of agent i by having invested in bonds but
not in stocks. Equivalently, |K| xi for K < 0 is the expected missed revenue of
agent i by having invested in stocks but not in bonds. Then we weight the expected
missed revenue by the wealth in the corresponding portfolio and define the running
cost by

Ψi :=


|K| x

2
i

2 , K < 0,

0, K = 0,

|K| y
2
i

2 , K > 0,

which can be conveniently rewritten to Ψi = K ·
(
−H(−K)

x2
i

2 +H(K)
y2i
2

)
, where

H is the Heaviside step function, zero at the origin. The weighted missed revenue
is larger, the larger the estimated difference between returns K. Each agent tries
to minimize the running costs∫ T

0

(µ
2
ui(t)

2 + Ψi(t)
)
dt.
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We consider a finite time interval [0, T ] and have added a penalty term on transac-
tions. The penalty term is necessary to convexify the problem but is also reasonable,
because it describes transaction costs. The transaction costs are modeled to be qua-
dratic which is an often used assumption in portfolio optimization [4, 38].

Hence, in summary, the optimal control problem for the microscopic model is
given by

ẋi(t) =
Ṡ(t) +D(t)

S(t)
xi(t) + u∗i (t) (2a)

ẏi(t) = r yi(t)− u∗i (t) (2b)

Ṡ(t) = κ EDN (t) S(t) (2c)

u∗i := argmin
ui:[0,T ]→R

∫ T

0

(µ
2
ui(t)

2 + Ψi(t)
)
dt. (2d)

Note that, the dynamics are strongly coupled by the stock price in a non-linear
fashion. Since all investors want to minimize their individual cost function, one
needs to solve the optimal control problem in a game-theoretic context. We choose
the concept of Nash equilibria which will be explained in detail in the next section.

2.1. Model predictive control of the microscopic model. In case of many
agents, we have a large system of optimization problems (2) which in general is
very expensive to solve. For that reason, we approximate the objective functional
(2d) by model predictive control (MPC). In the MPC framework, one assumes
that investors only optimize on a time interval [t̄, t̄ + ∆t] for a small ∆t > 0 and
fixed t̄. One thus assumes that one can approximate the control u on [0, T ] by
piecewise constant functions on time intervals of length ∆t. We can only expect to
observe a suboptimal strategy since we perform an approximation of (2d), see for
example [10,36].

We choose the penalty parameter µ in the running costs to be proportional to
the time step so that µ = ν∆t for some ν. This can be motivated by checking the
units of the variables in the cost functional (K is a rate, thus measured in 1/time,
Ψ is wealth2/time, u wealth/time). We see that the penalty parameter µ must
be a time unit. Furthermore, we substitute the right-hand side of the stock price
equation into the stock return. Thus, the constrained optimization problem reads

u∗i := argmin
ui:[t̄,t̄+∆t]→R

∫ t̄+∆t

t̄

(
ν∆t

2
u2
i (t) + Ψi(t)

)
dt,

ẋi(t) = κ EDN (t) xi(t) +
D(t)

S(t)
xi(t) + u∗i , xi(t̄) = x̄i,

ẏi(t) = ryi(t)− u∗i , yi(t̄) = ȳi,

Ṡ(t) = κ EDN (t) S(t), S(t̄) = S̄.

Here, the quantities with a bar denote the initial conditions of the system of ODEs.
Game theoretic setting. We want to solve the MPC problem in a game theoretic
setting. All agents are coupled by the stock price respectively excess demand EDN .
As pointed out previously, it is impossible that all agents act optimal since all agents
play a game against each other. Thus, a reasonable equilibrium concept is needed
to solve the optimal control problem. We want to search for Nash equilibria. In
this setting, each agent assumes that the strategies of the other players are fixed
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and optimal. Thus, we get N optimization problems which need to be solved
simultaneously. Hence, we have a N -dimensional Lagrangian L ∈ RN . The i-th
entry Li corresponds to the i-th player and reads:

Li(xi, yi, S, ui, λxi , λyi , λS)

=

t̄+∆t∫
t̄

(
ν∆t

2
u2
i (t) + Ψi(t)

)
dt+

t̄+∆t∫
t̄

λ̇xi xi

+ λxi κ EDN xi + λxi
D

S
xi + λxi ui dt− λxi x̄i +

t̄+∆t∫
t̄

λ̇yi yi

+ λyi r yi − λyi ui dt− λyi ȳi +

t̄+∆t∫
t̄

λ̇S S + λS κ EDN S dt− λS S̄,

with Lagrange multiplier λxi , λyi , λS . Notice that the quantities (x∗j , y
∗
j , u
∗
j ), j =

1, ..., i−1, i+1, ..., N are assumed to be optimal in the i-th optimization and therefore
only enter as parameters in the i-th Lagrangian Li. Thus, the optimality conditions
are given by

ẋ(t) = κ EDN (t) xi(t) +
D(t)

S(t)
xi + ui, xi(t̄) = x̄i,

ẏi(t) = ryi(t)− ui(t), yi(t̄) = ȳi,

Ṡ(t) = κ EDN (t) S(t), S(t̄) = S̄,

ν ∆t ui(t) = −λxi(t)− λxi(t)
κ

N
xi(t) + λyi(t)−

κ

N
S(t) λS(t),

λ̇xi(t) = −κ EDN (t) λxi(t)−
D(t)

S(t)
λxi(t)− ∂xiΨi(t),

λ̇yi(t) = −rλyi(t)− ∂yiΨi(t),

λ̇S(t) = λxi(t)
D(t)

S2(t)
xi − κ EDN (t) λS(t)− ∂SΨi(t).

We apply a backward Euler discretization to the adjoint equations and assume
λxi(t̄+ ∆t) = λyi(t̄+ ∆t) = λS(t̄+ ∆t) = 0. This gives

λxi(t̄) = ∆t ∂xiΨi(t̄+ ∆t),

λyi(t̄) = ∆t ∂yiΨi(t̄+ ∆t),

λS(t̄) = ∆t ∂SΨi(t̄+ ∆t).

Hence, the optimal strategy is given by

u∗N (xi, yi, S) =


1
ν (K yi − κ

N S (∂SK)
y2i
2 ), K > 0,

0, K = 0,
1
ν (K xi +K κ

N x2
i + κ

N S (∂SK)
x2
i

2 ), K < 0.
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Feedback controlled model. The feedback controlled model finally reads

ẋi(t) = κ EDN (t) xi(t) +
D(t)

S(t)
xi(t) + u∗N (t, xi, yi, S) (3a)

ẏi(t) = r yi(t)− u∗N (t, xi, yi, S) (3b)

Ṡ(t) = κ EDN (t) S(t). (3c)

Here, we have inserted the right-hand side of the stock equation (1c) into the stock
return.

3. Mean field limit of feedback controlled model. In this section, we want
to perform the limit of infinitely many agents N → ∞, known as mean field limit.
Classical literature on this topic are [7, 21, 39]. The goal is to derive a mesoscopic
description of the financial agents instead of considering each agent in the N particle
phase space individually. Thus, instead of considering agents’ dynamics in a large
dynamical system, we want to describe the dynamics with the help of a density
function f(t, x, y), x, y ≥ 0. The density f(t, x, y) describes the probability that an
agent at time t has an amount x ≥ 0 of wealth invested in his or her risky portfolio
and y ≥ 0 wealth in his or her risk-free portfolio.

We use the empirical measure

fN(x,y)(x, y) :=
1

N

N∑
k=1

δ(x− xk) δ(y − yk),

for given vectors x := (x1, ..., xN )T ∈ RN and y := (y1, ..., yN )T ∈ RN to derive
the mean field limit equation formally. We assume that the microscopic model has
a unique solution. Furthermore, we denote the solution of the wealth evolution by
x(t) := (x1(t), ..., xN (t))T ∈ RN and y(t) := (y1(t), ..., yN (t))T ∈ RN . We consider
a test function φ(x, y), x, y ≥ 0 and compute

d

dt
〈fN(x(t),y(t))(t, x, y), φ(x, y)〉 =

1

N

N∑
k=1

d

dt
φ(xk(t), yk(t))

=
1

N

N∑
k=1

∂xφ(xk(t), yk(t)) ẋk(t) + ∂yφ(xk(t), yk(t)) ẏk(t)

=
1

N

N∑
k=1

∂xφ(xk(t), yk(t))

(
κ EDN (t) xk(t) +

D(t)

S(t)
xk(t) + u∗(t, xk, yk, S)

)

+
1

N

N∑
k=1

∂yφ(xk(t), yk(t)) (r yk(t)− u∗(t, xk, yk, S))

=

〈
fN(x(t),y(t))(t, x, y), ∂xφ(x, y)

(
κ ED(t, f, S) x+

D(t)

S(t)
x+ u∗(t, x, y, S)

)〉
+
〈
fN(x(t),y(t))(t, x, y), ∂yφ(x, y)

(
r y − u∗(t, x, y, S)

)〉
.
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Here, 〈·〉 denotes the integration over x and y. The excess demand ED and optimal
control u∗ are given by:

ED(t, fN(x(t),y(t)), S) :=
1

N

N∑
k=1

u∗(t, xk, yk, S)

=

∫ ∫
u∗(t, x, y, S) fN(x(t),y(t))(t, x, y) dxdy

u∗(t, x, y, S) :=


1
ν K(t, S) x, K < 0,

0, K = 0,
1
ν K(t, S) y, K > 0.

Hence, the empirical measure fN(x(t),y(t))(t, x, y) satisfies the equation

∂tf(t, x, y)+∂x

([
κ ED(t, f, S) x+

D(t)

S(t)
x+ u∗(t, x, y, S)

]
f(t, x, y)

)
+∂y ([r y + u∗(t, x, y, S)]f(t, x, y)) = 0,

(4)

in the weak sense. We call the PDE (4) the mean field portfolio equation. Thus
the mean field portfolio stock price evolution is described by the PDE (4) coupled
with the macroscopic stock price ODE

Ṡ(t) = κ ED(t, f, S) S(t).

The mesoscopic behavior can be studied by the mean field portfolio equation.
Compared to models, which only consider ODEs, this is a huge benefit of the kinetic
approach. We define the following marginals of f :

g(t, x) :=

∫
f(t, x, y) dy, h(t, y) :=

∫
f(t, x, y) dx.

The corresponding moments read: (2.2)

X(t) :=

∫
x g(t, x) dx, Y (t) :=

∫
y h(t, y) dy.

Hence, g is a probability density function of the wealth invested in stocks and h is
the probability density function of wealth invested in bonds. We then integrate the
mean field portfolio equation over y respectively x to observe equations for g and
h. Since the optimal control u∗ depends on both microscopic quantities, we cannot
expect to get a closed equation for g or h in general. Nevertheless, in the special
case K < 0, the control u∗ only depends on x and the time evolution of g reads

∂tg(t, x) + ∂x

([
K(S(t))

ν
(κ X(t) + 1) +

D(t)

S(t)

]
x g(t, x)

)
= 0.

One solution of the equation is given by:

g(t, x)

=
c√
πx

exp

−
log(x)−

t∫
0

K(S(τ))

ν
(κ X(τ) + 1) +

D(τ)

S(τ)
dτ

2
 , c > 0.

Notice that g is the distribution function of a log-normal law. We get a closed
equation for h, in the case K > 0, in the same way. The solution h is of log-normal
type as well. We refer to the Appendix A.1 for a detailed discussion.
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Remark 1. Clearly, even if the agents are indistinguishable in the mean field limit,
further individual features can be potentially inserted in their microscopic dynamic.
For example, the agents’ attitude towards risk or other behavioral aspects. In the
large number of agents limit this will lead to the presence of further independent
variables in the statistical distribution of agents f .

4. Feedback controlled model with noise. So far, we have considered a fully
deterministic setting. This choice has been dictated by our modeling strategy
based on solving an optimal control problem for the agents’ portfolio. The possible
stochasticity of the model, in fact, should be kept out of the control capabilities
of the agents optimization process. On the other end, in a realistic stock market
model, the presence of randomness is an essential feature. It is generally accepted
that stock prices are unpredictable and e.g. news and political decisions influence
the behavior of market participants in an uncertain fashion. For that reason, we
discuss the effect of randomness to the feedback controlled microscopic model (3)
and to its mean field limit.

The optimal control of the i-th agent was given by

u?(xi, yi, S) =


1
ν K(S) xi, K < 0,

0, K = 0,
1
ν K(S) yi, K > 0.

Notice that the investment decision of agents only differs through different personal
wealth. Thus, the estimate of stock return over bond return was identical for all
investors. This assumption seems to be too simple, so each individual should differ
in their return estimate. Hence, we add white noise to the returns estimate. Since
the return estimate is a rate, the random variable also needs to scale with time. We
use symbolic notation of integrals adopted from the common notation of SDEs to
define the integrated noisy optimal control

u?ηi(xi, yi, S) dt =


1
νK(S) xi dt+ 1

νxi dWi K < 0,

0, K = 0,
1
νK(S) yi dt+ 1

ν yi dWi, K > 0.

Here, dWi denotes the stochastic Itô integral and thus the feedback controlled
microscopic system with noise is given by

dxi =

(
κEDN xi +

D

S
xi + u∗i

)
dt+

1

ν
(H(−K)xi +H(K)yi) dWi (5a)

dyi = (r yi − u∗i ) dt− 1

ν
(H(−K)xi +H(K)yi) dWi (5b)

dS = (κEDN S) dt. (5c)

4.1. Mean field limit. The goal of this section is to derive a mesoscopic descrip-
tion of the particle dynamics with noise. The classical mean field approaches by
Braun, Hepp, Neunzert and Dobrushin [7,21,39] do not apply because of the white
noise. The only known mean field result in the case of diffusion processes is the
convergence of N interacting processes to the kinetic McKean-Vlasov equation [45].
Unfortunately, the model (5) does not satisfy the classical assumptions since the
N -particle dynamics are coupled with the macroscopic stock price ODE.
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The following modeling approach, well described in [42], is an alternative method
to derive the mean field limit of the microscopic model (5) at least formally. The
idea is to discretize the diffusion process and interpret it as a Markov jump process.
Then, one can derive the corresponding master equation, which can be also inter-
preted as a linear Boltzmann equation. With the right scaling, known in kinetic
theory as grazing limit, one observes in the limit the Fokker-Planck equation (See
Figure 1).

Diffusion process
SDE

Fokker-Planck
equation

Markov jump process
Linear Boltzmann

equation

Figure 1. Sketch of the modelling process.

Boltzmann model. As seen before, we consider the probability density f(t, x, y)
which describes an investor to have monetary wealth x ≥ 0 in his or her risky
portfolio and wealth y ≥ 0 in his or her risk-free portfolio. The portfolio dynamics
are characterized by the following linear interactions (x, y) 7→ (x′, y′).

x′ = x+ a

(
κ ED(t) +

D(t)

S(t)

)
x+ a u∗η(t, x, y, S), if x′ > 0,

y′ = y + a y r − a u∗η(t, x, y, S), if y′ > 0,

with

u∗η := u∗(t, x, y, S) +
1√
a ν

(H(−K) x+H(K) y) η,

a := ∆t,

and a normally distributed random variable η with zero mean and variance one. The
time step ∆t > 0 is fixed and originates from the Euler-Maruyama discretization
of the SDE. The time evolution of the density function f(t, x, y) is then described
by an integro-differential equation of Boltzmann type. In weak form, the equation
reads

d

dt

∫
φ(x, y) f(t, x, y) dxdy = (L(f), φ), (6)

(L(f), φ) :=

〈∫
K(x, y, S,ED,D, η) (φ(x′, y′)− φ(x, y)) f(t, x, y) dxdy

〉
, (7)

with a suitable test function φ(x, y) and 〈·〉 denotes the expectation with respect to
the random variable η ∈ R. The interaction kernel K has to ensure that the post
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interaction portfolio values remain positive:

K(x, x′, y, y′, S, ED,D, η) := θ 1{x′>0}1{y′>0} η,

where θ > 0 is the collision rate and 1(·) the indicator function. The interaction
kernel can be simplified if there is no dependence on x and y. This case corresponds
to the case of Maxwellian molecules in the classical Boltzmann equation. This can
be achieved by truncating the random variable η in a way that the post interaction
wealth always remains positive. In our case, it is not possible to state explicit
bounds for the random variable η since the stock return is not bounded. In fact, for
a sufficiently small step size ∆t, it is always possible to truncate the random variable
in a way that the kernel is independent of x, y. Then, the interaction operator reads:

(L(f), φ) :=

〈
θ

∫
(φ(x′, y′)− φ(x, y)) f(t, x, y) dxdy

〉
.

We can immediately observe that the model conserves the number of agents, which
corresponds to the choice φ(x, y) = 1. We are interested in the asymptotic behavior
of the density function f .
Asymptotic limit. The goal of the asymptotic procedure is to derive a simplified
model of Fokker-Planck type. Thus, the integral operator gets translated into a
second order differential operator. The procedure can be described in two steps.
First, we perform a second order Taylor expansion of the test function φ(x′, y′).
Secondly, we rescale characteristic parameters of the model, preserving the main
macroscopic properties of the original kinetic equation (6). A closely related ap-
proach in kinetic theory is the grazing collision limit [47]. We introduce the scaling

θ =
1

ε
, a = ε,

where ε > 0 and perform the limit ε → 0. The limit equation is given by the the
following Fokker-Planck equation

∂tf(t, x, y) + ∂x((κ ED(t, f, S) x+
D(t)

S(t)
x+ u∗(t, x, y, S)) f(t, x, y))

+ ∂y((r y − u∗(t, x, y, S)) f(t, x, y)) +
1

2 ν2
∂2
yx

(
(H(−K)x+H(K)y)2 f(t, x, y)

)
=

1

2 ν2
∂2
x

(
(H(−K)x+H(K)y)2 f(t, x, y)

)
+

1

2 ν2
∂2
y

(
(H(−K)x

+H(K)y)2 f(t, x, y)
)
,

coupled with the macroscopic stock price ODE

Ṡ(t) = κ ED(t, f, S) S(t).

We call the previously introduced PDE the diffusive mean field portfolio equa-
tion. In the Appendix A.3, we provide a detailed derivation.

4.2. Marginals of diffusive mean field portfolio equation. Again, we are
interested in the behavior of the marginal distributions g and h. In the special case
K < 0, the control u∗ only depends on x and the time evolution of g reads.

∂tg(t, x) + ∂x

([
K(S(t))

ν
(κ X(t) + 1) +

D(t)

S(t)

]
x g(t, x)

)
− ∂2

x

(
x2

2 ν2
g(t, x)

)
= 0.
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In order to search for self-similar solutions, we introduce the scaling ḡ(t, x̄) =

x g(t, x), x̄ = log(x) and define b(t) := K(S(t))
ν (κ X(t) + 1) + D(t)

S(t) . We observe

a linear convection-diffusion equation for the evolution of ḡ(t, x̄)

∂tḡ(t, x̄) +

(
b(t)− 1

2 ν2

)
∂x̄g(t, x̄) =

1

2 ν2
∂2
x̄ḡ(t, x̄).

The solution is given by

ḡ(t, x̄) =
1

(2
(
t
ν2 + c

)
π)

1
2

exp

− (x̄+
t
ν2

+c

2 −B(t))2

2 ( t
ν2 + c)

 , c > 0,

with B(t) :=
t∫

0

b(τ) dτ + c̄, c̄ > 0. After reverting to the original variables, we get

g(t, x) =
1

x (2 ( t
ν2 + c) π)

1
2

exp

−
(

log(x) +
t
ν2

+c

2 −B(t)
)2

2 ( t
ν2 + c)

 , c > 0.

Thus, the wealth in bonds admits a log-normal asymptotic behavior as well.
Analogously, we obtain a similar equation for h in the case K > 0. The solution also
satisfies a log-normal law. For details, we refer to the Appendix A.2. At first glance,
we did not gain any new information compared to the marginals of the mean field
portfolio equation. In both cases, we have observed log-normal behavior. However,
this is not true, in the diffusive case, the solution admits a time dependent variance
and is not constant in contrast to the deterministic case. In addition, we have
observed that adding multiplicative noise does not change the portfolio distribution
drastically.

5. Stock price as random process. Until now, the macroscopic stock price evo-
lution has been given by the ODE (1c) and was deterministic. We aim to analyze
the price behavior in a probabilistic setting and analyze the price distribution. We
modify the model by adding a microscopic stochastic model beneath the macro-
scopic stock price equation (1c). To do so, we introduce a new population of M
brokers or reference traders. Each broker is equipped with a microscopic stock price
sj > 0. The microscopic stock prices are modeled as random processes. The average
of broker prices generates the macroscopic stock price

SM :=
1

M

M∑
j=1

sj .

The stochastic nature of microscopic stock prices can be explained by different
market accessibility of each broker. Their individual stock price is given by

dsj = κ ED sj dt+ sj dWj , j = 1, ...,M, (8)

where Wj is a Wiener process and equation (8) has to be interpreted in the Itô sense.
Compared to the macroscopic stock price equation (1c), there is multiplicative noise
added to the price evolution of brokers.

Now, the stock price evolution is coupled with the portfolio evolution in two
different ways. First, by the stock return in the stock portfolio and secondly by the
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investment decision u∗

∂tf + ∂x((κ ED x+
D

S
x+ u∗) f) + ∂y((r y − u∗) f)

+
1

2 ν2
∂2
yx

(
(−H(−K)x+H(K)y)2 f

)
=

1

2 ν2
∂2
x

(
(H(−K)x+H(K)y)2 f

)
+

1

2 ν2
∂2
y

(
(H(−K)x+H(K)y)2 f

)
,

dsj = κ ED sj dt+ sj dWj , j = 1, ...,M.

We need to specify whether the investors’ decisions are based on the microscopic or
macroscopic stock price. The macroscopic stock price determines the stock return
of agents’ portfolios, because this is the global market price. In the case of the
investment decision, one can argue that an investor might trade on the microscopic
or macroscopic stock price. Arbitrage opportunities are a reason to act on the
microscopic scale. In addition, one can argue that the microscopic stock prices have
in fact a smaller time scale than the macroscopic stock price since the latter is the
average of the former. This leads us to the characterization that investors acting on
the micro prices are high-frequency traders, whereas agents acting on the macro
price can be accounted to be long-term investors.
Mean field limit. As seen before, we want to consider the mean field limit of the
microscopic stock price equations. In fact, the microscopic brokers only differ in
their initial conditions and multiplicative noise. We have:

dsj(t) = κ ED(t, f, s) sj(t) dt+ sj(t) dWj , sj(0) = s0
j . (9)

Thus, there is no coupling between brokers and we have a simple setting of McKean-
Vlasov type equations. We have written the excess demand as ED(t, f, s) since
we can have ED(t, f, sj) in the high-frequency case or ED(t, f, SM ) for long-term
investors. We assume that the empirical measure V Ns(0)(0, s), which is defined by

the initial conditions of the microscopic system

V N (0, s) :=
1

M

M∑
k=1

δ(s− s0
k),

converges to a distribution function V (0, s). Then, the system (8) converges in
expectation to the mean field SDE

ds̄j(t) = κ ED(t, f, s̄j) s̄j(t) dt+ s̄j(t) dWj , s̄j(0) = sj , sj ∼ V (0, s). (10)

Due to the Wiener process, the above set of stochastic processes is independent and
in particular identically distributed. We can thus apply the Feynman-Kac formula
and the distribution V (t, s), s > 0 evolves accordingly to

∂tV (t, s) + ∂s (κ ED(t, f, (·)) s V (t, s)) =
1

2
∂2
s (s2 V (t, s)). (11)

Notice that the macroscopic stock price is the first moment of V .

S(t) =

∫
s V (t, s) ds.
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Hence, the diffusive mean field portfolio stock price system is given by:

∂tf(t, x, y) + ∂x((κ ED(t, f, S) x+
D(t)

S(t)
x+ u∗(t, x, y, (·))) f(t, x, y, s))

− 1

2 ν2
∂2
x

(
(H(−K)x+H(K)y)2 f(t, x, y)

)
+

1

2 ν2
∂2
yx

(
(H(−K)x+H(K)y)2 f(t, x, y)

)
+ ∂y((r y − u∗(t, x, y, (·))) f(t, x, y))

− 1

2 ν2
∂2
y

(
(H(−K)x+H(K)y)2 f(t, x, y)

)
= 0,

∂tV (t, s) + ∂s (κ ED(t, f, (·)) s V (t, s)) =
1

2
∂2
s (s2 V (t, s)).

Remember that the influence of the investment decision enters in the stock-price
evolution through the excess demand. In the next sections, we want to study
the influence of a high-frequency or long-term strategy of investors on the price
distribution V (t, s).

5.1. Long-term investors. In the case of long-term investors, the investment de-
cision u∗ = u∗(t, x, y, S) depends on the macroscopic stock price S. The stock price
equation is given by:

∂tV+∂s

(
κ

ν
K(S)

[∫ ∫
[H(−K(S))x+H(K(S))y] f(t, x, y) dxdy

]
s V

)
=

1

2
∂2
s (s

2 V ).

(12)

We can take the first moment of the previous equation and obtain the macroscopic
stock price ODE (1c) considered in the previous sections.
Asymptotic behavior. Due to the fact that the stock price is a stochastic process,
we can study the distribution function of the stock price PDE. We define

P (t) :=

∫ ∫
[H(−K(S))x+H(K(S))y] f(t, x, y) dxdy,

R(t) :=
κ

ν
K(S(t)) P (t),

and search for self-similar solutions of equation (12). The quantity P is the average
amount of wealth in the bond or stock portfolio and R is the average amount of
wealth invested in stocks. We consider the scaling V(p, t) = s V (t, s), p = log(s)
and V thus satisfies the following linear convection-diffusion equation

∂tV(t, p) +

(
R(t)− 1

2

)
∂pV(t, p) =

1

2
∂2
pV(t, p).

The solution of the previous equation is given by

V(t, p) =
1√
2 π

exp

{
−

(p+ t+c1
2 − R̄(t))2

2

}
,

for a constant c1 > 0 and R̄(t) :=
t∫

0

R(τ) dτ + c2, c2 > 0. Hence, by reverting to

the original variables, we get

V (t, s) =
1

s
√

2 π (t+ c1)
exp

{
−

(log(s) + t+c1
2 − R̄(t))2

2 (t+ c1)

}
.

We thus observe log-normal asymptotic behavior of the model.
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5.2. High-frequency traders. In the case of high-frequency investors, we have to
clarify the dependence of the optimal control u∗ on the microscopic stock price s.
The investment strategy of high-frequency fundamentalists can be translated
one to one. We have

kf (t, s) := Uγ

(
ω
sf (t)− s

s

)
− r.

The chartist estimated return is more difficult. In fact, the chartists estimate in-
volves a time derivative of the stock price. On the microscopic level, we can insert
the right-hand side of the microscopic stock price equation. In addition, we as-
sume that the investor averages over the uncertainty. Thus, for high-frequency
chartists we get:

kc(t, s) := Uγ

(
κ/ρ ED(t, f, s) +D(t)

s

)
− r.

We define the aggregated high-frequency estimate of stock return over bond return
by

k(t, s) := χ kf (t, s) + (1− χ) kc(t, s).

Hence, the high-frequency stock price equation reads

∂tV (t, s)

+ ∂s

(κ
ν
k(t, s)

[ ∫ ∫
[H(−k(t, s)) x+H(k(t, s)) y] f(t, x, y) dxdy

]
s V (t, s)

)
=

1

2
∂2
s (s2 V (t, s)).

Notice that we cannot find a closed equation for the first moment of this equation.
In general, it is difficult to solve the high-frequency stock price equation. We want
to study admissible states of the high-frequency stock price equation in order to
obtain a solution.

In addition, we have to specify the dependence of the diffusive mean field portfolio
equation on the microscopic stock price. We want to point out that the diffusive
mean field portfolio equation, solely coupled with the high-frequency stock price
equation, is not well-defined. This is because of the fact that it is unclear how to
interpret the variable s in the optimal control of the diffusive mean field portfolio
equation. One solution to this problem is to add the mean field SDE (10) to the
model. The diffusive mean field portfolio equation is then coupled with the mean
field SDE through the microscopic stock prices s̄ in the optimal control. In addition,
the diffusive mean field portfolio equation is coupled with the high-frequency stock
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price equation by the macroscopic stock price S. We get:

∂tf(t, x, y) + ∂x((κ ED(t, f, S) x+ u∗(t, x, y, s̄)) f(t, x, y))

− 1

2 ν2
∂2
x

(
(H(−K)x+H(K)y)2 f(t, x, y)

)
+

1

2 ν2
∂2
yx

(
(H(−K)x+H(K)y)2 f(t, x, y)

)
+ ∂y((r y − u∗(t, x, y, s̄)) f(t, x, y))

− 1

2 ν2
∂2
y

(
(H(−K)x+H(K)y)2 f(t, x, y)

)
= 0,

ds̄(t) = κ ED(t, f, s̄) s̄(t) dt+ s̄(t) dW,

∂tV (t, s)

+ ∂s

(
κ

ν
k(t, s)

[∫ ∫
[H(−k(t, s))x+H(k(t, s))y] f(t, x, y) dxdy

]
s V (t, s)

)
=

1

2
∂2
s (s2 V (t, s)).

Since the solution of the high-frequency stock price equation is the density of the
stochastic process s̄, we can substitute this PDE by the expected value of the
stochastic process S̄. The alternative model reads:

∂tf(t, x, y) + ∂x((κ ED(t, f, S) x+
D(t)

S(t)
x+ u∗(t, x, y, s̄)) f(t, x, y))

− 1

2 ν2
∂2
x

(
(H(−K)x+H(K)y)2 f(t, x, y)

)
+

1

2 ν2
∂2
yx

(
(H(−K)x+H(K)y)2 f(t, x, y)

)
+ ∂y((r y − u∗(t, x, y, s̄)) f(t, x, y))

− 1

2 ν2
∂2
y

(
(H(−K)x+H(K)y)2 f(t, x, y)

)
= 0,

ds̄(t) = κ ED(t, f, s̄) s̄(t) dt+ s̄(t) dW,

S = E[s̄].

We consider the former model instead of the latter as we can analyze the stock price
distribution due to the high-frequency stock price equation.
Steady state. We aim to study the admissible steady states of the high-frequency
stock price equation. Under the assumption that a universal stock price distribution
exists we are able to characterize the asymptotic behavior. In fact, in special cases
the steady state distribution is described by an inverse-gamma distribution. We
assume that χ ≡ 1, sf ≡ c > 0, Uγ(x) = x holds. The stock price equation is then
simplified to

∂tV (t, s) + ∂s

(κ
ν

[ω sf − s (ω + r)][∫ ∫
[H(−k(s))x+H(k(s))y] f(t, x, y) dxdy

]
V (t, s)

)
=

1

2
∂2
s (s2 V (t, s)).

Furthermore, we assume that the portfolio distribution f has reached a steady state
f∞. We define
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P∞x :=

∫ ∫
x f∞(x, y) dxdy > 0, k < 0,

P∞y :=

∫ ∫
y f∞(x, y) dxdy > 0, k > 0,

and assume P∞ := P∞x = P∞y . This assumption implies that the mean wealth in
bonds and stocks is constant. Economically, the mean wealth never reaches a steady
profile, although it is reasonable that the mean wealth only has minor variations.
Hence, the steady state distribution V∞(s) satisfies

1

2
∂2
s (s2 V∞(s))− κ

ν
P∞ ∂s

(
[ω sf − s (ω + r)] V∞(s)

)
= 0. (13)

The solution of (13) is given by the inverse-gamma distribution

V∞(s) = C
1

s2(1+κ
ν P∞(ω+r))

exp

{
−

2 κ
ν ω P∞ sf

s

}
, s > 0,

where the constant C should be chosen as

C :=
(2 κ ω P x∞ sf )1+2κν P∞(ω+r)

Γ(1 + 2κν P∞(ω + r))
,

such that the mass of V∞ is equal to one. Here, Γ(·) denotes the gamma function.
We immediately observe that for large stock prices s, the distribution function
asymptotically satisfies

V∞ ∼
1

s2(1+κ
ν P∞(ω+r))

.

Hence, the equilibrium distribution is described by a power-law.
Remark 2.

• We have observed that the presence of high-frequency fundamentalists leads
to power-law behavior in the stock price distribution. This coincides with
earlier findings in [33].

• The universal features which create power-law tails are multiplicative noise
and additionally an external force on the microscopic level. In our case, this
force is given by the fundamental value sf of the fundamental trading strategy.

6. Numerical results. In this section, we present some numerical examples illus-
trating the behavior of the resulting mean field model. We always consider the full
kinetic model, namely the diffusive mean field portfolio stock price model. Our sim-
ulations have been conducted with a standard Monte Carlo solver [42]. We choose
the value function Uγ and the weight function W as follows:

W (Kf −Kc) := β

(
1

2
tanh

(
Kf −Kc

α

)
+

1

2

)
+ (1− β)

(
1

2
tanh

(
−K

f −Kc

α

)
+

1

2

)
, α > 0, β ∈ [0, 1],

Uγ(x) :=

{
xγ+0.05, x > 0,

−(|x|)γ−0.05, x ≤ 0, γ ∈ [0.05, 0.95].

The weight function W models the instantaneous comparison of the fundamental
and chartist return estimate. The constant β ∈ [0, 1] determines if the investor
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trusts in the higher (β = 1) or lower estimate (β = 0) and we thus call this constant
the trust coefficient. The constant α > 0 simply scales the estimated returns. The
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Figure 2. Example of the value function Uγ with different refer-
ence points.

value function Uγ models psychological behavior of an investor towards gains and
losses. In order to derive the value function, one needs to measure the attitude of an
individual as a deviation from a reference point. We have chosen the reference point
to be zero, since Uγ(0) = 0 holds. In Figure 2 we have plotted Uγ and Ūγ := Uγ − 1
. The value function Ūγ is an example of a value function with a negative reference
point. Our choice of value function satisfies the usual assumptions: the function is
concave for gains and convex for losses, which corresponds to risk aversion and risk
seeking behavior of investors. Furthermore, our value function is steeper for losses
than for gains, which models the psychological loss aversion of financial agents (see
Figure 2 ).

First, we have a look at the price and portfolio dynamics in the case of long-
term investors. Secondly, we consider the case of high-frequency trader. Detailed
information of the parameter choices can be found in the Appendix A.4. We aim to
give a short discussion of the model parameters. The different parameter choices in
ω, γ and κ for the computation of the marginals are selected in order to ensure the
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Figure 3. Stock price evolution in the long-term investor case
with a constant fundamental price sf (left figure) and a time vary-
ing fundamental price (right figure). In both figures one obtains
that the average stock price is above the funcamental value.

correct sign of the aggregated estimate of stock return over bond return K, which is
essential in order to ensure a closed PDE for the marginals. For details we refer to
section 4.2. The larger time step and the smaller sample size in the high-frequency
case is chosen because of the additional complexity caused by the high-frequency
stock price PDE.
Long-Term Investors. In order to observe more realistic price behavior, we intro-
duce a time varying fundamental price sf (t). We choose a stationary log-normally
distributed fundamental price, modeled by the following SDE

dsf = 0.1 sf dW.

Again, W denotes the Wiener process and the integrals need to be interpreted in
the Itô sense. In the case of a constant fundamental price, we observe oscillatory
behavior (see Figure 3). The price behavior rapidly changes for a time varying
fundamental price. The stock price follows the fundamental price but has some
overshoots (see Figure 3). These overshoots are essential to observe a fat-tail in the



PORTFOLIO OPTIMIZATION AND MODEL CONTROL: A KINETIC APPROACH 6229

-4 -3 -2 -1 0 1 2 3 4
Standard Normal Quantiles

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Q
u

an
ti

le
s 

o
f 

In
p

u
t 

S
am

p
le

QQ Plot of Sample Data versus Standard Normal

-4 -3 -2 -1 0 1 2 3 4
Standard Normal Quantiles

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Q
u

an
ti

le
s 

o
f 

In
p

u
t 

S
am

p
le

QQ Plot of Sample Data versus Standard Normal

Figure 4. Quantile-quantile plot of logarithmic stock return dis-
tribution (left-hand side) and logarithmic return of fundamental
prices (right-hand side). The simulation has been performed in
the case of long-term investors and a stochastic fundamental price.
The risk tolerance has been set to γ = 0.9, the scale to ρ = 5

8 and
the random seed is chosen to be rng(767). All further parameters
are chosen as reported in section A.4 of the Appendix.

stock return distribution. To quantify this, we look at a quantile-quantile plot of
logarithmic stock returns. The quantile-quantile plot fits the data to the quantile of
a Gaussian distributed random variable. For that reason, data which is well fitted
by a Gaussian appears linear and is located on the dotted line. We easily recognize
that the stock return exhibits heavy tails (see Figure 4). In comparison to the stock
return, the return of fundamental prices is well fitted by a Gaussian distribution.
Due to the mesoscopic kinetic model, we can analyze the price and wealth distribu-
tions. In the previous paragraph, we could show that the stock price distribution
is given by log-normal law. Our simulations (see Figure 5 ) verify this result. In
addition, we want to have a look at the marginal distribution g(t, x) which de-
scribes the wealth of the stock portfolio. Interestingly, the distribution of stock
investments is well fitted by a normal distribution (see Figure 6). In the special
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Figure 5. Stock price distribution in the long-term investor case.
The solid lines are analytical solution, whereas the circles are the
numerical result.

situation that the aggregated estimate of stock return over bond return, denoted by
K, is strictly positive or strictly negative, we can compute marginal distributions
analytically. Then the marginal distribution admits log-normal behavior. For our
example, we consider the case K > 0, thus, we observe the marginal distribution of
wealth in bonds h. In order to ensure K > 0, we have set the fundamental stock
price to sf ≡ 10 and fixed the weight χ ≡ 1. As Figure 7 illustrates, the numerical
simulations confirm the analytic results.
High-Frequency Investors. First, we study the qualitative behavior of the stock and
wealth distribution. The parameters are chosen accordingly to the table in appen-
dix A.4. In the high-frequency investor case, we numerically observe a fat-tail (see
Figure 8). The fit by the inverse-gamma distribution reveals that the fit under-
estimates the tail probabilities. This indicates that the model can create realistic
power laws. Furthermore, the wealth distributions are in both portfolios well-fitted
by a Gaussian distribution as you can see in Figure (9). The shape of the wealth
coincides with the marginal portfolio distributions we computed in the long-term
investor case.

Secondly, we compute the admissible steady state of the high-frequency stock
price PDE. In the previous section, we could compute the steady state distribution
in a special case, and under the additional assumption that the portfolio dynamics
have reached a steady state, analytically. We have observed that the inverse-gamma
distribution is a steady state, which is asymptotically well characterized by a power-
law for large stock prices s. In order to compute the steady state numerically
we have to choose several parameters different from those stated in the table in
appendix A.4. More precisely, the constants r and D must be selected such that we
obtain a steady state in the portfolio dynamics. Furthermore, we do not consider
the diffusive portfolio equation, but instead the mean field portfolio equation. In
addition, the value function has been chosen as the identity and the weight is
fixed as χ ≡ 1. Figure 10 shows that the stock price distribution converges to the
analytically computed steady state of inverse-gamma type.
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Figure 6. Distribution of the wealth invested in stocks with a
Gaussian fit (solid line). Left figure has a linear scale, whereas the
right figure shows the distribution in log-log scale.

7. Conclusions. The starting point of our investigation was a microscopic portfo-
lio model coupled with the macroscopic stock price equation. Each financial agent
was equipped with an optimization problem in order to derive his/her investment
decision. Thanks to the MPC approach applied in a game theoretical setting we
simplify the optimization problem and compute the feedback control. Then, start-
ing from the feedback controlled model, in the limit of a large number of agents,
we derived the mean field description and the diffusive mean field description in
presence of noise. The mean field models have been analyzed to discover insights in
the portfolio distribution. The marginal distributions of wealth in bonds or wealth
in stocks can be characterized by a log-normal distribution in special cases. These
findings have been supported by numerical simulations. We have employed the
diffusive mean field portfolio stock price model to investigate the price behavior.
In the case of long-term investors, the price distribution is given by a log-normal
law. In addition, we have computed a steady state of inverse-gamma type in the
stock price distribution for high-frequency trader. We have seen that for large stock
prices the distribution asymptotically satisfies a power-law. Interestingly, we do not
observe fat-tails in the portfolio distribution. This is quite surprising as one could
expect to see the same distribution in the stock price and portfolio dynamics. In
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Figure 7. Distribution of the wealth invested in bonds in the
special case K > 0. The numerical results (circles) are plotted with
the corresponding log-normal analytic self-similar solution (solid
lines).

order to observe a power-law in the wealth distribution, there are several possible
model extensions. One idea is to add earnings to the microscopic model. Thus,
one would add an external force on the microscopic level. This might give a fat-tail
in the portfolio distribution. Alternatively, one could introduce wealth interactions
among agents. There are several kinetic models which consider wealth distributions
where a power-law has been observed [6,11,18,41]. Other model improvements are
obtained by considering further individual features in the dynamic, like the agents’
attitude towards risk or other behavioral aspects. We leave this question open for
further research.
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Figure 8. Stock price distribution in the high-frequency case (red
circles). The fit by the inverse-gamma distribution (solid line)
clearly underestimates the tail. This reveals that the full model
can create heavier tails than the inverse-gamma distribution.

Appendix A. Appendix.

A.1. Marginals of mean field portfolio model. For K > 0, we get a closed
equation for h:

∂th(t, y) + ∂y

((
r − K(S(t))

ν

)
y h(t, y)

)
= 0.

This advection equation can also be solved by the log-normal density function

h(t, y) =
ĉ√
πy

exp

−
log(y)−

t∫
0

r − K(S(τ))

ν
dτ

2
 , ĉ > 0,

which can be verified by simple computations.

A.2. Marginals of diffusive mean field portfolio model. In the case K > 0,
we obtain for h the equation

∂th(t, y) + ∂x

([
r − K(S(t))

ν

]
y h(t, y)

)
=

1

2 ν2
∂2
y(y2 h(t, y)).

Again, we consider the scaling h̄(t, ȳ) = y h(t, y), ȳ = log(y) and define e(t) :=

r − K(S(t))
ν . Simple computations reveal that h̄ satisfies

∂th̄(t, x̄) +

(
e(t)− 1

2 ν2

)
∂ȳh(t, ȳ) =

1

2 ν2
∂2
ȳ h̄(t, ȳ).

We define E(t) :=
t∫

0

e(τ) dτ + c2, c2 > 0 and

h̄(t, ȳ) =
1

(2 ( t
ν2 + c1) π)

1
2

exp

− (ȳ +
( t
ν2

+c1)

2 − E(t))2

2 ( t
ν2 + c1)

 , c1 > 0,
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Figure 9. Marginal wealth distributions in the high-frequency in-
vestor case. The left hand side illustrates the distribution of in-
vestments in stocks and the right-hand side the wealth invested in
bonds at t = 1.

solves the previous convection-diffusion equation. Then, reverting to the original
variables, we observe a log-normal law.

h(t, y) =
1

y (2( t
ν2 + c1) π)

1
2

exp

−
(

log(y) +
t
ν2

+c1

2 − E(t)
)2

2 ( t
ν2 + c1)

 , c1 > 0.

A.3. Asymptotic limit of Boltzmann model. We expand the test function
φ(x′, y′) in a Taylor series up to order two and we denote by R the remainder of
the Taylor series. The right-hand side of the kinetic equation is then given by:
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Figure 10. Steady state stock price distribution in the high-
frequency investor case (circles) together with the analytically com-
puted steady state of inverse-gamma type (solid line).

(L(f), φ)

=
〈
θ

∫
a

[
x

(
κ ED(t, f, S) +

D(t)

S(t)

)
+ u∗η(t, x, y, S)

]
∂φ(x, y)

∂x
f(t, x, y) dxdy

〉
+

〈
θ

∫
a [y r − u∗η(t, x, y, S)]

∂φ(x, y)

∂y
f(t, x, y) dxdy

〉
+

〈
θ

∫ [
(x′ − x) (y′ − y)

∂2φ(x, y)

∂y∂x
+

1

2
(y′ − y)2 ∂2φ(x, y)

∂y2

]
f(t, x, y) dxdy

〉
+

〈
θ

∫ [
1

2
(x′ − x)2 ∂2φ(x, y)

∂x2
+R(t, x, y)

]
f(t, x, y) dxdy

〉
.

We make the following scaling assumptions:

θ =
1

ε
, a = ε.

The interaction operator is consequently given by:

(L(f), φ) =

∫ [
x

(
κ ED(t, f, S) +

D(t)

S(t)

)
+ u∗(t, x, y, S)

]
∂φ(x, y)

∂x
f(t, x, y) dxdy

+

∫
[y r − u∗(t, x, y, S)]

∂φ(x, y)

∂y
f(t, x, y) dxdy

+

∫
ε

[
x

(
κ ED(t, f, S) +

D(t)

S(t)

)
y r

]
∂2φ(x, y)

∂y∂x
f(t, x, y) dxdy

+

∫
ε u∗(t, x, y, S) (−x)

(
κ ED(t, f, S) +

D(t)

S(t)

)
∂2φ(x, y)

∂y∂x
f(t, x, y) dxdy

+

∫
ε u∗(t, x, y, S) [r y − u∗(t, x, y, S)]

∂2φ(x, y)

∂y∂x
f(t, x, y) dxdy
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−
∫

1

ν2
(H(−K)x+H(K)y)2 ∂2φ(x, y)

∂y∂x
f(t, x, y) dxdy

+

∫
ε

2
[r y + u∗(t, x, y, S)]2

∂2φ(x, y)

∂y2
f(t, x, y) dxdy

+

∫
1

2 ν2
(H(−K)x+H(K)y)2 ∂2φ(x, y)

∂y2
f(t, x, y) dxdy

+

∫
ε

2

(
x

(
κ ED(t, f, S) +

D(t)

S(t)

)
+ u∗(x, y, S)

)2
∂2φ(x, y)

∂x2
f(t, x, y) dxdy

+

∫
1

2 ν2
(H(−K)x+H(K)y)2 ∂

2φ(x, y)

∂x2
f(t, x, y) dxdy

+Rε(t).

Here, we have used the fact that the random variable has zero mean. We assume
that the remainder

Rε(t) :=

〈∫
Rε(x, y) f(t, x, y) dxdy

〉
,

vanishes in the limit ε→ 0. Consequently, the integral operator simplifies to

(L(f), φ) =

∫ [
x

(
κ ED(t, f, S) +

D(t)

S(t)

)
+ u∗(t, x, y, S)

]
∂φ(x, y)

∂x
f(t, x, y) dxdy

+

∫
[y r − u∗(t, x, y, S)]

∂φ(x, y)

∂y
f(t, x, y) dxdy+∫

1

2

1

ν2
(H(−K)x+H(K)y)2

[
∂2φ(x, y)

∂x2
+
∂2φ(x, y)

∂y2
− ∂2φ(x, y)

∂y∂x

]
f(t, x, y) dxdy,

as ε → 0. Then, integration by parts leads to the weak form of the following
Fokker-Planck equation

∂

∂t
f(t, x, y) +

∂

∂x

([
x

(
κ ED(t, f, S) +

D(t)

S(t)

)
+ u∗(t, x, y, S)

]
f(t, x, y)

)
+

∂

∂y
([y r − u∗(t, x, y, S)] f(t, x, y)) +

1

ν2 2

∂2

∂x∂y
((H(−K)x+H(K)y)2 f(t, x, y))

=
1

ν2 2

∂2

∂x2
((H(−K)x+H(K)y)2 f(t, x, y))

+
1

ν2 2

∂2

∂y2
((H(−K)x+H(K)y)2 f(t, x, y)).

A.4. Simulation parameters.

∆t 0.0001 κ 0.4
D 0.01 ν 5
r 0.01 S0 5
α 0.5 Y0 20
β 0.65 X0 20
ω 80 Tend 0.6

γ 0.55 N 3 · 104

ρ 2
3

Random Fundamental Price.

∆t 0.0001 κ 0.1
D 0.01 ν 5
r 0.01 S0 5
χ 1 Y0 20

sf 10 X0 20
ω 20 Tend 0.3

γ 0.35 N 5 · 104

ρ 2
3

Computation of Marginal.

∆t 0.001 κ 0.4
D 0.01 ν 5
r 0.01 S0 5
α 1 Y0 20
β 0.2 X0 20
ω 80 Tend 1

γ 0.55 N 5 ∗ 103

ρ 2
3

M 3 ∗ 104

High-frequency trader.
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