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We report the first observation of Riemann (simple) waves, which play a crucial role for under-
standing the dynamics of any shock-bearing system. This was achieved by properly tailoring the
phase of an ultrashort light pulse injected into a highly nonlinear fiber. Optical Riemann waves
are found to evolve in excellent quantitative agreement with the remarkably simple inviscid Burgers
equation, whose applicability in physical systems is often challenged by viscous or dissipative effects.
Our method allows us to further demonstrate a viable novel route to efficiently control the shock
formation by proper shaping of a laser pulse phase. Our results pave the way towards the experi-
mental study, in a convenient benchtop setup, of complex physical phenomena otherwise difficult to
access.

The formulation of conservation laws in terms of Rie-
mann invariants [1] constitute the foundation of the the-
ory of classical shock waves [2–4]. In shock-bearing sys-
tems, the Riemann simple waves which allow to describe
the dynamics in terms of a single evolving Riemann in-
variant are crucial for understanding shock dynamics in
different areas [5–7], and for the formulation of a mod-
ulation theory [8, 9]. Yet Riemann waves (RWs) and
their importance in terms of applications were so far over-
looked. In this letter, we show that RWs can be conve-
niently observed in the context of a universal envelope
equation, namely the defocusing Nonlinear Schrödinger
Equation (NLSE), which applies to nonlinear fiber op-
tics [10–12], plasmas [13], Bose-Einstein condensates [14],
and ocean wave dynamics [15–17]. Specifically, we con-
sider an optical pulse envelope propagating in a fiber fea-
turing strong nonlinearity and weak (normal) dispersion.
In this regime, the NLSE is known to reduce to a 2x2
conservation law ruling wave propagation in shallow wa-
ter (or isentropic gas dynamics), the so-called Nonlinear
Shallow Water Equations (NSWEs) [5, 18–20]. Here we
go further and demonstrate that, by suitably shaping the
temporal profile of the pulse phase, we are able to exper-
imentally generate RWs and control their breaking dy-
namics. The dynamical evolution of such RWs is fully
described in terms of a single effective real variable (ei-
ther one of the two Riemann invariants or the envelope
modulus) obeying a remarkably simpler universal equa-
tion, namely the Inviscid Burgers Equation (IBE) [2, 21].
Although widely used as a paradigm for shock waves in a
variety of physical [22–25] and socio-economics [26] phe-

nomena (with ramifications into turbulence [27–29]), to
our knowledge the IBE still lacks quantitative and con-
trollable experimental comparison with theoretical pre-
dictions. Indeed, most physical systems exhibit higher-
order effects that hinder its applicability, calling for the
inclusion of additional terms (i.e. modified Burgers equa-
tions) [24, 29]. Therefore, on one hand, our results es-
tablish nonlinear fiber optics as an effective and versatile
environment to study the IBE dynamics in a convenient
experimental setup. On the other hand, we also demon-
strate that reshaping an arbitrary optical pulse into a
RW can be exploited as a flexible mean to effectively
control the shock formation, both in terms of the associ-
ated temporal pulse profile and shock distance along the
fiber.

In the framework of nonlinear optics, a pulse with an
envelope A (z, T ), which propagates in an optical fiber
with nonlinear Kerr coefficient γ and group velocity dis-
persion β2, follows the NLSE (given here in the form
typically used for fiber optics [10, 11]):
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where z is the propagation distance and T is the time
coordinate in the co-moving frame of the pulse. Let us
now consider the transformation of an arbitrary optical
pulse into a Riemann wave ARW (z, T ). To produce a
RW, it is necessary to introduce an instantaneous fre-
quency profile (chirp[10]) which is a scaled replica of the
amplitude (or in other words, the phase derivative is pro-
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portional to its amplitude) [19, 20]. In the particular
case where a Riemann pulse (with duration T0 and peak
power P0) propagates in a fiber with normal dispersion
(β2 > 0), such that the dispersion length LD = T 2

0 /β2 is
much longer than the nonlinear length LNL = (γP0)−1,
the proportionality relation between the amplitude and
chirp is preserved during propagation so that:

ARW (z, T ) = |ARW (z, T )| e
∓i2

√
γ
β2

T∫
−∞
|ARW (z,T ′)|dT ′

(2)
More importantly, under these conditions [18], the evo-

lution of the pulse amplitude (and chirp) in the fiber,
which is described by the NLSE, can be well approxi-
mated until the shock point by the IBE [20], namely

∂ |ARW |
∂z

± 3
√
γ β2 |ARW |

∂ |ARW |
∂T

= 0. (3)

Physically, IBE propagation is associated with pulse
envelope steepening and eventually the formation of a so-
called gradient catastrophe, where amplitude derivatives
tend to infinity, leading to a characteristic shock wave
behavior [2–4] (either at the trailing or leading edge of
the Riemann pulse, depending on the sign of the chirp
profile). Note that the shock dynamics of RWs is in-
trinsically different from the effect of pulse steepening
arising from the frequency dependence of the nonlinear-
ity in optical fibers [10, 22]. In the IBE framework, the
shock develops from the action of both nonlinearity and
dispersion on the specifically prepared Riemann pulse,
thus enabling versatile and controlled shock formation.
Indeed, the propagation of a Riemann pulse corresponds
to a particular case of purely unidirectional energy flow
[20], whose parametric representation can be readily ob-
tained by the method of characteristics [2, 4]. For the
IBE evolution, the characteristic lines TCi (mapping the
energy flow direction), extend from certain given points
Ti (at z = 0), and can be analytically calculated for any
arbitrary input pulse ARW (0, T ) :

TCi (z, Ti) = Ti ± 3
√
β2γ |ARW (0, Ti)| z (4)

This energy flow representation highlights how high-
density regions move with a different speed with re-
spect to the low-density counterparts, until a multi-
valued solution (or shock) appears where these charac-
teristics lines intersect. The shock distance zB can thus

be analytically predicted as zB =
(
3α
√
γβ2

)−1
, with

α = max |∂ |ARW (0, T )| /∂T |.
Despite the simple form of the IBE, exciting a solu-

tion of Eq. (3) in a controllable fashion, as earlier theo-
retically proposed for dark spatial beams [19], remained
so far unachieved in experiments. The challenge origi-
nates from the requirement of a precise control of the

FIG. 1. (a) Intensity plot of Riemann pulse evolution in fiber
using the NLSE model (top). The projected pulse intensity
(bottom) is compared with the characteristic lines obtained
analytically from the IBE (white), showing shock formation
at z = 500, where the characteristics intersect. Temporal
profiles of (b) intensity and (c) chirp are shown at selected
distances, comparing IBE predictions (solid black) with NLSE
simulations (dashed blue).

chirp profile, and of the longitudinally invariant and well-
characterized medium properties. In fact, although sev-
eral wave-shaping-based experiments have recently been
reported in hydrodynamics [16, 17, 30, 31], there is an
inherent difficulty in controlling the initial conditions in
fluids and gases ; moreover dissipative effects and viscos-
ity have so far precluded the clear and controlled observa-
tion of IBE dynamics, and associated RW shock phenom-
ena [3, 22, 24, 29, 32, 33]. In contrast, arbitrary input
optical waveforms can nowadays be synthesized by ad-
vanced pulse shaping techniques [34]. This allows us to
conveniently excite optical Riemann pulses and to com-
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pare experimental studies of pulse steepening and shock
formation with analytical predictions using minimal ap-
proximations.

We first present in Fig. 1 numerical results illustrat-
ing Riemann pulse propagation in 2 km of optical fiber
(with β2 = 0.8397 ps2km−1 and γ = 11.7 W−1km−1 at
1550 nm). Specifically, Fig. 1(a) shows split-step NLSE
simulations [10, 11] for an input Riemann pulse given
by Eq. (2), with a positive chirp and a Gaussian am-
plitude: |AR (z = 0, T )| =

√
P0 exp

(
−T 2/2T 2

0

)
, where

P0 = 0.89 W and T0 = 2.7 ps (∆τFWHM = 1.665T0 =
4.5 ps). We can see the progressive steepening of the
pulse trailing edge until z = 500 m, where a near-vertical
front is formed (see also [35]). Remarkably, the Riemann
pulse evolution is, before the shock onset, well described
by the IBE and follows the direction of the energy flow as
analytically predicted by the characteristic lines (white).
The point where these lines intersect corresponds to the
shock position, whose distance is correctly predicted from
the IBE as zB =

√
e/3
√
LDLNL = 500 m. Addition-

ally, Figs. 1(b) and 1(c) compare the intensity and chirp
profiles at selected distances, as determined from either
NLSE simulations (dashed blue) or directly from the IBE
(solid black). In essence, until the shock point, the pro-
files obtained from the NLSE or the IBE are indistin-
guishable, illustrating how the Riemann pulse maintains
its proportionality between chirp and amplitude. For
z ≥ 500 m, however, the IBE approximation loses validity
due to the increasing effect of dispersive regularization:
although unnoticeable in the power profile of the pulse
(which lays on a null background [36, 37]), chirp oscilla-
tions develop on its trailing edge as a typical signature of
dispersive shock waves formation [9, 14, 32, 33, 38–40].

To experimentally observe RWs dynamics, we use the
setup illustrated in Fig. 2(a). An optical parametric os-
cillator (OPO - Spectra Physics Opal) emits a train of 260
fs-long pulses that are spectrally shaped in intensity and
phase (via a commercial Waveshaper - Finisar 4000S) to
generate the desired RW input. In Fig. 2(b), we repre-
sent the target spectral intensity and phase (black), the
OPO spectrum (blue), along with the experimentally-
shaped spectrum (red), the latter characterized with an
optical spectrum analyzer (OSA - ANDO AQ6317B).
The pulses are optically amplified to reach a peak power
of P0 = 0.89 W and have a temporal FWHM of 4.5
ps before entering a highly-nonlinear fiber (HNLF see
parameters above). Fig. 2(c) shows the time domain
characteristics, after amplification, determined by using
custom-built cross-correlation frequency-resolved optical
gating (XFROG) [41]. Here we see identical chirp and
amplitude profiles as expected for a Riemann pulse.

Experimental results for our analysis of pulse propa-
gation in a 500 m-long HNLF are summarized in Fig. 3.
Figs. 3(b,c) show cross-correlation pulse profile measure-
ments at the entrance and exit of the fiber, comparing
experiments (red) with IBE predictions (black). The lat-

FIG. 2. (a) Optical setup. (b) An optical parametric oscilla-
tor (OPO) emits a train of Fourier-limited 260 fs-long pulses
featuring a broad Gaussian spectrum (13.5 nm - blue line),
which is reshaped in intensity and phase by a Waveshaper, to
yield an experimentally measured Riemann pulse spectrum
(red dashed) compared with the target profile (solid black).
(c) Following amplification in an erbium-doped fiber ampli-
fier (EDFA), the Riemann pulse time domain characteristics,
retrieved via XFROG characterization (red dashed), are com-
pared with the target temporal profile (solid black).

ter were extracted from the expected longitudinal prop-
agation shown in Fig. 3(a). There is excellent agreement
at the fiber output between experiments and IBE simula-
tions; moreover the cross-correlation measurements allow
us to directly observe the development of the steepened
trailing edge occurring at the shock point. These results
in an optical system therefore provide, we believe, the
first clear and quantitative experimental demonstration
of IBE dynamics.

In a next step, we extend our study to a more gen-
eral class of RWs via an additional tailoring of the
spectral phase. Specifically, if ÃRW (0, ν) is the in-
put Riemann pulse spectrum, by applying an additional
quadratic spectral phase in the form of ÃRWρ (0, ν) =

ÃRW (0, ν) exp
[
iρ(ν − ν0)

2
]
, we can generate a time

asymmetric input pulse (here ν0 is the central frequency
and ρ is the quadratic phase coefficient). The degree
of temporal asymmetry depends on ρ, while the pulse
amplitude and chirp profiles still closely maintain their
proportionality over a wide range of ρ values (i.e. for
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FIG. 3. (a) Riemann pulse propagation in 500 m of highly
nonlinear fiber (IBE simulation). (b) Cross-correlation mea-
surements at the entrance and the exit (500 m, at the shock
point) of the fiber comparing experimental results (solid
red) with the profiles expected from IBE simulations (black
dashed).

|ρ| < 4 ps2, where the chirp average relative error com-
pared to an ideal Riemann pulse remains below 10% and
for which the IBE still remains approximately valid). In-
terestingly, this approach allows us to study a novel prop-
agation regime of RWs where we can accurately tune the
shock distance by means of a judicious choice of the ini-
tial phase (being physically analogous to an initial pulse
propagation in a purely dispersive medium). Indeed, the
powerful analytic description provided by IBE predicts a
linear rescaling of the asymmetric Riemann pulses shock
distance as a function of ρ.

An example of the concept of shock distance control via
spectral phase tuning is illustrated in Fig. 4(a), show-
ing simulation results and IBE characteristic lines for
ρ = ±4 ps2(i.e. input pulses with opposite asymmetries).
We can see how in both cases the evolution exhibits a
progressive trailing edge steepening with quasi-constant
peak power, but with a shock distance that is shifted by
about 450 m when the sign of the initial Riemann pulse
asymmetry is reversed. In our experiments, we perform
cross-correlation measurements of the output pulses at
a distance of 500 m using these initial conditions, again
obtaining an excellent agreement with simulations as can
be seen in Fig. 4(b). Note that even when we include at-
tenuation in our NLSE simulations (or even higher-order
dispersive and nonlinear terms [11]), the qualitative be-
havior is not changed for our parameters [42].

We can further assess the impact of RWs input tem-
poral asymmetry by monitoring the output pulse charac-
teristics. At a fixed distance of 500 m, we compute how

FIG. 4. (a) (top panel) Numerical simulations and IBE
characteristic lines (white) describing the evolution of input
pulses of opposite asymmetry (bottom panel), obtained when
quadratic spectral phases ρ = ±4 ps2 were applied to the ini-
tial spectrum. In both cases, pulse evolution yields to trailing
edge steepening, although the predicted distances of shock
formation are now shifted longitudinally (respectively to 275
and 725 m). (b) The output cross-correlation profiles for
ρ = ±4 ps2, obtained at a fixed fiber length of 500 m, are
measured experimentally (solid red) and compared with sim-
ulations (black dashed).

varying ρ changes both the center of mass as well as tem-
poral and spectral pulse profiles at the fiber output (Fig.
5(a) 5(b), respectively) [7]. In this case, one can readily
observe a clear modification of the pulse steepened in-
tensity profiles seen in Fig. 5(a), and the corresponding
spectra shown in Fig. 5(b), both attesting of controllable
shock distance rescaling. The experimental verification
of these features can be conveniently obtained by mea-
suring the output spectra as a function of ρ, as illustrated
in Fig. 5(c). Here, our measurements are once more in
excellent correspondence with the numerical results de-
picted in Fig. 5(b).

There are several conclusions to be drawn from this
work. From a fundamental perspective, the ability to
transform the description of wave propagation dynam-
ics from a NLSE system to an IBE model of greatly
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FIG. 5. (a-b) Simulated temporal and spectral profiles at the HNLF output (z = 500 m) calculated as a function of ρ. (c)
Experimental spectral intensity, observed under the same conditions used in (a-b), and measured at the fiber output with the
OSA (for ρ increments of 0.4 ps2). Output spectra for selected ρ values are shown in the right insets (logarithmic scale), where
experiments (solid red) and numerical predictions (dashed black) are compared.

reduced complexity represents a significant addition to
the understanding of complex nonlinear dynamical sys-
tems. For instance, our results clearly demonstrate the
temporal steepening of Riemann pulse envelopes in accor-
dance with analytical predictions. Moreover, we optically
solved the IBE for a range of different initial conditions,
which underlines the potential and versatility of guided
nonlinear optics for applications such as ultrafast ana-
logue computing [43]. Finally, we proposed and demon-
strated a flexible method for the shock distance control
of arbitrary optical pulses, which opens up novel avenues
towards (coherent) optical signal processing applications,
including controlled nonlinear optical pulse retiming and
real-time optical performance characterization.
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