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1. INTRODUCTION

Modulation instability (MI) refers to the exponential amplification of a weak
perturbation at the expense of a strong continuous wave [1]. It has been ex-
tensively studied in several fields of physics ranging from plasma physics
[2], hydrodynamics [3], Bose-Einstein condensate [4], solid state physics [5] or
nonlinear fiber optics [6]. MI is a basic nonlinear phenomenon [7] and recog-
nized to be a key ingredient in the development of more complex nonlinear
processes such as Fermi-Pasta-Ulam (FPU) recurrence [8–10], Peregrine and
Kuznetsov-Ma soliton formation [11, 12], supercontinuum generation [13, 14]
and rogue waves formation [15–17]. Fiber optics constitute an excellent test
bed to perform experimental investigations of these fundamental phenomena
since their parameters can be easily tuned by controling fiber characteristics
and/or initial conditions of laser beams [11, 12, 18, 19]. In addition, from an
applicative point of view, wide gain bands and large gain values offered by
MI are exploited to develop fiber optical parametric amplifiers for high bit
rate telecommunication applications [20, 21], short pulse amplification in all
fiber chirped amplification systems [22], solitonic pulse train generation [23]
or signal processing [24] to name a few. All these investigations has been
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achieved in uniform fibers that can limit the performances of these systems or
their fundamental interest. Tajima [25] had the genuine idea to use fibers with
slowly decreasing group-velocity dispersion (GVD) along the propagation axis
in order to compensate for the loss experienced by solitonic pulses during their
propagation in uniform fibers. The longitudinal variation of the dispersion
acts as an "effective amplification" and allows deformation-free propagation
of solitons in optical fibers. The first experimental demonstration has been
realized by Dianov et al. [26, 27], and the concept was further developed by
Chernikov and Mamyshev to achieve soliton compression in tapered fibers [28].
Later on, the idea of taking benefit of this additional degree of freedom to break
the limits of uniform nonlinear fiber optics has been proposed by Kudlinski
et al. [29] in the context of supercontinuum in photonic crystal fibers (PCF).
They fabricated a tapered PCF to extend the low wavelength spectral edge
toward the ultra-violet region, which is of primary importance in a number of
biophotonics applications [30].

This additional degree of freedom thus provides a great improvement of the
potential of nonlinear fiber optics, though these investigations were restricted
to a monotonous longitudinal evolution of fiber parameters. It is well known in
optics, that a longitudinal periodic variation of a parameter drastically modifies
the light propagation behavior, conducing to the formation of forbidden pho-
tonic bandgaps [31] in linear optics or to complex phenomena such as solitary
wave, discrete breathers or wave localization in nonlinear optics [32]. The
length scale of these periodic structures, usually termed photonic crystals, is
typically of the order of the wavelength and in practice they are fabricated via
lithography processes. The advent of modern telecommunication networks
with periodic all-optical regeneration devices and/or dispersion managed lines
provides another field of exploration for nonlinear optics in periodic media.
Length scales are in the order of kilometers, thus nonlinear phenomena that
occur in these systems are fundamentally different than the ones in photonic
crystals. However, a new and rich nonlinear dynamics has been discovered in
these periodic systems. For instance, dispersion managed transmission lines
allow for the demonstration of distortion-free soliton propagation, with soliton
breathing evidence [33–36]. In the context of MI, Matera et al. [37] first pre-
dicted that the periodic variation of telecommunication network parameters
leads to emergence of MI side bands, the position of which depends on the
periodicity of the system [37, 38]. For typical kilometer ranges of periodicity,
MI side bands fall within the signal spectrum causing significant distortions
of the latter. Consequently, a lot of investigations have been conducted in
this context to provide a deeper understanding of this detrimental process
for wavelength-division multiplexing optical communications [39–60]. These
works reveal that MI side bands in these periodically modulated devices are
ruled by a quasi-phase matching (QPM) relation and consequently, unlike MI in
single mode, isotropic and uniform fibers, (i) MI can exist in the normal disper-
sion region and (ii) a large number of side bands can be exited. These periodic
variations of fiber properties thus bring an additional degree of freedom to the
system and break the conventional limitations of standard MI in uniform fibers.
The first preliminary experimental observations of side bands generated via
QPM have been reported in the mid 90s by Kikuchi et al. [61] in a recirculating
loop with periodic variation of power, and by Murdoch et al. [62, 63] in fibers
with periodic birefringence. However, only a weak generation of a single pair
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of side bands due to the periodicity has been reported in these works. The first
clear observation of MI in a periodic fiber system has been reported in 2013
by Droques et al. [49] in a PCF with a sine modulation of its outer diameter,
with a period of 10 m. More than 10 pairs of side bands have been clearly
reported experimentally by pumping in the average normal dispersion region.
This observation has stimulated a renewed interest in experimental [45, 49–
51, 53, 54, 56, 59, 60] as well as in theoretical [39, 42–48, 50–53, 55, 56, 58–60]
investigations concerned with nonlinear optics in longitudinally modulated
fibers and silicon waveguides [64].

The aim of this review is to remind the basic principles of MI in these disper-
sion oscillating fibers (DOFs) and to give an overview on recent experimental
and theoretical achievements in these fibers. The paper is organized as follows.
In section 2, we remind the basic principles of MI in dispersion oscillating fibers.
The fabrication process is detailed in section 3 and a complete overview on
the theory is done in section 4. The first evidence of MI in a DOF is presented
in section 5, whereas sections 6 and 7 are devoted to discuss results in the
undepleted regime and parametric amplification, respectively. In section 8,
we discuss the effects related to the depleted stage of propagation. Finally, in
section 9, we discuss the observation of MI in a passive cavity made of DOFs.

2. MODULATION INSTABILITY BASIC PRINCIPLES

In this section we present the basic properties of MI occurring in uniform and
in dispersion oscillating fibers through typical examples. Let us consider the
following nonlinear Schrödinger equation (NLSE) that rules MI process in
optical fibers :

i
∂u
∂z
− β2(z)

2
∂2u
∂t2 + γ|u|2u = 0, (1)

With γ the nonlinear coefficient, β2(z) the longitudinal evolution of the group
velocity dispersion along the propagation axis to be of the form

β2(z) = β2 + βM × sin(2πz/Z), (2)

where Z is the period of modulation, β2 the average GVD and βM the ampli-
tude of modulation. Without loss of generality, we assume that the nonlinear
coefficient is constant. We will see below that it corresponds to a large variety
of realistic experimental configurations. In uniform fibers (β2(z) = constant), a
standard stability analysis of MI [7] reveals that perturbations at frequency ω
of an intense cw pump of power P, can grow if the following phase matching
relation is satisfied:

β2ω2 + 2γP = 0. (3)

Equation (3) implies that MI can only occur in the anomalous dispersion re-
gion of optical fibers, i.e. when β2 < 0, in such a way that the nonlinear
mismatch ∆kNL = 2γP exactly compensate for the GVD-induced mismatch
∆k = −|β2|ω2 of the four-photon mixing interaction between the pump and the
signal-idler pair. The MI spectrum calculated at the output of the uniform fiber
which dispersion is shown in Fig. 1 (a) in dashed blue curve is characterized by
two phase matched symmetric side lobes whose positions are predicted by Eq.
3 (see Fig. 1 (b)). Conversely, in uniform fibers, when the dispersion is normal
(red dotted lines in Fig. 1 (a)), no perfect phase matching can be achieved and
thus no MI exists in these fibers (Fig. 1 (c)).
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Fig. 1. (a) Group velocity dispersion evolution along the fiber. Gain spectra
at the output of (b) a uniform fiber by pumping in the anomalous dispersion,
(c) a uniform fiber by pumping in the normal dispersion, (d) a dispersion os-
cillating fiber by pumping in the anomalous dispersion and (e) a dispersion
oscillating fiber by pumping in the normal dispersion. Color and line styles
are the same for (a) to (e) figures. (f) detuning of the quasi-phase matched
MI side lobes vs. sideband order m: solid line from Eq. (4) and circles from
numerical simulations shown in (e). Parameters: β2 = ±1 × 10−27 s2/m,
βM = 0.9× 10−27 s2/m, γ = 7.5 /W/km, PP = 20 W and Z = 5 m. Numerical
simulations are inspired form the method described in Ref. [65] where sig-
nal and idler characteristics at the output of a fiber made of several uniform
piece of fibers are evaluated by means of a matrix product, each matrix de-
pending on the uniform fiber piece characteristics. We applied this method to
DOFs by sampling the fiber with a very short step to obtain a concatenation
of very short uniform fiber pieces. The advantage of doing so compare to
NLSE integration is that it is extremely rapid to calculate the gain curve at
the output of DOFs. Note that it is possible to include linear losses and well
as Raman effect as reported in Ref. [66]. We will refer to as "segmentation
method" in the rest of the paper.
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The scenario changes drastically if we consider an optical fiber with a peri-
odic modulation of its GVD. A dispersion grating associated with the periodic
variation of the dispersion must be accounted for in the momentum conserva-
tion relation [37], leading to the following QPM relation:

β2ω2 + 2γP = 2mπ/Z, (4)

where m is a positive or negative integer. Consequently, an infinite number of
MI side bands can be destabilized in these fibers as can be seen in Fig. 1 (d) and
(e) where spectra at the output of two different DOFs are represented. In both
cases, the dispersion evolves sinusoidally along the fiber with the same period
and amplitude of modulation but with opposite average dispersion values.
Compared to uniform fibers, a set of additional side bands are generated in
DOFs due to the periodic modulation of the dispersion. The frequency of
these parametric sidebands can be very well estimated from the quasi-phase-
matching relation (Eq. 4), as can be seen in Fig. 1 (f) which represents the
positions of MI side bands deduced from numerical simulations (red dots) and
from theoretical predictions of the quasi-phase matching relation (Eq. 4, solid
line). The limit of validity of this simple and intuitive approach is discussed in
section 4.
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Fig. 2. 2D plots of the output gain spectrum in a dispersion oscillating fiber
with a sinusoidal modulation versus, (a) the amplitude of modulation of the
group velocity dispersion and (b) the average value of the group velocity
dispersion. Parameters: Similar to those used in Fig.1, β2 is equal to 1 ×
10−27 s2/m in (a) and βM is equal to 0.9× 10−27 s2/m in (b).

It is important to note that the QPM relation predicts that the position of the
MI side bands depends on the average dispersion value but no information
related to the shape of the modulation appear in this expression. In order to
illustrate this, the evolution of the gain spectrum is provided in a 2D plot in
Fig. 2 (a) as a function of the amplitude of modulation with the same average
dispersion value than the one used in Fig. 1. With no modulation, the output
spectrum is similar to the spectrum shown in Fig. 2 (c) and no MI side band is
excited. By increasing the modulation amplitude, symmetric side lobes start
growing and their positions remain at a fixed frequency shift. Keeping on
increasing the amplitude of modulation still does not affect their positions
but one can see that their respective gain differ from side lobe to side lobe.
This will be investigated in details in section 4, where analytical expressions of
the parametric gain will be derived. Note that in all this review, we focused
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Fig. 3. (a) Group velocity dispersion evolution along the fiber length. (b)
Corresponding output spectra. Inset: close-up on the first side bands. Similar
parameters than those used in Fig. 1 except the modulation formats.

our attention to relatively weak amplitude of modulation, but it has been
show in Ref. [55] that side band splitting might occur when the amplitude of
modulation is very large.

We now illustrate the impact of the average dispersion value on the MI
spectrum. Figure 2 (b) represents in a 2D plot the evolution of MI gain spectra
represented as a function of the average GVD value, while keeping fixed the
amplitude of modulation to 0.9× 10−27 s2/m. We can clearly see that varying
the average dispersion value strongly modifies the position of the side lobes
as well as their gain. In anomalous dispersion, two strong symmetric side
lobes corresponding to m = 0 are located on both sides of the pump with
additional ones which positions correspond to m 6= 0. MI side bands frequency
shift increases when the absolute value of the average dispersion is decreased.
In normal dispersion, only remain side bands associated to m 6= 0, and their
respective frequency shifts are reduced by increasing the average dispersion
value. The fact that the MI side band frequency shifts depend on the average
dispersion value is consistent with the QPM relation (4).

Finally, the impact of the modulation format on the output spectrum is illus-
trated in Fig. 3, where MI spectra obtained in DOFs with different modulation
formats are shown. We choose a sine, a square and a triangle (Fig. 3 (a)) modu-
lation formats with the same average dispersion value. All other parameters
are similar to those used in Fig. 1. Firstly, positions of the side bands are almost
equal for all these modulation formats (Fig. 3 (b)). Again, it simply illustrates
that the position of the MI side bands depends on the average dispersion value.
Secondly, the amplitude of MI orders strongly depends on the shape of the
modulation. For instance, the gain experienced by the first side band is 19 dB
for the square, 15 dB for the sine and 12 dB for the triangle modulation shape.
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More generally, gain values for each side lobes are different for all MI orders. 
This simple example illustrates that the position of MI side bands depends on 
the average dispersion value while their respective gains also depend on the 
shape of the modulation. This will be investigated in details in section 4.

3. FABRICATION OF DISPERSION OSCILLATING FIBERS

Most experimental results presented in this manuscript have been achieved 
in PCFs because they allow a much greater control over dispersion than con-
ventional fibers. However, the fabrication of DOFs from standard step-index 
telecommunication fiber preforms is of course possible too. It has been reported 
in dispersion managed systems for telecommunication applications in 2003 
[67] or in the context of soliton collision in 2007 [68]. Note that, in the context 
of MI, DOFs made from standard telecommunication fibers have been used 
by us [54] and by Finot and coworkers [60]. Since most experimental results 
related to MI have been carried out with modulated PCFs, we remind here the 
basic principle of fabrication of PCFs, by emphasizing how the modulation of 
their diameter affects their guiding properties.

A. Fabrication principles
We use the standard stack and draw technique [69] to fabricate the photonic
crystal fibers (PCFs). The stacked array of capillaries is drawn into canes of a
few mm diameter, which are then jacked in pure silica tubes to form the final
preform, which is drawn into fibers. The air holes of the PCF are pressurized to
prevent their collapse during the drawing process. When fabricating uniform
fibers with a targeted outer diameter d, the drawing speed is usually adjusted
by a feedback loop in quasi real time in order to maintain the fiber diameter as
close as possible to d. The typical accuracy over d is in the order of±1%. For the
fabrication of periodically modulated fibers, the longitudinal evolution of the
fiber diameter is controlled by adjusting the evolution of drawing speed with
time (which is related to fiber length) using a servo-control system. This process
is ruled by the conservation of glass mass between the preform (jacketed cane)
and the fiber:

dFiber = dPreform

√
VPreform

VFiber
(5)

where dPreform,Fiber are respectively the preform (jacketed cane) and fiber outer
diameter, and VPreform,Fiber are respectively the preform feed into the furnace
and the drawing capstan speed. In our process, dPreform and VPreform are fixed,
VFiber is adjusted with a desired f (z) (where z is the longitudinal space co-
ordinate along the fiber) function, which results in a modulation of the fiber
outer diameter dFiber(z), and thus of the overall photonic crystal structure. By
suitably adjusting the fiber tension and hole pressure during drawing, the
normalized air hole diameter d/Λ (where Λ is the pitch of the microstructure)
can be kept constant all along the periodically modulated PCF. This means
that the pitch value (and the core diameter for instance) follow a linear depen-
dence with outer diameter. This results in a periodic modulation of the mode(s)
propagation constant(s), and thus of all guiding properties.

B. Typical example
The impact of the longitudinal modulations of the outer diameter on the modes
propagation constants of a typical air silica PCF is illustrated in Figs. 4. The
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Fig. 4. (a) GVD evolution versus wavelength for different pitch values,
ΛREF = 3.4 µm (dashed black lines), ΛMAX = 4.76 µm (solid blue line) and
Λmin = 2.04 µm (solid red line). The grey area delimits a variation of ±7% of
the pitch around the reference value. (b)-(e) Evolutions of β2,3,4 and γ versus
the normalized value of the pitch [(Λ−ΛREF)/ΛREF].
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d/Λ ratio is fixed to 0.4 to get an endlessly single mode behaviour [70]. Figure
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Fig. 5. (a) Outer diameter evolution with ±7% variations, targeted curve
(solid line), measurements (crosses). (b) Calculated GVD at 1065.7 nm.

4(a) represents the evolution of the GVD versus wavelength for different pitch
values calculated from semi-analytical relations derived in Ref. [71]. We define
a reference value for the pitch, labeled ΛREF, equals to 3.4 µm. In the following,
modulation amplitudes will be referred to this value. For ΛREF, the zero
dispersion wavelength (ZDW) is located at 1074 nm (dashed black curve in
Fig.4(a)). By decreasing the pitch value to 2.04 µm (−40%), the curve is red
shifted (solid red curve) and the ZDW is located at 1153 nm. On the contrary,
by increasing the pitch value to 4.76 µm (+40%) the curve experiences a blue
shift (solid blue curve) and the ZDW is located at 957 nm. Consequently, by
varying the outer diameter of an air silica PCF of only a few tens of percent one
can induce very large wavelength shift of the GVD curve (more than 200 nm on
the ZDW in this case). In order to give a clearer insight of these variations, Fig.
4(b) to (e) represents the evolution of β2,3,4 and γ, respectively, as a function of
the relative variation of the pitch ((Λ−ΛREF)/ΛREF). All these parameters are
calculated at 1065.7 nm. The GVD experiences the largest variations compared
to other parameters since it moves from negative to positive values. As can be
seen on these figures, these parameters are not linearly dependent on the pitch
of the fiber over such large variations. However, limiting the amplitude of
variation to ±7% of ΛREF, we can reasonably consider that β2 is proportional
to the pitch variations. In addition, other parameters can be assumed to be
constant over this variation span. Indeed, we checked numerically through
many realistic examples that this assumption is valid in most configurations.
This strongly simplifies the fabrication of dispersion oscillating fibers as the
shape of the desired longitudinal variations of one physical parameter is similar
to the outer diameter one (the control parameter in our drawing tower). As an
example, the evolution of the GVD at 1065.7 nm of an optical fiber which outer
diameter is sinusoidally modulated with an amplitude of±7% is represented in
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Figs. 5. The period of modulation is Z = 10 m and we can see that the GVD also
experiences a quasi-sinusoidal evolution. Note that the example depicted in
Fig. 1 (a) and (e) would correspond to a fiber with an outer diameter variation
of ±3.5% and by working at 1065.7 nm. Before performing experiments in
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these fibers, one question is : what is the simplest model to use to account for
nonlinear effects in such periodically modulated systems? It would be possible
to account for all the longitudinal variations in the NLSE equation, however,
this would lead to a complex equation useless to explain the dynamics of
nonlinear processes. In order to identify the simplest equation, we have to
establish if the modulation amplitude of a parameter is dominant with regards
to other ones. To do so, the relative variations of β2 are compared to those of γ
as a function of the wavelength in Fig.6 for very small variations of the pitch
of ±7% around the reference value of the pitch (ΛREF = 3.4 µm). As it can be
seen, the relative variation of the nonlinear coefficient is almost constant while
the wavelength is varied from 700 nm to 1800 nm. On the contrary, the relative
variation of β2 experiences large fluctuations on this wavelength span. It tends
toward infinity close to the average ZDW (λ0) of the fiber and approaches
zero for large wavelength shifts. This makes an important difference to model
the behavior of a wave propagation in such fibers. We checked numerically
that close to the average ZDW, the GVD variations dominate and one can
consider that the nonlinear coefficient is constant. It leads to this simplified
NLSE equation, which accurately reproduces the dynamics of the system :

i
∂u
∂z
− β2(z)

2
∂2u
∂t2 + γ|u|2u ' 0. (6)

On the contrary, working far away from the average ZDW of the fiber is
equivalent to considering that the contribution of the longitudinal variations of
the nonlinear coefficient are dominant compare to those of the dispersion. The
simplified NLSE equation thus reads:

i
∂u
∂z
− β2

2
∂2u
∂t2 + γ(z)|u|2u ' 0. (7)

In all the experimental results presented in this article, we will always work
in the vicinity of the average ZDW of the fiber to get very large variation of
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the GVD while keeping relatively small outer diameter variations. In that way
it is possible to exalt the contribution of the periodic variations on nonlinear
processes while strongly relaxing fabrication constraints. Consequently, the
simplest governing equation to accuracy model nonlinear phenomena in DOFs
is then Eq. (6).

4. THEORETICAL FRAMEWORK

Floquet analysis
In this section we develop a general theory that permits to identify the fre-
quency bands that can be destabilized by a periodic modulation of any of
its parameters the fiber dispersion or the nonlinearity. Let us consider the
following NLSE

i
∂u
∂z
− β2(z)

2
∂2u
∂t2 + γ(z)|u|2u = 0, (8)

where we assume the z-dependent GVD β2(z) and the nonlinear coefficient
γ(z) to be of the form

β2(z) = β2 + βM fZ(z), γ(z) = γ + γMgZ(z), (9)

where fZ and gZ are periodic functions of period Z such that min fZ = −1 =

min gZ, and their mean is vanishing, i.e.
∫ Z/2
−Z/2 fZ(z)dz =

∫ Z/2
−Z/2 gZ(z)dz =

0. A representative example of such kind of modulation function is rep-
resented by fZ = sin(kgz) = sin(2π/Z · z). Our aim is to analyse the
stability of the general stationary (or CW) solution of Eq. (8) which reads
u0(z) =

√
P exp(iP

∫ z
0 γ(z′)z′), where P is the power.

We consider a perturbation of u0(z) in the form u(z, t) = [v(z, t) + 1]u0(z),
where the perturbation v(z, t) satisfies |v| � 1. Inserting this expression into
Eq. Eq. (8), and retaining only the linear terms, we find

i
∂v
∂z
− β2(z)

2
∂2v
∂t2 + γ(z)P(v + v∗) = 0. (10)

Writing v = q + ip, with q and p real functions, we obtain the following linear
system: 

∂q
∂z
− β2(z)

2
∂2 p
∂t2 = 0,

∂p
∂z

+
β2(z)

2
∂2q
∂t2 − 2γ(z)Pq = 0.

Finally, taking the Fourier transform of this system in the time variable t, leads
to 

∂q̂
∂z

+
β2(z)

2
ω2 p̂ = 0,

∂ p̂
∂z
− β2(z)

2
ω2q̂− 2γ(z)Pq̂ = 0.

(11)

Note that this is a Hamiltonian dynamical system in a two-dimensional phase
plane with canonical coordinates (q̂, p̂). Analyzing the linear stability of the
stationary solution u0(z) therefore reduces to studying the solutions to Eq. (11)
for each ω. Since the coefficients in the equation are z-periodic with period Z,
Floquet theory applies [39, 51]. This amounts to study the linearized evolution
over one period Z, to obtain the Floquet map Φ which in the present situation is
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the two by two real matrix defined by Φ[q̂(0), p̂(0)]T = [q̂(Z), p̂(Z)]T. In other
words, the Floquet map is given by the fundamental matrix solution of system
Eq. (11) evaluated at z = Z. As a result [q̂(nZ), p̂(nZ)]T = Φn[q̂(0), p̂(0)]T.
Note that Φ necessarily has determinant one, since it is obtained by integrating
a Hamiltonian dynamics, which preserves phase space volume. As a conse-
quence, if λ is one of its eigenvalues, then so are both its complex conjugate
λ∗ and its inverse λ−1. This constrains the two eigenvalues of Φ considerably:
they are either both real, or lie both on the unit circle. Now, the dynamics is
unstable only if there is one eigenvalue λ satisfying |λ| > 1, in which case both
eigenvalues are real. We will denote as λ± the two eigenvalues of Φ. We are
interested in studying the growth rate, or parametric gain, that is defined as

g(ω) =
1
Z

ln
(
max{|λ+|, |λ−|}

)
(12)

as a function of ω, βM and γM. The gain g measures the growth of the pertur-
bations (q̂(z), p̂(z)) ∝ exp[g(ω)z]. It vanishes if the two eigenvalues lie on the
unit circle. The regions where the gain does not vanish are commonly referred
to as Arnold tongues [46]. We will explain below that, whereas their precise
form depends on the choice of fZ, gZ, the position of their tips does not.

Since the system Eq. (11) is not autonomous, it cannot be solved analytically
in general. Specific cases where analytical solutions can be found is piece-wise
constant [39] and delta kicked [51] dispersion profiles. Nevertheless, the above
observations will allow us to obtain some information about its stability for
small βM, γM, and valid for all perturbations fZ, gZ, whatever their specific
form.

To see this, we first consider the case βM = 0 = γM, so that β(z) = β2,
γ(z) = γ. It is then straightforward to integrate the system Eq. (11). The
Floquet map is then given by

Φav =

 cos(kavZ) − β2ω2

2kav
sin(kavZ)

2k
β2ω2 sin(kavZ) cos(kavZ)

 , (13)

where

kav =

√√√√β2
2

ω2

(
β2
2

ω2 + 2γP

)
. (14)

We concentrate on the normal average dispersion (defocusing) regime β2 > 0,
since we want to characterize instabilities generated by the periodicity. The
anomalous dispersion (focusing) regime is unstable even in homogeneous
fibers through the standard MI. Note that the matrix Φav has determinant equal
to 1, as expected. The eigenvalues of Φav can be readily computed as

λ±av = exp(±ikavZ). (15)

If we now consider the fiber modulation terms fZ(z) and gZ(z), it is then no
longer possible, in general, to give a simple closed form expression of the
solution to the system Eq. (11), which is no longer autonomous, and hence
of the Floquet map Φ. Nevertheless, we do know that, for small βM, γM, the
eigenvalues of Φ must be close to the eigenvalues λ±av. We then have two cases
to consider.
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Fig. 7. Sketch illustrating, in the complex plane, the effect of the periodic
modulation terms fZ(z) and gZ(z) on the eigenvalues of the linearized Flo-
quet map (13). Black dots correspond to the unperturbed eigenvalues lying
on the unit circle (dashed line). Coloured dots show the new position of the
eigenvalues after switching on the modulations, leading to a stable regime
when k 6= πm

Z (left sketch) and an unstable one when k = πm
Z (right sketch,

red dots).

1: Off-resonance case. kav 6= πm
Z , m = ±1,±2, . . .. We have λ−av = (λ+

av)
∗, they

are distinct, and they both lie on the unit circle, away from the real axis. They
then must remain on the unit circle under perturbation since, for the reasons
explained above, they cannot move into the complex plane away from the unit
circle. Consequently, in this case, the stationary solution u0(z) is linearly stable
under a sufficiently small perturbation described by βM fZ(z) and γMgZ(z),
and this statement does not depend on the precise form of fZ(z) or of gZ(z). In
fact, with growing βM and/or γM, the two eigenvalues will move along the
unit circle until they meet either at −1 or at +1 for some critical value of the
perturbation parameters. Only for values of the latter above that critical value
can the system become unstable. A pictorial description of this situation is
shown in the panel of Fig. 7.
2: On-resonance case. kav = πm

Z , m = ±1,±2, . . .. Now λ+
av = λ−av = ±1

(upper or lower sign holds for m even or odd, respectively) is a doubly degen-
erate eigenvalue of Φav. Under a small perturbation, the degeneracy can be
lifted and two real eigenvalues can be created, one greater than one, one less
than one in absolute value, implying the instability of the system. In principle,
under very peculiar perturbations, the eigenvalues might also move along the
circle implying that the system remain stable. However, for the most common
perturbations (sinusoidal, square wave, sawtooth, comb, ...), the system, for
some m, destabilizes under an arbitrarily small perturbation, following the
split of the eigenvalues on the real axis at the degenerate points ±1. A pictorial
description of this situation is shown in the right panel of Fig. 7.

We recap by saying that, when the modulation is switched on, the instability
sets in under the resonant condition kav = mπ

Z . Recalling the expression of
kav = kav(ω) in Eq. Eq. (14), it is straightforward to show that the m−th order
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resonance is fulfilled at frequency ω = ωm, where

ωm =

√√√√ 2
β2

(√
(γP)2 +

(mπ

Z

)2
− γP

)
, (16)

which is therefore the frequency at which the system destabilizes for an in-
finitely small Hamiltonian perturbation of Φav. These values ωm therefore
correspond to the tips of the Arnold tongues, that is, to the positions of the
(centers of) the unstable sidebands of the defocusing NLSE under a general
periodic perturbation fZ, gZ.

We emphasize that the resonance condition

kav(ωm) = m π
Z = m kg

2 (17)

is the condition of parametric resonance, i.e. the natural spatial frequency of the
unperturbed harmonic oscillator (kav) is equal to a multiple of half the forcing spatial
frequency (kg/2 = π/Z) [46]. Additional physical insight can be obtained
by expanding Eq. (16) for small power, i.e. assuming γP � |m|π/Z. This
assumption is valid in a large range of experimental setups which period of
modulation lies in the meter range and with pump power up to tens Watt. At
zero order we recover the well known quasi-phase-matching relation (cfr. Eq.
(4)) [37, 38, 49] :

β2ω2
m + 2γP =

2πm
Z

. (18)

Equation (18) entails the conservation of the momentum (corrected for nonlin-
ear phase-shifts), made possible thanks to the virtual momentum carried by the
dispersion grating, of the four-photon mixing interaction between two photons
from the pump, going into two photons in the symmetric unstable bands at
lower (Stokes) and higher (antiStokes) frequencies with respect to the pump.

An example of practical interest where the Floquet analysis can be per-
formed analytically is a fiber with a piecewise constant dispersion and uniform
nonlinearity γ(z) = γ = γ. This case was studied also in the context of commu-
nication system with dispersion management [39]. The Floquet map is given
simply by the product of the two matrices describing each uniform segment:

Ψ = ΦaΦb, (19)

where Φa,b has the expression Eq. (13) calculated for a dispersion β(z) = βa,b,
where the two pieces of fiber has length La,b, such that La + Lb = Z and the
average dispersion is β2 = (βaLa + βbLb)/Z.

The eigenvalues of Ψ are given by

λ± =
∆
2
±
√

∆2

4
− 1, (20)

where
∆ = 2 cos(kaLa) cos(kbLb)− σ sin(kaLa) sin(kbLb), (21)

is the Floquet discriminant, and σ = (βaβbω4 + 2γPω2(βa + βb))/(2kakb).
We have parametric instability if |∆| > 2, with gain g(ω) = ln(max |λ±|)/Z.

In Fig. 8 we report an example of analytically calculated instability gain. We
can clearly see generation of several branches (only the first three are shown),
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Fig. 8. Color level plot of the parametric g(ω) for a fiber with periodic GVD
modulation β2 = 1× 10−27s2/m, βa,b = 1± βM, La = Lb = Z/2 = 2.5m,
γ = 7.5/W/km. P = 20W for (a) and βM = 1× 0.9−27s2/m. Dashed black
curves indicate the parametric resonance frequencies from Eq. (16), whereas
magenta curves indicate the quasi phase matching frequencies from Eq. (4).
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the Arnold tongues, due to the periodic forcing. Figure 8 (a) shows the gain as
a function of frequency and the amplitude of GVD modulation for a power of
20 W (same parameters as in Fig. 2 (a)). The position of the unstable bands is
perfectly predicted by Eq. (16) (dashed black curves). In this case, the simpler
QPM formula Eq. (4) (magenta curves). Figure 8 (b) shows the gain as a function
of frequency and pump power for a GVD modulation βM = 1× 0.9−27s2/m.
For high enough power (>20 W) Eq. (4) fails to accurately predict the frequency
of the peak gain.

Truncated three wave model
The Floquet linear stability analysis presented in the previous section gives
analytical results for some special modulation formats, namely piecewise con-
stant [38, 72] and delta combs [51]. Such an analysis allows also to find the
spectral positions of the parametric gain bands whatever the modulation for-
mat. However, it does not provide any clear insight into the dynamics of the
process nor any details about the fine evolution of the field over a single modu-
lation period of the fiber. To this aim, some of us proposed in Ref. [45] a more
intuitive explanation of the results from Ref. [49] by revisiting a simplified
truncated three-wave model usually aimed at describing FPU recurrence and
fiber-optic parametric amplification [9, 73–75]. This model allows to account
for the relative phase variations between pump, signal and idler waves during
propagation. In Ref. [45], we included a sinusoidal modulation of dispersion.
Our starting point is the three truncated wave model Ref. [73–75]. We ne-
glect fiber loss, we assume that the pump remains undepleted and that signal
and idler powers, Ps and Pi, are much weaker than the pump power Pp over
the whole DOF length. After lengthily but straightforward calculations, we
obtained the following expression for local linear gain [45]:

g(ω, z) = 2γPp

q=+∞

∑
q=−∞

Jq

(
βMω2

2π/Z

)
sin
[(

β2ω2 + 2γPp −
q2π

Z

)
z + Kq

]
(22)

with Kq =
βMω2

2π/Z − q π
2 + θ(ω, 0) and the following relation for the relative phase

θ(ω, z):

θ(ω, z) = [β2ω2 + 2γPp]z +
βMω2

2π/Z
[1− cos(2πz/Z)] + θ(ω, 0) (23)

Thus, Eq. 22 indicates that the linear gain g(ω, z) at a fixed pulsation detuning
ω can be interpreted as the sum of sine functions in z. These sine functions all
have a zero average value except when their argument becomes independent
of z. It only occurs at specific spectral components ω (equal to the pulsation
ωk in Eq. 4) corresponding to solutions of the quasi-phase-matching relation 4.
For these specific pulsation detunings ωk, each term of the sum in Eq. (22)
leads to periodical amplification and deamplification phases along the DOF
except for the uniform contribution corresponding to q = m. This last term
therefore prevails over the other ones on the gain g(ω, z) for long enough
propagation distances. Thus the linear gain of the mth spectral component can
be approximated by this uniform term:

g(ωm, z) = 2γPp|Jm(
βMω2

m
2π/Z

)|, (24)
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Fig. 9. Gain calculated form three-wave model Eq. (22) (blue circles), from
Floquet theory (black curve), "segmentation" (red curve) and NLSE (green
dots). Parameters correspond to the case studied in Ref. [45] L = 120 m
β2 = 1.2× 10−27s2/m, βM = 1.5× 10−27s2/m, γ = 7/W/Km. P = 20W.

with Km = +π
2 in order to maximize the uniform gain by adjusting θ(ωm, 0)

[45]. The accuracy of this theoretical model has been evaluated by comparing
its predictions with numerical simulations from the NLSE, the Floquet theory
and the "segmentation model" (see caption of Fig. 1 for further information). A
representative example of such comparison is reported in Fig. 9, with parame-
ters taken from Ref. [45]. NLSE simulations has been performed by considering
a pump and a small signal at frequency ω at input, and the gain is defined as
the ratio between the output and the input signals. The parametric gain from
Floquet theory has been calculated numerically, since with sinusoidal modu-
lations Eq. (11) cannot be solved analytically. The gain has been calculated as
exp[g(ω)L], being g(ω) the parametric gain. This fact is responsible for the
slightly higher gain calculated from Floquet, and the absence of ripples far
away from phase matching, where the Floquet gain is strictly zero. In spite of
this, a remarkably good agreement is observed between all the curves.

We now focus to the first spectral component (m = 1) ( higher oder mode
evolutions can be found in Ref.[45]). Firstly, the longitudinal evolution of the
gain is shown in Fig. 10 (a). Analytical results are represented in solid and
dashed lines (Eq. (24)) and numerical ones in solid black line. The solid red
line in Fig. 10 (a) corresponds to Eq. (22) including only J−1 and J0 and J1
terms because all other Bessel functions have much lower contributions in this
example. As can be seen, a pretty good agreement is achieved with numerical
simulations by including these first three Bessel functions. The solid blue curve
corresponds to the term of uniform gain (Bessel function J1 only, q = m) which
allows to give a very good estimation of the gain with a very simple expression
(Eq. (24)). The evolution of the relative phase is shown in Fig. 10 (b) from
theory (solid red curve, Eq. 23) and numerics (solid black curve). As can
be see, a very good agreement is obtained. In each modulation period, the
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Fig. 10. Evolution of (a) the gain from Eqs. (22) and Eq. (24) and (b) the rel-
ative phase θ(z) from Eq. (23) of the first amplified frequency (m = 1) for
a sinusoidally modulated optical fiber which parameters can be found in
Ref. [45]. Analytical results are represented in red lines and numerical simu-
lations in solid black line. The green area corresponds to amplification and
the red one to deamplification over one period. Adapted from [45] [Physical
Review A, 87, 013813 (2013)].

amplification phase is characterized by 0 < θ(ω, z) < π, the deamplification
one has −π < θ(ω, z) < 0 and the total phase shift being equal to 2π per
period. This model is also valid for higher order MI side lobes, as can be seen in
Ref [45]. Finally, the very good agreement between our model and numerical
simulations confirms the validity of our assumptions and the accuracy of
our method. Moreover, the simple expression of the average gain (Eq. (24))
provides a rapid insight of the MI gain in DOFs. For instance in Ref. [45],
we took benefit of this simple expression to adjust DOF parameter either to
suppress or enhance a side band in a multi-band MI spectrum. Besides, it
has been used in many other work to get a rapid insight of the MI dynamics
[50, 54, 55, 58–60].
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5. FIRST OBSERVATION OF MODULATION INSTABILITY IN DOFS

Before reporting the first clear observation of MI in a periodically modu-
lated fiber based system, we propose to review all fiber optic platforms that 
have/could be used to do so. They are gathered in Fig.11 through illustrative 
sketches and listed chronologically. The typical modulation period is indicated 
for each system in order to get a rough idea of MI frequency shifts that can 
be obtained in these systems. According to Eq. 4 , increasing/decreasing the 
modulation period leads to small/ large frequency shifts. The first system is a 
telecommunication network (Fig.11 (a)). It motivated the theoretical study of 
MI in fiber based periodic systems [37]. The periodicity is naturally provided 
by multiple stages of signal amplification. The period of modulation of a few 
tens of kilometers leads to MI sidebands within the GHz range, that thus de-
grades the transmission quality of telecommunication signals. Experimentally, 
one of the two first systems used to evidence MI in periodic fiber systems has 
been reported by Kikuchi et al.. [61]. They built a recirculating loop mimicking 
the propagation of light into a telecommunication network (see Fig.11 (b), the 
loop length is 40 km). Whereas the most streaking feature of MI in periodic 
systems is the appearance of multiple quasi-phase matched sidebands, only 
one pair of sidebands was reported in this works. Thus, the evidence of MI 
due to periodicity was not crystal clear. The same year, Murdoch et al. [76] 
proposed another fiber based optical system by winding a piece of fiber around 
two holders separated by a few tens of centimeters, therefore modulating the 
fiber birefringence (see Fig.11 (c)). The frequency shift is a few Terahertz but 
again, only one pair of sidebands was been generated. The first unambiguous 
observation of MI in DOFs has been reported in a PCF in 2012 by Droques et 
al. [49] (see Fig.11 (d)) with a period of modulation of 10 m. The fiber group 
velocity dispersion has been periodically modulated along the propagation axis 
by modulating the outer diameter by ±7% of the average diameter value with 
a period of modulation of 10 m. A quasi-continuous wave laser was launched 
in the normal dispersion region of this fiber, where no MI is expected to occur 
in uniform fibers. As a  result of the periodic modulation of the dispersion, 
more than 10 MI side lobes have been observed at the output of the fiber for a 
modest pump peak power of 20 W (Fig. 12). This experimental result has been 
confirmed by numerical simulations based on the NLSE including Raman effect 
(solid blue line in Fig. 12). In addition, the position of the QPM side lobes have 
been accurately predicted from the QPM relation (4, in vertical dashed lines in 
Fig. 12). These results constitute the first clear experimental observation of MI 
in a dispersion oscillating fiber. The versatility provided by the fabrication of 
these optical fibers allowed the experimental exploration of a large variety of 
regimes and opened the way to a wide field of investigations on MI process 
in these fibers since 2012. Main results following this first observation [49] are 
detailed in the next sections. Note that, following these works in single pass 
configurations, MI has also been investigated in passive fiber ring cavities made 
of two pieces of fiber (see Fig.11 (e)). Consequently, the pulse propagating 
inside the cavity experiences a periodic variation of the dispersion in addition 
with the periodic boundary conditions imposed by the cavity. It leads to a more 
complex dynamics than in single pass configurations with the appearance of 
instabilities of different nature (Turing and Faraday) that will be detailed in 
section 9. Finally, it has been recently reported that parametric instabilities can 
be observed in graded index multimode fibers. The periodicity originates from
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Fig. 11. Schemes representing different fiber optic systems in which one of 
the longitudinal parameters is modulated. (a) A telecommunication system 
with a periodic modulation of the power [37], (b) a recirculating loop aiming 
at mimicking a a telecommunication system [61], (c) a birefringent fiber with 
a periodic modulation of the effective index by applying a mechanical stress 
[76], (d) a PCF with a periodic modulation of the outer diameter during the 
drawing process [49], (e) a passive fiber ring cavity made of different fibers 
and (e) [77], and a graded index multimode fiber with a periodic variation of 
the field due to self imaging [78].
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Fig. 12. Experimental (dashed blue lines) and numerical (solid red line) out-
put spectra. Vertical dashed lines represent quasi-phase-matched frequencies 
obtained from Eq. (4) for m = 1 to 10.

the self-imaging process of the field propagating in these fibers. The period of 
modulation is a few hundreds of micrometers leading to large frequency shifts 
of tens of terahertz (see Fig.11 (f)) [78].

6. MODULATION INSTABILITY IN DOFS IN THE UNDEPLETED PUMP
REGIME

In this section, we summarize the overall results obtained in the limit of the
undepleted pump approximation.

A. Correlation in energy between MI side lobes
The most striking feature of MI in DOFs is that many side bands can be destabi-
lized. However, coming back to the simple quantum mechanical picture of MI
process where two pump photons are annihilated into one signal and one idler
photon, one may ask if this simple interpretation is still relevant in these fibers.
In other words, each side band pair is associated to a quasi-phase matching
parametric process, but are these parametric processes independent of each
other? In order to reply to this question, we carried out numerical simulations
by integrating the stochastic generalized nonlinear Schrödinger equation [7].
We run more than 100 simulations with random initial conditions (half photon
per temporal mode) and we calculated the total energy located in each MI side
lobe, to finally estimate their relative correlations. We investigated a DOF with
a sinusoidal modulation having a period of modulation of 10 m and pumped
by a continuous wave. All other parameters are listed in Fig. 13 ’s caption.
They have been adjusted in order to generate only to main side lobes (m = 1
and m = 2) to obtain the simplest configuration to carry out this study. The
average output spectrum is shown in Fig. 13 (a). It exhibits a first strong QPM
MI order at 3.6 THz labeled Q1, and a second one labeled Q2, 10 dB lower,
at 5.7 THz. An harmonic, resulting from the beating of Q1 with the pump is
also generated at 7.2 THz and labeled H1. The respective conjugated waves
appear symmetrically from the pump and are represented with stars, Q∗1,2 and
H∗1 respectively. Fig. 13 (b), (c) and (d) represents scattergrams between two
conjugate side lobes Q1 −Q∗1 and Q2 −Q∗2 and between distinct ones Q1 −Q2.
The degree of correlation is almost equal to one (Fig. 13 (b) and (c)) when
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considering conjugate side lobes while it is zero for a cross combination of MI
side lobes (Fig. 13 (d)). In order to get an overview of the degree of correlation
involving other MI side lobes or harmonics couples, we calculated the energy
correlation map. It is defined as follows:

ρ =
< E( f1)E( f2) > − < E( f1) >< E( f2) >√

(< E( f1)2 > − < E( f1) >2)(< E( f2)2 > − < E( f2) >2)
(25)

where E( f ) is the array of energy at a particular frequency f , calculated
in a 500 GHz frequency span. Brackets angle represent the average over the
ensemble. The spectral correlation varies over the range −1 < ρ < 1 (see
colorbar in Fig. 13 (e)). This correlation map representation has been widely
used in correlated photon pair generation for quantum information [79], and
more recently to investigate noise in SCs [80, 81] or intermodal correlation in
MI spectra [82]. As can be seen, this representation gives similar results for
side lobe couples which scattergram are shown in Fig. 13 (b), (c) and (d). They
are highlighted in the energy correlation map with dashed lines in Fig. 13
(e). This 2D plot is extremely useful because we can directly see the degree of
correlation between any side lobe orders. For instance, we see that the harmonic
H1 is strongly correlated with Q1, Q∗1 , and the pump waves involved the four
wave mixing from witch it originates. More generally, all complex conjugate
couples are strongly correlated while cross combinations are weakly. These
investigations have been validated by experiments [54]. In order to record
fluctuations in energy in each QPM side lobe from shot to shot, it is necessary
to record spontaneous spectra. The use of an optical spectrum analyser is
useless because its integration time is well longer than the period of the pump
train. It has been done by means of the dispersive Fourier transform technique
[83], a very useful technique to record instantaneous spectra in the context of
MI [82], rogue waves [15] or supercontinuum [80, 81] in uniform fibers. With
this setup we have been able to calculate the degree of correlation between
conjugate side band pairs and cross combination pairs. These experimental
results have been confirmed by numerical simulations (not shown here, see Ref.
[54]). Basically, we get the same conclusion that those derived from numerical
simulations shown in Fig. 13, that is to say, conjugate side lobes are strongly
correlated while other cross combinations are not. Finally, we can conclude that
MI side band pairs originate from parametric processes that can be considered
independent from each others.

B. Weak dispersion region: impact of the fourth order dispersion term
Most of theoretical and experimental investigations of MI in DOFs have been
achieved in relatively large dispersive fibers where the development up to the
second order of the propagation constant provides a satisfactory description
of the process. However, it is well known in uniform fibers that by working
in low dispersion region requires to consider higher order dispersion terms
to accurately describe the dynamics of the process [84]. More specifically, it is
demonstrated theoretically in Refs [85, 86] and experimentally in Refs. [87, 88]
that a development up to the fourth order dispersion term is needed to explain
why MI is observable in normal dispersion region of uniform optical fibers. In
DOFs, similar considerations can be done. When the average group velocity
dispersion is very weak, i.e. when the pump wavelength is located in the
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Fig. 14. (a) Quasi-phase matching curves calculated from Eq. (26) with and
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and measurement of MI sideband frequencies done by tuning the pump
wavelength (markers). Adapted from [50] [Optics Letters, 38, 3464 (2013)].
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vicinity of the average zero dispersion wavelength of the fiber, higher order
dispersion terms must be accounted for. In Ref. [50], we showed that QPM
relation in the vicinity of the average zero dispersion value reads :

β2ω2 +
β4
12

ω4 + 2γP = 2mπ/Z, (26)

with β4 the average value of the fourth order dispersion. Consequently, this
additional term leads to the generation of a new family of MI frequencies aris-
ing from a combination of fourth order dispersion and longitudinal periodic
dispersion. It is illustrated in Fig. 14 (a) where the evolution of solutions of
Eq. (26) (limited to m = 0,±1 for the sake of clarity) as a function of the average
value of the dispersion are represented with (solid blue lines) and without
(dashed red lines) β4 . The most important feature arises in the normal disper-
sion region where, for each value of average GVD, the branch corresponding
to m = +1 gives only one solution when β4 is neglected (dashed red line),
whereas a second one exists with β4 (solid blue line). In addition, similarly
to what occur in uniform fibers, a solution corresponding to m = 0 exists in
this dispersion region. To generalize, two solutions corresponding to m > 0
appear in the normal dispersion region in addition with the single solution
corresponding to m ≤ 0. These predictions have been confirmed experimen-
tally with an excellent agreement with numerical simulations and theoretical
predictions (see Fig. 14 (b)) [45]. These investigations were limited to relatively
weak amplitude of modulation, but a theoretical study of Armaroli and Bian-
calana [48] revealed that for large amplitude of modulations the conventional
MI is suppressed and for large negative values of β4 the side bands can merge
together.

C. Other modulation formats
From a practical point of view DOFs are not limited to sinusoidal modulation
formats. Limitations are imposed by the drawing tower itself. They are due to
(i) the inertia of the fiber tower that fixes the shortest length of the modulation
period and (ii) the deformation of the fiber structure that gives the maximum
amplitude of variation. Note that it is relatively tricky to put numbers on these
limit values since they depend many drawing parameters and these limits
depend on each other. In order to illustrate the capability of our drawing
tower, we fabricated DOFs with two different modulation formats. It also
gave us the opportunity to develop specific theoretical tools to investigate
different formats from the basic sinusoidal one. Firstly, a DOF with a sine
modulation whose amplitude is modulated by another sine function has been
fabricated [53]. The evolution of MI gain spectra versus the ratio between the
oscillation period Z1 (short oscillation) and the modulation period Z2 (long
oscillation) of the dispersion is represented in Fig. 15 (a). It has been calculated
from the "segmentation method" described in Fig. 1 ’s caption. We see that
decreasing the modulation period leads to a splitting of original side lobes into
multiple ones of lower gain. These numerical simulations where confirmed by
a theoretical study based on the truncated three wave model by following a
procedure similar to the one developed in Ref. [45]. Finally, we get an analytical
expression allowing to predict the position of these new side bands (see Ref.
[53] for more details). In order to validate these theoretical investigations we
fabricated two different DOFs: a standard DOF with a sinusoidal modulation



Review Article Advances in Optics and Photonics 26

Frequency shift (THz)

0 2 4 6 8 10

Z
1/

Z
2

0

0.2

0.4

0.6

0.8

1

Gain (2 dB/div.)(a)

Frequency shift (THz)
-6 -4 -2 0 2 4 6

P
ow

er
 (

5 
dB

/d
iv

.)

Length (m)0 150

d ex
t (

µm
)

125

145

125

145

-1

3

-1
3

β
2  (ps²/km

)

(b)

(c)

(d)
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red line). The red arrows point out the predicted positions of the first two
sidelobes in the amplitude modulated fiber. Adapted from [53] [Optics Ex-
press, 23, 3869 (2015)].
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of its diameter for reference, and a DOFs that is modulated in amplitude. The 
spectrum recorded at the output of the reference fiber ( Z1/Z2 =  0, F ig. 15 
(b)) is represented in dashed blue lines in Fig. 15 (d). As in previous works 
[45, 49], the positions of the side bands is very well predicted by Eq. 4 (vertical 
dashed blue lines in Fig. 15 (d)). In the amplitude modulated fiber (period of 
modulation of 45 m so Z1/Z2 = 0.16, see Fig. 15 (c)), the first side band splits 
into two side bands (red curve in Fig. 15 (d)) and their positions are very well 
predicted by the theory developed in Ref. [53] (vertical solid red lines in Fig. 
15 (d)).

In Ref. [51], a radically different periodic modulation of the GVD has been 
proposed. We choose to fabricate a DOF characterized by a dispersion that has 
the form of a periodic train of Dirac delta spikes. Figure 16 (a) represents the 
evolution of the outer diameter of this delta Dirac fiber as a  function of the 
fiber length. Due to technological limitations of the drawing process, a series of 
Gaussian pulses have been chosen to approximate the ideal Dirac delta comb. 
The maximum value of modulation of the diameter is 175 % of the average 
diameter value corresponding to a variation of 3500 % of the dispersion by 
pumping in the vicinity (1052.5 nm) of the average zero dispersion wavelength 
of the fiber (' 1 053 n m). The full width at half maximum of the gaussian 
pulse is 60 cm. We pushed the drawing tower at the limit to fabricate these 
fibers, that thus illustrates the limitations of the capabilities of these systems 
for this specific example (d/Λ =  0.48 and Λ  =  3 .45µm). A quasi continuous 
wave laser was launched in the average normal dispersion of this fiber, and 
more than 7 quasi-phase matched side lobes due to the periodic variation of 
the dispersion have been observed. Additionally, an analytical expression of 
the parametric gain has been derived from perturbative theory [51]. We found 
a very good agreement between these predictions (green dashed lines in Fig. 
16 (c)), experimental results (Fig. 16 (b)) and numerical simulations (Fig. 16 
(c)).

These results gives a snap shot of the potential of our drawing tower to 
fabricate a large variety of DOFs. More generally, this illustrates that optical 
fibers could constitute an interesting platform for achieving experimental in-
vestigations of fundamental physical phenomena in delta Dirac fibers, which 
is a fundamental and widespread modulation format, encountered in a large 
variety of physical systems [89–91]. It may initiate or motivate the use of such 
waveguides to perform experimental investigations in these contexts.

7. PARAMETRIC AMPLIFICATION IN DOFS

MI leads to the amplification of a small perturbation provided that a phase 
matching or quasi-phase matching relation is fulfilled. In all previous results, 
MI has been seeded by random initial conditions. However, if the process is 
seeded by a weak coherent signal, it will be amplified through MI process and 
in that case we usually refer to as fiber optical parametric amplification [20, 21].

These amplifiers have been widely investigated in the context of telecommu-
nication applications because of their large bandwidths and large gain bands 
[20]. The drawing process of optical fibers suffers from different sources of 
perturbations or imperfections leading to spurious longitudinal variations of 
the fiber dispersion. The impact of these variations have been investigated in 
the context of fiber optical parametric amplifiers in uniform fibers [92–94]. It is 
shown that they lead to a lowering of the parametric gain that is detrimental for
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velocity dispersion to obtain the flat gain curve shown in (c). (c) Gain curve 
at the output of fiber with dispersion shown in (b) for 30 W pump power.

applications. Attempts have been made to design optical fibers less sensitive 
to these fluctuations that allow a significant improvement of the efficiency of 
amplification in standard highly nonlinear fibers [95] for telecommunication 
amplifications or in PCFs at 1 µm for short pulse amplification [96]. Here, we 
propose to show that is possible to take benefit from controlled periodic dis-
persion variations in DOFs to get wide band fiber optic parametric amplifiers. 
Seeding a DOF with a small coherent signal can lead to its amplification with a 
degradation of its noise figure of at least 3 dB but without additional distortions 
compared to uniform fibers as they relied both on parametric processes. We 
performed these experiments in a DOF described by the parameters listed 
in Fig. 17 caption. The experimental setup is similar to the one used for MI 
experiments, except that we combined a small signal with the pump at the 
input of the fiber. The on/off gain was measured at the output of the fiber by 
using an optical spectrum analyzer (see pump on/off spectra in Fig. 17(a)). 
By tuning the signal wavelength, we measured the gain curve (Fig. 17(a) in 
circles). We see that large gain values around 50 dB have been measured on 
the top of the first QPM MI side lobe of this DOF. An excellent agreement is 
obtained with numerical simulations (solid red line). These basic experiments 
illustrate that these systems can indeed be used as amplifiers, s imilarly to 
uniform fibers. Form a practical point of view, the use of DOFs as parametric
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amplifiers requires large and continuous gain bands while it is composed of
multiple distinct QPM side bands. To overcome these limitations, we designed
a special DOF whose period and amplitude of modulation have been optimized
with a genetic algorithm [97]. The longitudinal evolution of this optimized
DOF is represented in Fig. 17(b). By using a pump of 30 W peak power, we
have been able to obtain a nearly flat (7 dB of ripple), wide gain band (12
THz) amplifier with more than 60 dB of gain [97] (Fig. 17(c)). This DOF based
amplifier should allow the amplification of very short pulses < 50 f s duration
without being restricted by the gain narrowing process encountered in doped
Ytterbium amplifiers [98]. These investigations have been carried out in PCFs
at 1 µm but similar results could be obtained at 1.5 µm in standard optical
fibers for telecommunication applications as shown in the context of frequency
conversion in Ref. [99].

8. NONLINEAR STAGE OF MODULATION INSTABILITY IN DOFS

The previous sections were devoted to the undepleted or linear regime of MI
in DOFs. In other words, we assumed that the power of the side bands can
always be considered as negligible with respect to the pump power. We will
see in this section that by increasing the pump power and/or by using longer
fiber lengths, the power of these side bands is no longer negligible and the
dynamic of the system is strongly modified. Consequently, we will see below
that nonlinear regimes such as spurious four wave mixing processes between
the QPM side bands, Fermi Pasta Ulam recurrence or solitonic train generation
can also be observed in DOFs.

A. Parasitic FWM interactions

The evolution of the output spectrum as a function of the pump power has
been investigated in Ref. [60]. They showed that by increasing the pump
power, a complex nonlinear competition takes place between QPM side lobes,
harmonics and additional parasitic four wave mixing waves.

Fig. 18. Contour plot of experimental spectra versus input pump power. The
fiber was sinusoidally modulated with a period of 20 m and the average
dispersion value is 0.74 ps2/km. Adapted from [60] [Optics Letters, 38, 5361
(2013)].
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A more precise picture is given in Fig. 18 that is extracted from these works.
It represents the evolution of the output spectrum as a function of the pump
power from experimental measurements. For relatively weak pump power
level, below 5 W, only the first order side band is destabilized at fQPM1 =
ωQPM1 /(2π) = 2.4 THz . By progressively increasing the pump power, around
6 W, an harmonic appears at about fH1 = 4.8 THz as well as the second order
QPM mode at about fQPM2 = 3.8 THz. Further increasing the pump power up
to 6.5 W leads to a more complex dynamics because the third QPM mode starts
growing at fQPM3 = 5 THz and overlaps with the first harmonic. In addition, a
spurious four wave mixing process involving the first and the second QPM side
bands generate two new side bands at fFWM1 = 1.2 THz and fFWM2 = 5 THz
fulfilling this energy conservation relation: ωQPM1 +ωQPM2 = ωFWM1 +ωFWM2 .
As a result, a complex mix between QPM bands, harmonics and spurious four
wave mixing process takes place, which finally evolves toward a continuum of
frequency for higher pump powers.

B. Fermi Pasta Ulam recurrence and out of band gain in average normal
dispersion DOFs

As described in section 4, the theoretical treatment of the early stage of MI
in DOFs can be accurately achieved via Floquet analysis [38, 39, 42] or trun-
cated three wave analysis [45]. The validity of these approaches have been
confirmed by lot of numerical and experimental results, however, they are
essentially limited to determine the region of parametric instability and can
not accurately describe the dynamics of subsequent nonlinear MI stages past
the linearized growth of the unstable modes. In that case, a more sophisticated
approach based on a combining mode truncation and averaging methods is
required to account for the whole complex dynamics of this nonlinear system.
This procedure has been developed in Ref. [52]. Quite remarkably, such an
approach reveals the existence of breather solutions separating different FPU
recurrent regimes. Our theory also shows that optimal parametric amplification
unexpectedly occurs outside the bandwidth of the resonance (Arnold tongues)
arising from the linearized Floquet analysis.

In uniform fibers, FPU recurrence of MI [8] is commonly associated with the
underlying integrable structure of the focusing NLSE that rules the propagation
in the anomalous GVD regime [73, 75, 100]. However, similar recurrent behav-
ior and a full homoclinic structure are also possessed by non-integrable models
such as the coupled NLSEs that model polarization MI in birefringent fibers
taking place in the normal GVD regime [101, 102]. Nevertheless, the results
of Ref. [52] are the first that point out the remarkable and counter-intuitive
fact that the recurrence behavior can be observed also in the scalar case in a
nonfocusing regime (normal GVD), due to an underlying geometric structure
of parametrically resonant MI in the depleted regime. The resulting recurrence
is briefly illustrated in Fig. 19(a) which represents the longitudinal evolution of
the pump and signal powers in a DOF with normal average dispersion. Two
cycles of recurrence can be observed with a period of about 25 in normalized
units in addition with very short periodic variations of the order of 1 superim-
posed on these long scale variations on both traces. They originate from the
QPM process and this short period is equal to the period of GVD modulation
of the fiber.
The second a priori unexpected prediction of our theory is that the maximum
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Fig. 19. (a) Evolution of extracted pump (blue line) and sideband power (red
line) fractions from numerical simulations of the NLSE (1) compared with
those from the average model (dashed lines), (Eq. (10) of Ref. [52]). (b) Out-
put sideband fraction η vs. frequency detuning ω from NLSE numerical inte-
gration at fixed z (black solid line; red solid line is the maximum achievable
conversion along z) with superimposed small-signal gain (blue). Inset: op-
timal frequency ωc vs. input signal fraction η0. Adapted from [52] [Physical
Review Letter, 117, 013901 (2016)].



Review Article Advances in Optics and Photonics 33

amplification experienced by an input signal with finite power is located out-
side the small signal gain bandwidth predicted by the Floquet analysis. This
is illustrated in Fig. 19 (b) where the black line corresponds to the nonlinear
regime and the blue line to the linear one (Floquet theory). We can see that the
maximum growth experienced by the signal is located at ω = ωc = 2.28 (nor-
malized units) while the Floquet theory predicts a stable pump (i.e., no gain)
for ω ≥ 2.224. Here such a behavior is mediated by the existence of unstable
eigen modulations of the process [52]. The frequency of optimal parametric
conversion ωc is always located outside the Floquet band and tends to its high
frequency edge as the input power fraction η0 get progressively smaller, see
inset in Fig. 19 (b).

C. Soliton formation and multiple dispersive wave radiation
In DOFs, the additional degree of freedom provided by the periodic modulation
of the dispersion allows for the observation of MI while pumping in the average
normal dispersion region of fibers. In order to illustrate this stricking property,
most of investigations have been realized in this average dispersion regime (see
most of references related to DOFs cited in this review). However, pumping
in the anomalous dispersion region also reveals clear signature of the periodic
variation of the dispersion through the growth of higher order MI side bands
(m 6= 0) in addition to conventional ones (m = 0), that can be observed in
uniform fibers. This was illustrated from numerical simulations in Fig. 2 (b) at
the beginning of this review, but it has never been observed experimentally. In
Ref. [57], we report the investigation of MI in DOFs in this average anomalous
dispersion regime in the linear and nonlinear regimes of MI. In Fig. 20 (a),
we represented the spectrum at the output of the DOF by pumping in the
average anomalous dispersion region in the linear regime of MI (undepleted
approximation). Two strong phase matched MI side lobes in addition with
weak QPM side lobes are observed at the output of this fiber. The amplitude of
conventional side bands is well above the amplitude of QPM ones because the
parametric gain they experience is larger. Indeed, parametric gain in uniform
fibers for perfect phase matched waves is equal to g = 2γPp. It is always

larger than g(ωm, z) = 2γPp

∣∣∣Jm

(
βMω2

m
2π/Z

)∣∣∣, the parametric gain for quasi phase
matched waves in DOFs [45].

By further increasing the pump power up to 8 W, a more complex and
unexpected spectrum is recorded since it is composed of many side lobes
that are asymmetric from the pump (red curve in Fig. 20 (a)). In order to
explain their origin, we have shown in Ref. [57], that by increasing the pump
power a train of soliton pulses is generated. Consequently, each soliton is
destabilized by the periodic variation of the dispersion and sheds energy to
multiple resonant radiations the positions of which are well predicted by a
quasi-phase matching relation. The latter has been derived in the context of the
propagation of a single soliton in DOFs [103] from a perturbative theory and
writes as:

− ∆k1ω + β2ω2/2 + β3ω3/6 + β4ω4/24− γPS/2 = 2mπ/Z (27)

where β2,3,4 are the average second, third and fourth dispersion orders, ∆k1
arises for from the deviation of the actual group-velocity from the natural
one [104], and PS, is the soliton peak power. It is important to note that this
quasi-phase matching relation (Eq. 27) has nothing to do with QPM relation
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for MI side lobes (Eq. (26)). The fact that odd dispersion terms appear in this 
relation implies that resonant radiations are not symmetric from the pump. 
This makes an important difference with MI side bands. As can be seen in 
Fig. 20 (b), the positions of these resonant radiations are very well predicted 
from the theoretical model (vertical green lines from Eq. 27). For comparison, 
solutions of QPM MI (Eq. (26)) are superimposed in dashed black lines in this 
figure and it is crystal clear that this relation cannot predict the positions of the 
side bands in the spectrum depicted in Fig. 20 (b), except for the two first side 
lobes that correspond to conventional MI (m = 0). We can thus conclude that 
this spectrum is composed of two standard symmetric MI side lobes (position 
predicted with (Eq. (26), see dashed black lines in Fig. 20 (b)) in addition with 
many resonant radiations (position predicted with (Eq. (27), see solid green 
lines in Fig. 20 (b)). All the experimental results (red curve in Fig. 20 (b)) are 
confirmed by numerical simulations (blue curve in Fig. 20 (b)).

These experimental and numerical investigations demonstrate that the prop-
agation of a continuous wave in the average anomalous dispersion region of a 
DOFs lead to the generation of a train of solitonic pulses, which are perturbed 
by periodic variations of the dispersion and shed energy to multiple resonant 
radiations. These radiations are not symmetric from the pump and their po-
sitions are very well predicted by a quasi phase matching relation involving 
odd dispersion terms (Eq. 27). A similar scenario occurs when a CW field 
propagates in the anomalous dispersion region of an uniform fiber [13, 14, 105]. 
One major difference is that quasi-phase matching relations for MI process and 
for resonant radiation emission must be considered to predict the side band 
positions in the spectrum.

We point out that multiple sidebands generated according to a type of 
dispersion relationship as in Eq. (27) can be also driven, in the normal GVD 
regime, by a pulse that undergoes wavebreaking thus forming a localized 
shock front. Such type of phenomenon have been experimentally observed 
in Ref. [103], and explained in terms of a unified perturbation theory which 
holds valid regardless of the solitonic or front nature of the localized wave 
that radiates. The quasi-momentum given by the periodicity, i.e. the RHS in 
Eq. (27), strongly enhances the resonant radiation induced by a shock wave, 
compared with the case of uniform fibers [106–108]. This is a general principle 
that find, for instance, a manifestation also in the context of multimode fibers 
[109].

Finally, we would like to mention that the impact of periodic dispersion 
has been investigated theoretically on temporal structures associated with the 
nonlinear regime of MI such as Kuznetsov-Ma breathers. It is shown that it 
strongly modifies their dynamics [110, 111] , but up to know no experimental 
demonstration have been reported.

9. PASSIVE CAVITIES MADE OF DISPERSION OSCILLATING FIBERS

MI can occur in single pass fibers [6] but also in passive cavities thanks to 
the constructive interference between the external driving and re-circulating 
pulses [112–115]. The cavity detuning can be viewed as an additional degree 
of freedom to the system that must be accounted for in the phase matching 
relation that characterizes these systems [113]. We proposed to investigate pas-
sive cavities in which a DOF or GVD management is inserted. The additional 
periodicity introduced by the periodic variation of the dispersion drastically
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from [77] [Physical Review Letters, 116, 143901 (2016)].
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modifies the dynamics of the system. Consequently, it motivated many theoret-
ical and experimental investigations [77, 116–120]. Based on a modified version
of the Lugiato Lefever equation (LLE) [121] including longitudinal variations of
the dispersion [116], it can be shown theoretically via the Floquet analysis that
these passive fiber ring cavities made of DOFs exhibit novel interesting features.
We show that instabilities arising from two different origins can coexist in these
systems: Turing instabilities as the ones observed in uniform passive fiber cavi-
ties, and Faraday instabilities, due to the periodic variation of the dispersion
that act as a spatial periodic forcing term [77]. In order to clearly highlight the
coexistence of these instabilities in the same physical system, we built a suitable
cavity with dispersion varying periodically over the round-trip and operating
with a normal average dispersion value [77]. We focused our attention on the
bistable configuration since it provides the most striking illustration of the role
played by the periodic variation of the dispersion. In particular the cavity that
we built [77] is characterized by a piecewise constant dispersion profile with
a total length of 51.6 m, and is composed by a 50 m long dispersion shifted
fiber (β2 = 2ps2/km) directly spliced to a standard 90/10 coupler made of
SMF-28 (β2 = −19ps2/km). The contribution of the variation of the nonlin-
ear coefficient, that is slightly different for each fiber, has been verified to be
negligible. Figure 21 (a) represents the bistable response of this cavity and the
evolution of the gain spectrum as a function of the intra-cavity power is shown
in a 2D plot in Fig. 21 (b). For input powers below 3.7 W we do not observe
any spectral signature of periodic structures in the output spectrum. Indeed
the system is stable and simply follows the lower branch of the steady-state
response s(Fig. 21(a)). After reaching 3.7 W (the cavity threshold) the cavity
is unstable (see green portion on the lower branch of Fig. 21 (a)) and leads
to the appearance of 2 symmetric side bands at 0.7 THz (Fig. 21(c)). These
instabilities usually refers to as Turing instabilities since they do not originate
from periodic variations of the dispersion but from the cavity itself [122, 123].
Then, when the power exceeds the value where the Turing branch merges on
the stationary response, the Turing instability induces up-switching towards
the upper branch. This branch presents narrowband Faraday instability (Fig.
21(b)) and hence two sidebands are still observed in the spectra (Fig. 21(c)),
though at much larger frequency (1.16 THz). These side bands originate from
the periodic variation of the dispersion which act as a periodic forcing term.
As can be seen, experimental spectra (blue curves) in Fig. 21 (c) are in excellent
agreement with numerical simulations (dashed red curves) and with analytical
predictions [77, 116] (vertical grey lines, 0.69 THz and 1.15 THz, respectively).
The large difference of frequency between the sidebands of Turing and Faraday
types is the distinctive trait which allows us to unequivocally identify the differ-
ent regimes of instability in our experiments. In these works the pump power
was adiabatically increased. In order to capture the roundtrip-to-roundtrip
dynamics of this modulated passive cavity, a dispersive Fourier technique has
been used in Ref. [118]. These recording revealed a complex dynamics during
which the system switches from one instability mode to the other without any
evidence for their temporary coexistence. Furthermore, recent measurements
have demonstrated that the Faraday mechanism, when the cavity is operating
with weak dispersion, i.e. close to average zero dispersion wavelength, can be
responsible for the generation of a huge number of sidebands [119].

These results demonstrate the feasibility of controlling the dynamics of a
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bistable system via periodic modulations and report the first observation of
Turing and Faraday instabilities in the same system. They induced a renewed
interest for the physics of passive cavities, and opened new fundamental
questions on parametric resonances, period doubled temporal patterns that
may arise in these dissipative systems [117, 124, 125]. Moreover, the results
have contributed to extend the validity of the LLE to passive cavities with
non-constant parameters [116]. A recent analysis reveals the limitation of
such model compared with the original Ikeda-like map, while discussing the
parametric origin of the different instability bands in the cavity system [117].

10. CONCLUSION

In this review we summarize recent progresses on modulation instability pro-
cess in dispersion oscillating fibers in single pass configurations or in passive
cavities. We provide a short qualitative description of MI in these waveguides,
where we show that MI in DOFs can be relatively well described by a simple
quasi-phase matching relation. This simplified approach allows to get a very
good prediction of the position of multiple MI sidebands generated in these
fibers. Then, a rigorous theoretical investigation of MI in these waveguides
based the Floquet analysis is detailed. It shows that QPM predictions can be
derived from this study and remains valid as long as the pump power remains
relatively weak. However, no simple expression of the parametric gain is de-
rived. To circumvent this problem, we obtain a simple analytical relation of the
gain of each sideband from the truncated three wave model that allows to get a
simple physical insight of the physics of the process. While approximated, this
simple expression can be very useful for designing DOFs and to get a rapid un-
derstanding of the dynamics of MI in these waveguides. We then summarized
main experimental results obtained in these fibers from the first experimen-
tal observation in microstructured fibers reported by some of us in 2014. We
then show that it can be observed in DOFs with different modulation formats
ranging from sinusoidal to delta Dirac series, or to an optimized modulation
allowing the achievement of a wide and flat gain band (12 THz) that might
be useful for short pulse amplification. All these investigations are performed
in the linear regime of MI and we show that a more complex dynamics is
achieved in the nonlinear regime of the process. Namely, a mix between QPM
sidebands, harmonics or dispersive wave can occur under strong pumping
conditions. Moreover, theoretical investigations reveal that Fermi Pasta Ulam
recurrence is observable in DOFs while pumping in the normal dispersion
region of DOFs and that strong parametric amplification outside the Floquet
gain band is expected. Finally, a passive cavity made of a DOF is investigated
theoretically and experimentally. It is shown that Turing instabilities as well as
Faraday instabilities can be observed in the same physical system for the first
time to our knowledge, and that one can switch from one instability regime
to another by simply tuning the pump power. Finally, these investigations
confirm that optical fibers are a fantastic experimental test beds to perform
fundamental investigations in nonlinear optics.
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