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a b s t r a c t 

We address the design of the lines of a Walking Bus service according to a new paradigm, where children 

are picked up at home. The scarcity of accompanying persons together with the limit on the length of 

the deviations from the shortest itinerary of each child make the problem different from the traditional 

school bus and walking bus design. We propose an arc-based model, a path-based model tackled by 

column generation, and a heuristic procedure. Solution approaches are tested on a set of real and realistic 

instances. Real instances refer to the case study of a primary school in Italy. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Scientific research over the last 20 years has provided increased

vidence in favor of children active commuting to school ( Dijk,

e Groot, Acker, Savelberg, & Kirschner, 2014 ). In fact, any walking

r biking during the trip from home to school requires some phys-

cal activity which provenly i) fights childhood obesity, which is a

ajor health concern among parents ( McDonald, Brown, Marchetti,

 Pedroso, 2011 ); ii) improves reaction to stress, helping chil-

ren to cope with cognitive stressors often experienced during the

chool-day ( Lambiase, Barry, & Roemmich, 2010 ). Nevertheless, in

he developed world most parents drive their children to school

nd school gates get congested by traffic. Data support this claim:

cDonald and Aalborg (2009) reports that the percentage of el-

mentary school pupils being driven to school in the US raised

rom 18% in 1969 to 55% in 2001, while the share of those walk-

ng or cycling has dramatically decreased, dropping from 41% to

3%. Direct negative consequences include environmental damage

ue to traffic pollution near schools, and children getting accus-

omed to passive travel modes. Subtler perils were recently uncov-

red: in Sunyer (2017) it is proved that exposure to traffic emis-

ions is associated with children impaired cognitive development

ue to their impact on memory. Investigations into parents moti-

ations ( Westman, Friman, & Olsson, 2017 ) revealed that distance

rom school is only partially accountable for modal choice: even
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arents living within walking distance elect driving rather than

alking as their preferred travel mode due to convenience and

ime saving and do not allow children to walk without adult su-

ervision for fear of traffic and strangers perils. 

Several projects have been carried out to reverse this trend

 Chillón, Evenson, Vaughn, & Ward, 2011 ). The most effective ini-

iative within such projects is the so-called Walking School Bus also

nown as Pedibus , where a group of children is led to school by an

dult. Pedibus allows children to enjoy a safe walk to school at no

arental burden. In addition to active travel mode benefits, walking

o school with peers helps children to develop self-confidence, im-

roves social relations, teaches them pedestrian safety rules, and

ncreases their independent mobility ( Kingham & Ussher, 2007;

endoza et al., 2012 ). A Pedibus service can be realized accord-

ng to a variety of paradigms, ranging from informal agreements

mong neighbors to formal programs sponsored by the school.

rained adults, so called Pedibus drivers , follow an assigned route,

 so called Pedibus line , and make stops at specified times and lo-

ations to collect children ( McDonald & Aalborg, 2009 ). Setting up

 long term Pedibus service is a complex task involving the collab-

ration of the schoolteachers and management, the children fam-

lies, and the municipality. A main step in the service planning is

he design of the lines. These are usually proposed by the organiz-

ng committee and grounded on common sense. In the traditional

ervice, very few stops are located along each line and parents take

hildren to their closest stop. As lines tend to stay the same, year

fter year, the service remains sufficiently attractive as far as lines

ross neighborhoods where demand remains high over time, such
onalized walking bus service requiring optimized route decisions: 
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Fig. 1. Demand at service points a , b , c , and travel time on the arcs. Lines l 1 = 

(a, b, s ) and l 2 = (c, b, s ) require one driver each and merge at b to share excess ca- 

pacity and comply with the maximum number of children per driver requirement. 
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as restricted areas with historically high density of school pupils.

Other neighborhoods where demand varies along time or is scarce

and diffused are likely to be out of the service reach. Children live

too far from the closest stop of a fixed line, but local demand does

not justify the presence of another fixed line stop. Experience from

public transport suggests that sparse demand can be captured only

by a personalized service, where lines adjust to demand. In this

framework, this means to pick up children at home, yielding the

Door-to-School Pedibus (D2SP) discussed in this paper. Since i) the

length of the lines must be kept within walkable distance and ii)

lines require drivers but drivers are scarce, the lines design step

yields new challenging combinatorial optimization problems. 

This study is part of an ongoing project aimed to establish

the D2SP service in a medium size city in Italy. Previous works

( Malucelli, Nonato, & Tresoldi, 2017; Malucelli, Tresoldi, & Nonato,

2018 ) addressed a simplified version of the line design problem,

targeting the minimum number of lines. Here we take it a step

further, introducing a binding feature of the real application re-

lated to the number of drivers and discuss how this issue impacts

on the structure of the lines. We present two problem variants

( Section 2 ), discuss related works ( Section 3 ), provide arc-based

( Section 4 ) and path-based mathematical models and describe how

to tailor a column generation solution approach in this framework

( Section 5 ). Ad-hoc heuristics are presented in Section 6 . We exper-

imentally compare the effectiveness of all presented approaches on

real and realistic instances ( Section 7 ), computationally investigate

the trade-off among the service quality (related to the distance

walked along the lines), the service cost (related to the number

of drivers) and we draw conclusions ( Section 8 ). The list of main

symbols used for variables, sets, and parameters throughout the

paper is reported in Tables 1 and 2 in the supplementary material

available online. 

2. The door to school walking bus 

For safety reasons, in the traditional Pedibus services i) no more

than a maximum number of children per driver is allowed on

each line, ii) drivers start their service at line terminals and reach

the school with the group. When designing a line, the number of

drivers is fixed a priori by estimating the maximum number of

children that could be collected along the line. 

As mentioned, the traditional Pedibus service is suited for serv-

ing children in densely populated neighborhoods (usually within

about 1.5 kilometers from school) or those living much further who

can autonomously reach the terminal. This type of service, though,

fails in wholly capturing the demand uniformly distributed around

school and children who cannot be brought to the Pedibus stop at

the convened time. This is the case for the school tackled in our

study, but it extends to many other cases where the school is lo-

cated in the historical center of a city, surrounded by residential

neighborhoods. 

Formally, the service here proposed can be described as fol-

lows. We are given: i) a set of locations corresponding to the chil-

dren homes H = { 1 , . . . , n } and the school s ; ii) for each home i ,

the number of children to be accompanied to school q i and the

walking distance S i from i to s along the shortest path; iii) the

maximum number of children per driver ρ . The Door-to-School

line design problem (D2S) arises in two different variants. In D2S 1 
the problem is to find the minimum number of drivers needed to

walk all children to school, provided that, for each child, the actual

walked distance does not exceed δ times the shortest one ( δ > 1),

with δ potentially varying based on the location of each i . In D2S 2 
the number of drivers and their locations are given, and the prob-

lem is to design a set of lines serving all the demand so that the

maximum over all children of the ratio of the actual walked dis-

tance over the shortest one is minimized. 
Please cite this article as: E. Tresoldi, F. Malucelli and M. Nonato, A pers
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Beside the main target, a second issue concerns safety. First

f all, during preprocessing any road link not meeting a mini-

um safety standard for children walkability, such as for example

idewalk continuity, is discarded from the road network on which

hortest paths between locations are computed. Then, for each pair

f locations i and j a weight coefficient denoted as d ij is devised

hat is inversely correlated to walkability along the shortest walk-

ng path from i to j (the highest the worst). The aim is to favour

tineraries featuring safety related traits, such as wide sidewalks,

igh curbs, and low speed areas, by penalizing the potential occur-

ence of negative characteristics, such as sidewalk uneven surface

r traversing congested zones. We consider such measure as addi-

ive on the arcs. Both problems D2S 1 and D2S 2 can thus include it

s a secondary objective so that, among the solutions with equal

rimary target value, the most safety aware is selected. 

Finally, the main peculiarity that distinguishes the D2S line de-

ign problem from other better known ones, such as the school bus

outing problem ( Riera-Ledesma & Salazar-González, 2013 ), is the

imit ρ on the maximum ratio of children per driver together with

he possibility of having multiple drivers acting together on the

ame line, from terminal to school, or on joint lines upon merging

ill destination (joint lines proceed to school as a whole), which

akes capacity rise to multiples of ρ according to the current

umber of drivers. Such feature helps to efficiently handle cases

ith q i ≥ 2, which frequently arise, e.g. think of children in the

ame family or living in the same building. As such demand can-

ot be split on different lines, it may turn advantageous to merge

wo or more lines into a single one at an intermediate stop. In fact,

ine merging can be exploited to decrease the number of required

rivers, as shown in the toy example depicted in Fig. 1 . Consider 3

omes, namely a , b , c , with q a = 2 , q b = 3 , and q c = 3 children, re-

pectively. The walking distances between pairs of locations is as

ollows: c ab = c ac = c bc = 10 , c bs = 10 , c as = c cs = 19 . If ρ = 4 , it easy

o see that any line serving two stops requires at least 2 drivers, 2

rivers are sufficient to manage the whole demand whether it is

erved either along a single line or by two merged lines, whereas

 solution made of 2 separate lines would require 3 drivers. In case

f lines with many stops, children at or near terminal are the most

ffected regarding walking time. In the example, take line l H along

he shortest Hamiltonian path which starts at a , visits c and b , and

nds at s . Users at terminal node a take 30 time units to reach

chool, thus the ratio of their traveling time over S a is 30/19, while

he total user traveling time along l H is 150. Consider instead a so-

ution with one driver leading line l 1 , which goes from a to s pass-

ng through b , and a second driver leading line l 2 which starts at

 , merges with l 1 in b , and ends at school; the whole demand is

erved using 2 drivers as in l H , but the sum of the traveling time

f all users is 130 and users in a , in particular, experience a ratio

lose to one. Thus, merging effectively allows to reduce drivers as

ell as walking time. 
onalized walking bus service requiring optimized route decisions: 

0.1016/j.ejor.2019.07.046 
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Both problem variants D2S 1 and D2S 2 are modeled on a di-

ected graph G = (N, A ) , where i) the set of n + 1 nodes N =
 ∪ { 0 } corresponds to the home locations (client nodes) and the

chool s (node 0), ii) the arc set A is complete and each arc ( i , j ) ∈ A

orresponds to the pedestrian connection between i and j on the

treet network, once it has been filtered to remove unsafe links,

long the minimum traveling time path. Each arc ( i , j ) is thus char-

cterized by the travel time c ij of such a path and a weight d ij re-

ated to its walkability, as discussed before. Each client node i is a

ource of q i flow units and 0 is the only sink. Since lines that have

erged are not allowed to split, it follows that a solution is made

f a set of paths on G , each path going from a node i to 0 such

hat i) each client node belongs to at least one path, and ii) from

ach client node there is exactly one outgoing arc. Therefore, the

ervice network is an arborescence centered at node 0 (not nec-

ssarily shaped as a star) whose leaves identify the line terminals

nd where each client’s flow travels along the unique path on the

ree from its source node to the sink. Since drivers are allowed to

oin the line only at terminal stops, their assignment to the tree

eaves must be compliant with the number of children along the

ath. The network is capacitated, capacity intended as the maxi-

um number of children allowed on eac arc, but capacity is a vari-

ble and not a given parameter. In addition, a solution is feasible

n D2S 1 if for each client node i the unique path from i to 0 ful-

lls the distance constraint. In D2S 2 a solution is feasible if paths

tart from drivers’ location and the demand collected along each

ath is compliant with the given number of drivers. This structure

s at the core of the two mathematical models that we propose in

ections 4 and 5 , one based on decisions on the arcs and the other

ased on decisions on the paths, respectively. 

. Related works 

Few related papers stemming from telecommunication appli-

ations tackle tree shaped network design problems. We men-

ion the most pertaining ones and underline problem differences.

ixed Integer Linear Programming (MILP) models for the mini-

um spanning tree with a given number of leaves are presented in

ernandes and Gouveia (1998) and Gouveia and Simonetti (2017) .

n terms of Pedibus, that problem corresponds to ρ = ∞ , i.e., one

dult per line terminal, with unlimited route duration and a given

umber of drivers, though not pre-allocated to specific nodes. The

bjective function is a linear function of the arcs in the tree, as

n our secondary objective. Another related problem in telecom-

unication concerns delay-constrained minimum spanning trees

 Salama, Reeves, & Viniotis, 1997 ). In Pedibus terms it corresponds

o choosing the lines along the most walkable route (our secondary

bjective function) complying with a fixed maximum walking dis-

ance, disregarding the number of drivers. In multi-level capaci-

ated spanning tree problems arising in local access network de-

ign ( Gamvros, Golden, & Raghavan, 2006 ) the focus is on capacity,

ince nodes have traffic requirements and links can be equipped

ith different types of facilities, each one with its own cost and

apacity. In Pedibus terms it means that drivers could join the line

t any stop rather than only at the terminals. 

Regarding the optimization of the home-to-school children

tineraries, Porro (2015) solves the planning of traditional Pedibus

ines by a three steps heuristic procedure, previously developed

or the School Bus Routing Problem (SBRP). Exact approaches for

he SBRP by MILP models are deeply discussed in Riera-Ledesma

nd Salazar-González (2013) . Actually, once stops have been lo-

ated and children assigned to them, the resulting problem, i.e.,

n Open Distance-constrained Capacitated Vehicle Routing Problem

O-D-CVRP), shares many features with D2S. Nevertheless, the two

roblems do not coincide. While in VRPs there is a route for each

ehicle and vice versa, in D2S this one to one correspondence may
Please cite this article as: E. Tresoldi, F. Malucelli and M. Nonato, A pers

A real case, European Journal of Operational Research, https://doi.org/1
ot hold. In fact, a few drivers can be active on the same line, and

pon merging more lines share the final part of their route. This

ssue and its impact on the arc-based models is further discussed

n Section 5 . 

Two studies address the risk of home-to-school itineraries. In

apan it is quite common for children living in urban environments

o walk to school unescorted. Since safety increases the more the

ourney is shared with peers, Tanaka, Miyashiro, and Miyamoto

2016) consider as a measure of risk the distance of the sub-path

hat each child walks alone. As individual shortest paths to school

re likely to differ from child to child, sharing part of the itinerary

eads to routes with increased distance. A bi-criteria MILP formu-

ation is proposed which minimizes total risk and total walking

istance. Tanaka, Miyashiro, and Miyamoto (2018) generalize it to

llow multiple visits of the same location, a required feature if

orking directly on a graph that is a physical representation of the

treet network. 

This work builds upon an arc-based model ( Malucelli et al.,

017 ) and a path-based model ( Malucelli et al., 2018 ) developed

or the uncapacitated version, where the number of drivers per

ine does not depend on the number of children served along the

ine. In that case, minimizing the number of drivers corresponds

o minimizing the leaves of the arborescence. As a whole, we ar-

ue that no previous work tackles neither D2S 1 nor D2S 2 , which

otivates the present study. 

. Arc-based models 

The first class of formulations introduces three families of vari-

bles associated with each arc ( i , j ) ∈ A : i) integer flow variables

 i j , giving the number of children traveling directly from i to j ; ii)

nteger variables x ij , representing the number of drivers traveling

rom i to j ; iii) binary design variables y ij , equal to 1 if j is the next

top after i along a line, 0 otherwise. Variables associated with the

odes are: i) integer variables z i ∀ i ∈ H representing the number

f drivers starting their duty from i ; ii) π i ≥ S i associated with the

alking time of the itinerary along the line from i to 0. Moreover,

n D2S 1 for each i ∈ H the maximum ratio between π i and S i is

iven and denoted as δi > 1, and the maximum allowed traveled

istance from i to 0 is denoted as �i = δi S i . Both problem versions

nvolve two criteria, therefore we introduce a trade-off parameter

and merge them in a unique utility function, where ε is sized to

ield a hierarchical objective function in which walkability is used

o elect the highest quality network among those optimizing the

ther criterion. A MILP model for D2S 1 , i.e., minimizing the num-

er of drivers, is reported below. 

in 

∑ 

i ∈ N 
z i + ε

∑ 

(i, j) ∈ A 
d i j y i j (1) 

−
∑ 

( j,i ) ∈ A 
w ji + 

∑ 

(i, j) ∈ A 
w i j = q i ∀ i ∈ H (2) 

−
∑ 

( j,i ) ∈ A 
x ji + 

∑ 

(i, j) ∈ A 
x i j = z i ∀ i ∈ H (3) 

w i j − ρx i j ≤ 0 ∀ (i, j) ∈ A (4) 

y i j − w i j ≤ 0 ∀ (i, j) ∈ A (5) 

y i j − x i j ≤ 0 ∀ (i, j) ∈ A (6) 

x i j − My i j ≤ 0 ∀ (i, j) ∈ A (7) 
onalized walking bus service requiring optimized route decisions: 

0.1016/j.ejor.2019.07.046 
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w  
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v  

a  
∑ 

(i, j) ∈A 
y i j = 1 ∀ i ∈ H (8)

π j − πi + (� j − S i + c i j ) y i j + (� j − S i − c ji ) y ji ≤ � j − S i 

∀ (i, j) ∈ A : i 	 = 0 (9)

πi ≤ �i ∀ i ∈ H (10)

∑ 

( j,i ) ∈A 
y ji + z i ≥ 1 ∀ i ∈ H (11)

z i − M(1 − y ji ) ≤ 0 ∀ ( j, i ) ∈ A (12)

w i j ∈ Z 

+ 
0 , x i j ∈ Z 

+ 
0 , y i j ∈ { 0 , 1 } ∀ (i, j) ∈ A (13)

z i ∈ Z 

+ 
0 , πi ≥ 0 ∀ i ∈ H (14)

Constraints (2) and (3) are flow conservation constraints of chil-

dren and drivers, respectively. Together with constraints (11) and

(12) they ensure that drivers are on the line from the start as

they join it only at terminals. Constraints (4) , by stating the maxi-

mum number of children per driver, are actually linking the two

sets of flow variables. Constraints (5) –(7) link the 0–1 variables

to the corresponding flow variables. Constraints (8) establish the

arborescence structure of the solution: a non-terminal node may

have multiple inflow arcs, but from each client node there must

be exactly one arc carrying flow out. Inequalities (9) , defining

the value of distance variables π i , represent line continuity and

subtour elimination constraints. These constraints are an exten-

sion of Miller–Tucker–Zemlin subtour elimination constraints pre-

sented by Laporte, Nobert, and Taillefer (1987) for the Distance

Constrained Vehicle Routing Problems (DVRP) and further studied

in Kara (2010) and Bekta ̧s and Lysgaard (2015) . Inequalities (10) de-

fine the maximum deviation constraints for each child and set

the range [ S i , �i ] for variable π i . Constraints (11) and (12) re-

late drivers flow to the network structure, binding the sources of

drivers flow to the leaves of the arborescence. Indeed, constraints

(11) state that if a node is a leaf, at least one unit of driver flow

must originate from there, while (12) state that if a node is not

a leaf, no driver flow will originate from there. The value of M in

constraints (7) and (12) can be bounded by the number of drivers

in any feasible solution for D2S 1 . 

When modeling D2S 2 , let us introduce: i) the continuous vari-

able � representing the maximum, over all i ∈ H , of the ratio be-

tween the travel time from i to 0 along the line and S i , as stated by

(17) ; ii) an integer parameter u i representing the number of drivers

that start their duty on the line at node i , ∀ h ∈ H . In particular, u i
becomes the right-hand side of the drivers flow conservation con-

straints (16) and allows to rewrite (11) and (12) as (18) and (19) ;

iii) the set of terminal nodes H̄ = { h ∈ H : u h > 0 } (in D2S 1 H̄ = H

as any demand node is a potential terminal); iv) values �lb < �ub 

providing a lower and an upper bound on �. D2S 2 can be formu-

lated as follows: 

min � + ε
∑ 

(i, j) ∈A 
d i j y i j subject to (2), (4–9), (13) (15)

−
∑ 

( j,i ) ∈ A 
x ji + 

∑ 

(i, j) ∈ A 
x i j = u i ∀ i ∈ H (16)

πi − �S i ≤ 0 ∀ i ∈ H (17)
 o  

Please cite this article as: E. Tresoldi, F. Malucelli and M. Nonato, A pers
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∑ 

( j,i ) ∈A 
y ji ≥ 1 ∀ i ∈ H \ H̄ (18)

∑ 

( j,i ) ∈A 
y ji = 0 ∀ i ∈ H̄ (19)

�lb ≤ � ≤ �ub ∀ i ∈ H̄ (20)

πi ≥ 0 ∀ i ∈ H (21)

ote that in D2S 2 the value of M in constraints (7) can be set

o �i ∈ H u i . Mor eov er, since the maximum ratio between π j and

 j over all j ∈ H is now a variable to be minimized, in D2S 2 the

alue �i is set to �S i in constraints (10) now (17) and �j is equal

o �ub S j in (9) . Constraint (20) is not required for the correct-

ess of the formulation but can provide a tighter linear relaxation.

ower and upper bounds on � can be obtained as follows. Let

i = min j∈ H\ ̄H ( 
c i j + c j0 

c i 0 
) be the minimum ratio between the travel

ime from i to 0 on a line starting from i ∈ H̄ and serving at least

ne node j in H \ H̄ and S i . Since all nodes must be visited by at

east one line then a feasible value for �lb is given by max i ∈ ̄H �i .

n upper bound on � is provided by any feasible solution for

2S 2 . 

Additional constraints based on the walking distance (see Kara,

010 ) can be included in both formulations. 

i ≥
∑ 

(i, j) ∈ A 
(S j + c i j ) y i j ∀ i ∈ H (22)

i ≤ S i y i 0 + �i (1 − y i 0 ) ∀ i ∈ H (23)

j ≤ � j − � j y i j + min (� j , �i − c i j ) y i j ∀ (i, j) ∈ A (24)

onstraints (22) reinforce the lower bound on the value of π . In-

qualities (23) force πi = S i when i is the last client node on the

ine before s , and may replace (10) in the arc model for D2S 1 .

onstraints (24) provide an upper bound on the value of π . It

s worth noting that, the two-commodity network flow approach

roposed in Baldacci, Hadjiconstantinou, and Mingozzi (2004) as

ell as capacity bounding constraints for the Capacitated Vehi-

le Routing Problem (CVRP), first presented in Desrochers and La-

orte (1991) and further studied in the context of Distance and Ca-

acity Constrained Vehicle Routing Problem (DCVRP) in Kara and

erya (2011) , cannot be used in our models since capacity is not

n input parameter but depends on a decision variable. Finally, in

oth models, the linear relaxation can be further strengthened by

dding i) standard subtour elimination constraints on the binary

esign variables y ij ( Applegate, Bixby, Chvatal, & Cook, 2006 ), ii)

apacity cuts, as in the CVRP ( Lysgaard, Letchford, & Eglese, 2004 )

nd iii) k-path inequalities (see Kohl, Desrosiers, Madsen, Solomon,

 Soumis, 1999 ). 

. Path-based models 

In the path-based formulations, lines are seen as paths along

hich drivers walk from terminal to destination. In the models,

ndeed, a line is represented by a decision variable associated with

he drivers active along that line. Let P be the set of all feasible

aths from any node i ∈ H to 0. Let us extend the notation to con-

ider the following subsets of P : let P i ⊂ P denote the set of paths

isiting node i ∈ H , P i j ⊂ P be the set of paths using arc ( i , j ) ∈ A ,

nd P̄ i ⊂ P i be the set of paths whose terminal node is i ∈ H . More-

ver, H p ( A p ) stands for the set of nodes in H (arcs in A ) covered
onalized walking bus service requiring optimized route decisions: 

0.1016/j.ejor.2019.07.046 
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y path p while, for each i ∈ H p , c 
p 
i 0 

denotes the time to destination

long p . 

Path p is feasible with respect to D2S 1 if i) it is elementary,

i) for each node i on the path, c 
p 
i 0 

is no greater than �i . Note that

he children per driver ratio is not involved in D2S 1 path feasibility,

ince such requirement can be verified only once potential merg-

ngs concerning the path have been set. Variables w i j and y ij previ-

usly introduced are retained from the arc models with the same

eaning and domain, while we introduce: i) integer variables ξ p 

 p ∈ P representing the number of drivers traveling along path p ;

i) binary variables ζ i ∀ i ∈ H , where ζi = 1 if i is the terminal stop

f a line and 0 otherwise. A path-based formulation for D2S 1 is the

ollowing. 

in 

∑ 

p∈P 
ξp + ε

∑ 

(i, j) ∈A 
d i j y i j (25) 

−
∑ 

( j,i ) ∈ A 
w ji + 

∑ 

(i, j) ∈ A 
w i j = q i ∀ i ∈ H (26) 

ρ
∑ 

p∈ P i 
ξp −

∑ 

(i, j) ∈ A 
w i j ≥ 0 ∀ i ∈ H (27) 

My i j −
∑ 

p∈P i j 

ξp ≥ 0 ∀ (i, j) ∈ A (28) 

Mζi −
∑ 

p∈ ̄P i 
ξp ≥ 0 ∀ i ∈ H (29) 

∑ 

( j,i ) ∈ A 
y ji − (n − 1)(1 − ζi ) ≤ 0 ∀ i ∈ H (30) 

∑ 

(i, j) ∈A 
y i j = 1 ∀ i ∈ H (31) 

ζi ∈ { 0 , 1 } ∀ i ∈ H (32) 

y i j ∈ { 0 , 1 } ∀ (i, j) ∈ A (33) 

w i j ∈ Z 

+ 
0 ∀ (i, j) ∈ A (34) 

ξp ∈ Z 

+ 
0 ∀ p ∈ P (35) 

s in the D2S 1 arc model, the hierarchical objective function (25) is

ade of the number of drivers plus a secondary term related

o the service network walkability, properly weighted by ε. Con-

traints (31) and (26) are retained from the D2S 1 arc model,

2) and (8) respectively, and here reported for reader sake. The

hildren per driver ratio at each node i is enforced by (27) . Con-

traints (29) activate variable ζ i if there is at least (one driver on)

 path originating from i . Constraints (30) state that if at least one

ine enters i then i is not a terminal, i.e. no driver can start at i .

onstraints (28) link variables ξ and y , stating that any arc tra-

ersed by at least one driver is part of the service network. Con-

tant M in (28) and in (29) can be bounded by the total number

f drivers in any feasible solution for D2S 1 . Constraints (32) –(35)

rovide variable domains. 

When dealing with D2S 2 , the general structure of the D2S 1 
ath-based model can be retained but for few modifications to ac-

ount for the different objective function and the additional re-

uirements. In particular: i) non-negative variable � is retained
Please cite this article as: E. Tresoldi, F. Malucelli and M. Nonato, A pers
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rom the D2S 2 arc-based model with the same meaning and do-

ain; ii) variables ξ p are restricted to be binary, equal to 1 if path

 is selected and 0 otherwise. Since in D2S 2 drivers and their al-

ocation to terminals are given, the number of drivers on a path

epends on its terminal. Then, a path p is D2S 2 feasible if i) it is el-

mentary, ii) it starts from i ∈ H̄ , i.e., the terminal node set, iii) for

ach node i ∈ H p , c 
p 
i 0 

is no greater than �S i . As in D2S 1 , path fea-

ibility does not involve the check for the children-per-driver ratio

hat depends on potential line mergings. A path-based formulation

or D2S 2 follows: 

in � + ε
∑ 

(i, j) ∈A 
d i j y i j subject to (26), (28), (31), (33), (34) 

(36) 

ρ
∑ 

h ∈ ̄H 
u h 

∑ 

p∈ P i ∩ ̄P h 
ξp −

∑ 

(i, j) ∈ A 
w i j ≥ 0 ∀ i ∈ H (37) 

1 −
∑ 

p∈ ̄P i 
ξp ≥ 0 ∀ i ∈ H̄ (38) 

� −
∑ 

p∈ ̄P i 
�p ξp ≥ 0 (39) 

ξp ∈ { 0 , 1 } ∀ p ∈ P (40) 

here, for each path p ∈ P originating from h ∈ H̄ , �p =
ax i ∈ H p ( 

c 
p 
i 0 
S i 

) denotes the maximum walking time ratio over the

ath nodes. (36) is the hierarchical objective function of the D2S 2 
rc-based model, Section 4 . Constraints (37) enforce the children-

er-driver ratio at each node i ∈ H . Note that the number of drivers

t i depends on the terminal node of all the paths traversing i . In-

quality constraints (38) ensure that there is only one path origi-

ating from each leaf i ∈ H̄ . Actually, they will be satisfied as equal-

ties due to the arborescence structure. Inequalities (39) bound �

rom below, being no less than each �p for all selected path. The

alue of M in constraint (28) can be set to | ̄H | . 
Both path-based models can be strengthened by adding the

ollowing constraints, which can be violated in the linear relax-

tion. ∑ 

p∈ P i 
ξp ≥ 1 ∀ i ∈ H (41) 

 − ζi −
∑ 

( j,i ) ∈ A 
y ji ≤ 0 ∀ i ∈ H (42) 

Since the number of paths is exponential in n , the models are

ddressed by column generation. Integer solutions are provided by

 primal heuristic. As the tailing off can be rather time consum-

ng while the application requires limited computing time (about 2

ours on a regular PC), we do not perform a full branch and price

cheme but, once the root node has been solved to optimality, we

xecute a partial branching strategy to improve the quality of the

ncumbent solution. In the following we present the main build-

ng blocks of the solution approach, i.e., the pricing sub-problem,

he partial branching scheme, the primal heuristic procedure and

euristic algorithms to provide an upper bound. 

 column generation approach. In our column generation procedure

he Restricted Master Problem (RMP) is given by the linear relax-

tion (25) –(31), (41) , and (42) ) for D2S 1 and (36) –(42) for D2S 2 ,

nd it is initialized with the columns corresponding to the solu-

ion found by the heuristic algorithms described in Section 6 . In

he pricing sub-problem, we look for the path p associated with
onalized walking bus service requiring optimized route decisions: 

0.1016/j.ejor.2019.07.046 
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the variable ξ p with minimum reduced cost, taking into account

the dual representation of the RMP. Consider a path p ( h ) originat-

ing from h ∈ H̄ ( ̄H = H in D2S 1 ) and ending at 0. Let αi , α
′ 
i 
, β i , γ ij ,

μh , μ
′ 
h 

and ω h be the non-negative dual variables associated with

constraints (27), (37), (41), (28), (29), (38) and (39) respectively.

The reduced cost of path p ( h ), here denoted as λp ( h ) , is given by

(43) for D2S 1 and by (44) for D2S 2 : 

(D2 S 1 ) λp(h ) = 1 −
∑ 

i ∈ H p(h ) 

(ραi + βi ) + 

∑ 

(i, j) ∈ A p(h ) 

γi j + μh (43)

(D2 S 2 ) λp(h ) = 0 −
∑ 

i ∈ H p(h ) 

(ρu h α
′ 
i + βi ) + 

∑ 

(i, j) ∈ A p(h ) 

γi j + μ′ 
h + �p ω h 

(44)

Therefore, for both D2S 1 and D2S 2 , the pricing problem is an

elementary shortest path problem with resource constraints (see

Irnich & Desaulniers, 2005 ) with respect to arc costs γ̄i j = γi j −
(ραi + βi ) for D2S 1 and γ̄i j = γi j − (ρu h α

′ 
i 
+ βi ) for D2S 2 . At each

iteration, given the current dual variables, for each h ∈ H̄ we search

for p ( h ) such that λp ( h ) < 0 and c 
p 
i 0 

≤ �i ∀ i ∈ H p ( �i = �ub S i in

D2S 2 ). Indeed, the resource monotonically consumed along the

path is the time available for completing the path to destination

and each arc ( ij ) consumes c ij . In particular, the residual time avail-

able to reach destination from any internal node j is the minimum,

over all the nodes i from origin to j , of �i minus the time needed

along the current path from i to j . This pricing sub-problem has a

similar structure to the one in Malucelli et al. (2018) . At each it-

eration of the column generation procedure, | ̄H | independent pric-

ing sub-problems, one for each node in H̄ , are solved. Two differ-

ent procedures are employed: the pricing sub-problem is first tack-

led heuristically by a simple greedy procedure based on a nearest

neighbor search. This procedure is mainly used to rapidly populate

the set P in the first iterations of the column generation. The sec-

ond procedure solves the problem exactly using a slightly modified

version of the pulse algorithm, presented in Lozano, Duque, and

Medaglia (2016) , whose performance heavily depends on its ability

to exploit the constrained resource, i.e., time, to reduce the search

space. For each h ∈ H̄ , the greedy procedure builds the path p ( h )

incrementally, starting from h . The residual time in h is initialized

to �h and let �′ 
i 

denote the residual time at the current node i .

Let us introduce FS (i ) as the notation for the set of arcs originat-

ing from node i . The arc ( ij ) in FS (i ) with the lowest γ̄i j is chosen

and the residual time is updated as �′ 
j 
= min { �′ 

i 
− c i j , � j } ; the

search backtracks to i if �′ 
j 

is below S j and ends when it reaches

0. If the greedy procedure fails to produce any negative cost path,

then the problem is solved to optimality using the recursive pulse

algorithm. The exact pricing algorithm is executed once for each

node h ∈ H̄ taking h as the starting point. Since each search is

an independent process, this step can take advantage from a par-

allel implementation. We introduced the following modifications

with respect to Malucelli et al. (2018) to speed up the solution

process. 

In a pre-processing phase we remove from A every arc ( i , j ) such

that c i j + S j > �i obtaining a restricted set of arcs A 

′ . Indeed, as

mentioned, �i is the maximum time available to reach destination

from i , while c i j + S j is a lower bound when the path has to go

through j on its way from i to s . Then, if ( ij ) 	∈ A 

′ , not only no path

will ever go directly from i to j but it will never visit j if i has

already been visited, since walking distances on which coefficients

c ij are based, by definition satisfy triangular inequalities. Now, con-

sider the reduced graph G 

′ = (N, A 

′ ) : whenever a node i ∈ H has no

incoming arcs the associated variable ζ i is fixed to 1. 

Graph G 

′ can be further shrunk considering the value of the

dual variables. Remind that all dual variables are non-negative and
Please cite this article as: E. Tresoldi, F. Malucelli and M. Nonato, A pers

A real case, European Journal of Operational Research, https://doi.org/1
hat in (43) and (44) αi , α
′ 
i 

and β i are subtracted while the γ ij ,

h , μ
′ 
h 

and ω h variables are summed. Therefore, visiting a loca-

ion i ∈ H is profitable only provided that ραi + βi > 0 in D2S 1 or

u h α
′ 
i 
+ βi > 0 in D2S 2 , and potentially increases λp ( h ) otherwise.

e can now define a new node set N 

′ removing from H all non-

rofitable children. The pricing algorithms are run on the reduced

raph G 

′′ = (N 

′ , A 

′ ) . 
Now, we can bound from below the reduced cost of any path

riginating from h ∈ H̄ in order to discard h as a starting node if

hat bound is non-negative. The optimistic guess is obtained by

aking an upper bound of the absolute value of the contribution

rovided by variables αi and β i and a lower bound of the one pro-

ided by the γ ij variables. In detail, consider h and its neighbors

 i : (hi ) ∈ FS (h ) } . The reduced cost of any p ( h ) amounts of a part

hich is a constant or depends just on h , i.e., 1 + μh − (ραh + βh )

n D2S 1 or μ′ 
h 

+ ω h − (ρu h α
′ 
h 

+ βh ) in D2S 2 . An optimistic guess of

he rest is given by the minimum γ hi over all (hi ) ∈ FS (h ) , plus

he sum of the minimum γ̄i j over all neighboring nodes { i : (hi ) ∈
S (h ) } such that γ̄i j < 0 for at least one arc (i j) ∈ FS (i ) : j 	 = h .

ormally, the bound for D2S 1 and D2S 2 is: 

(D2 S 1 ) �h = 1 + μh − (ραh + βh ) + min 

(hi ) ∈ FS (h ) 
{ γhi } 

+ 

∑ 

i :(hi ) ∈ FS (h ) 

min { 0 , (min (i j) ∈ FS (i ) j 	 = h ̄γi j ) } 

(D2 S 2 ) �h = μ′ 
h + ω h − (ρu h α

′ 
h + βh ) 

+ min 

(hi ) ∈ FS (h ) 
{ γhi } + 

∑ 

i :(hi ) ∈ FS (h ) 

min { 0 , (min (i j) ∈ FS (i ) j 	 = h ̄γi j ) } 

inally, if �h > 0 we do not execute pricing algorithm starting from

 . 

rimal heuristic procedure. At each iteration of the column genera-

ion procedure, given the values ξ ∗
p of variables ξ p in the optimal

olution of the current RMP, a simple primal heuristic procedure

s applied to find feasible solutions. Variables are ordered in de-

cending order by their ξ ∗
p values and the set T is initialized to

 . Then, following this order, a variable ξ p is selected and path

 is inserted in T if no other path in T starts from the same ter-

inal. The process ends as soon as the paths in T cover all the

odes in H . Then we check wether the paths in T define a proper

ree, as well as wether rounding up the ξ ∗
p values of the selected

aths meets the maximum children per driver ratio. In such a case

 new feasible solution is found, the incumbent T ∗ is updated if

ecessary, and, in problem D2S 2 , considering �∗ the associated

alue of variable � in T ∗, all columns in P such that �p > �∗ are

iscarded. 

artial branching scheme. At the end of the column generation pro-

ess, if the final RMP solution is not integer we perform a partial

ranching strategy in order to find feasible integer solutions. Note

hat one such solution exists, as the columns of the heuristic solu-

ion belong to P . Now, consider UB as the cost of the best integer

olution found during the column generation process (the incum-

ent solution) and LB as the floor of the final fractional RMP so-

ution cost. Let F be, in D2S 1 , the set of all integer numbers from

B to LB and, in D2S 2 , the set of values obtained subtracting UB −LB 
10 

rom UB until LB is reached. We generate | F | branching nodes, one

or each element f ∈ F . In each branching node we add constraint

45) in D2S 1 and constraint (46) in D2S 2 . 

D2 S 1 ) 
∑ 

p∈ P 
ξp = f (45)

D2 S 2 ) � ≤ f (46)
onalized walking bus service requiring optimized route decisions: 
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We explore these nodes one by one starting from f = max (F ) .

t each step either we find a better integer solution, update the

ncumbent, and iterate on f − 1 , or the problem cannot be solved

nd the search stops, returning the incumbent. In D2S 1 , at every

teration the current problem inherits all additional columns gen-

rated so far. Additional ones are potentially generated by resum-

ng the column generation and solving the linear relaxation taking

nto account constraint (45) . In the pricing sub-problem the dual

ariable νp associated with (45) contributes to the reduced cost

f each ξ p . In D2S 2 , at every iteration the current problem inher-

ts only columns representing paths with �p ≤ f . In both cases, no

ubstantial modification to the pricing algorithm is required. 

. Heuristic algorithms 

Two heuristic algorithms are introduced, one for each problem

ariant. Both algorithms are based on a three-step procedure: 1)

nitial greedy solution; 2) Local search improvement; 3) MILP re-

nement. In particular, for a given number of times, steps 1 and

 are executed and the information gathered during this process

s forwarded to the MILP model of the associated problem variant.

ach step is detailed in the following. 

.1. Heuristic algorithm for D2S 1 

In the first step, an initial solution is found by a multi-start

reedy method (GR1), as sketched in Algorithm 1 . The idea is to

Algorithm 1: Greedy procedure for D2S 1 . 

Input : G , demand vector q , max deviation vector δ, walking 

time vector c, seed nodes S 

Output : T , feasible solution to D2 S 1 . 

1 T ← ∅ ; 
2 Q ← H \ S; // set of non-seed nodes to be served 
3 forall the i ∈ S do 

4 p ← (0 , i ) , S ← S \ { i } ; // start a new path 
5 if Q = ∅ then 

6 T ← T ∪ p; // add path to T 
7 while Q 	 = ∅ do // until all nodes are served 
8 f ← F alse ; // flag 
9 forall the j : (i j) ∈ FS (i ) do 

10 if �′ 
p∪ j ≤ � j then // �′ 

p∪ j computes �p∪ j for 
path p ∪ j and reversed 

11 p ← append(p, j) , Q ← Q \ j; // update p and 
Q 

12 f ← T rue , i ← j; 

13 break ; 

14 if f = F alse then // close the path 
15 T ← T ∪ p; // add path to T 
16 if S = ∅ ∧ Q 	 = ∅ then // start path from non-seed 
17 i ← f irst(Q ) ; // first node in Q assigned to i 

18 p ← (0 , i ) ; // new path 
19 return T 

ave a set of nodes S ⊂ H , each one acting as the seed of the path

t will belong to. S is randomly generated by sampling the set of

odes H , according to a uniform distribution, until n S nodes have

een selected. n S has been calibrated as discussed in Section 7 . 

At each execution, GR1 generates a set of disjoint paths T

hat eventually will compose a feasible walking bus arborescence

ooted in 0. The construction phase operates in the outbound di-

ection from school, i.e. paths originate from 0 and get reversed

pon construction. At first T = ∅ , then, at each iteration a new path

s computed and added to T , as follows. a node i ∈ S is sampled and
Please cite this article as: E. Tresoldi, F. Malucelli and M. Nonato, A pers
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emoved from S to act as the first node after 0 of the current path

p = (0 , i ) . Path p is extended by appending one node at a time,

f feasible with respect to constraints (10) , selected (and removed)

rom Q = H \ S according to a nearest neighbor criterion. When the

ath can no longer be extended, it is reversed, i.e., the last node in

 becomes the line terminal, and added to T . The procedure iter-

tes until S is empty. If S = ∅ and Q 	 = ∅ , then the next seed node

s sampled from Q and the process iterates until each client node

elongs to a path. Then T is returned. As each sampling introduces

ome randomness in the process, each run of the algorithm tends

o yield different solution. Finally, the minimum number of drivers

equired to cover all paths in T is trivially computed and the in-

umbent T ∗ is updated if necessary, while T̄ := T̄ ∪ T collects all

he paths generated so far. In the second step T is improved by a

ocal search procedure (LS). In detail, LS operates on the terminal

ode i of each line and applies two different moves consisting of:

) given two lines, swap their terminal node; ii) remove the termi-

al node from a line (whose terminal node is updated) and append

t to another line thus becoming its new terminal node. 

Let D p = 

∑ 

i ∈ H p q i denote the demand of all client nodes in p .

ote that moves i) and ii) may reduce the number of drivers.

or move ii) it happens when i is moved from path p to r , and

 i ≥ (D p − ρ� D p /ρ� ) , while q i < (ρ − (D r − ρ� D r /ρ� )) . In move i)

he same condition must hold with respect to q i − q j , where i and j

re the two swapping terminals. Indeed, such moves are performed

rst, if any, before looking for others that only impact on the sec-

nd objective function component. The resulting neighborhood size

s thus rather small, which allows to perform an exhaustive search

nd to run the LS procedure until convergence to a local optimum.

 ̄ and T ∗ are updated accordingly. Finally, the D2S 1 MILP model

1) –(12) is solved on a restricted graph G 

′ = (N, A 

′ ) where A 

′ is

ade of all the arcs belonging to at least one path in T̄ , and with

 time limit on the execution time (see Section 7 ). 

.2. Heuristic algorithm for D2S 2 

In D2S 2 the terminal stops are given and each path is built by

teratively adding extra stops within the two extremes of the line,

.e., the given terminal and node 0. Formally, consider the following

ets: H̄ the set of terminal nodes as described in Section 4 ; T =
 p(i ) = (i, 0) ∀ i ∈ H̄ } as the set of the paths made of a terminal

top and node 0; Q = H \ H̄ as the set of client nodes that are not

et part of a path. 

Each path p ( i ) has a residual capacity equal to D̄ p(i ) = u i ρ −
 p(i ) , and a time ratio �p ( i ) given by the maximum over its nodes

 ∈ p ( i ) of the ratio of the walking time to destination along the

ath and S j . In particular, at start D̄ p(i ) = u i ρ − q i and �p(i ) = 1 .

he greedy procedure GR2 iteratively inserts a client node j in

 within a path p ( i ) right before node 0. One such pair ( j , p ( i ))

s chosen randomly among those that minimally increase � =
ax i ∈ ̄H �p(i ) , so that successive runs of the procedure are likely to

ield different outcomes. In detail, given a path p ( i ), the candidate

ode j is the first one whose insertion does not increase �p ( i ) more

han a randomized threshold, computed drawing samples from a

niform distribution between 1 and 1.2 (function Rand (1, 1.2) in

lgorithm 2 ), provided that q j ≤ D̄ p(i ) . Then, the node-path pair

ith the minimum increase over all paths is selected. Each macro-

teration either yields an insertion and iterates or exits the proce-

ure with failure if Q 	 = ∅ . The algorithm for D2S 2 is sketched in

lgorithm 2 where p ( i ) ∪ { j } represents the path obtained by in-

erting node j in p ( i ) right before 0. In the second step of the

lgorithm, each path in T is improved by a local search proce-

ure whose move swaps two internal nodes of the path, i.e., any

wo nodes but 0 and the terminal. Step 1 and 2 are executed sev-

ral times in order to generate multiple solutions whose paths are

ollected in T̄ . In the last step, the incumbent solution is refined
onalized walking bus service requiring optimized route decisions: 
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Algorithm 2: Greedy procedure for D2S 2 . 

Input : G , demand vector q , walking time vector c, terminal 

nodes H̄ , residual clients Q , initial solution 

T = { p(i ) = (i 0) ∀ i ∈ H̄ } 
Output : �, T 

1 � ← 0 ; // solution value 
2 while | Q| > 0 do // all demand is served 
3 �∗ ← ∞ , j ∗ ← 0 , i ∗ ← 0 ; 

4 forall the i ∈ H̄ do 

5 forall the j ∈ Q do 

6 if q j ≤ D̄ p(i ) then 

7 �p ← �(p(i ) ∪ { j} , c) ; // compute �p of 
p(i ) ∪ { j} 

8 if �p < �p(i ) × Rand(1 , 1 . 2) then 

9 break ; 

10 if �∗ > �p then 

11 j ∗ ← j, i ∗ ← i , �∗ ← �p ; 

12 if j ∗ = 0 then // Manage pathological cases 
13 return �, T 

14 � ← max (�, �∗) ; p(i ∗) ← p(i ∗) ∪ { j ∗} ; Q ← Q \ { j ∗} ; 
15 return �, T 
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by solving the MILP associated with D2S 2 (see (15) –(19) ) on a re-

stricted graph G 

′ = (N, A 

′ ) where A 

′ is made of all the arcs in the

paths in T̄ and their reverse. Again, the solver running time is lim-

ited. It is worth mentioning that, although the constructive pro-

cedure does not contemplate line merging, on our benchmark it

never failed to provide feasible solutions, as reported in Section 7 . 

7. Computational results 

To assess effectiveness and efficiency of our approaches we per-

formed a test campaign on several instances. The description of the

test beds and a discussion of the obtained results are reported in

the following sections. 

7.1. Dataset 

Our dataset is made up of three different types of instances: 

1. Random instances : 80 instances, n from 10 to 300, q i randomly

generated between 1 and 3. The topology of these instances

and the weight coefficients d ij are randomly generated using a

uniform distribution function in the range [0.01, 0.30]. 

2. School Bus Problem instances : 72 instances are from Schittekat

et al. (2013) . We considered all instances with n ranging from

25 to 200, q i randomly generated from 1 to 3. We kept the

topology as in the original instances but ignored all potential

bus stop locations and generated weight coefficients d ij follow-

ing the same scheme as in the instance set 1. 

3. Real-world instances : two real scenarios with n = 32 and n =
116 , corresponding to a total of 35 and 133 children respec-

tively. Data for both scenarios come from the elementary school

Biagio Rossetti in Ferrara (Italy). For each arc ( ij ) ∈ A weight co-

efficient d ij has been assumed to be inversely proportional to

the pedestrian speed along the path ( ij ). In details, given �ij 

as the speed on arc ( ij ) and �M as the maximal speed among

all arcs in the graph then d ij is equal to 1 − �i j 

�M . In these in-

stances all children locations are real GPS positions. Distances

and speeds are computed using OpenStreetMap ( OpenStreetMap

Contributors, 2017 ) as real walking distances and speeds. Start-

ing from these scenarios we have generated 16 instances with
different input parameters. 

Please cite this article as: E. Tresoldi, F. Malucelli and M. Nonato, A pers
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In all instances the nodes are divided in three tiers T 1, T 2, T 3,

epending on their distance from school. In particular, considered

 

m and S M as the distance to school from the closest and from the

urthest students and computed S T = (S M − S m ) / 3 , then the tiers

re defined as follows: 

 1 = { i ∈ H : S m ≤ S i ≤ S T } . 
 2 = { i ∈ H : S T < S i ≤ 2 × S T } . 
 3 = { i ∈ H : 2 × S T < S i ≤ S M } . 

For problem D2S 1 we considered two values for ρ: 5 and 10

nd 4 different values δ′ : 0.1, 0.2, 0.5, 1.0. In order to prevent chil-

ren from walking long distances, as described in Section 2 , we

et for each node i ∈ H the value of δi taking into consideration δ′ 
nd the tiers. In particular, for node i in T 1 δi = 1 + δ′ , for i in T 2

i = 1 + 0 . 7 δ′ and finally for i in T 3 δi = 1 + 0 . 4 δ′ . 
For problem D2S 2 we considered the same value for ρ as in

2S 1 . Moreover, to set the initial locations of the drivers (param-

ter u in the model) we computed a lower bound on the number

f required drivers as lb = � 
∑ 

i ∈ H q i 
ρ � and then considering four dif-

erent coefficients υ: 1.1, 1.2, 1.5, 1.8 we have randomly distributed

lb drivers among all nodes in T 3. In the real-world scenarios, we

lso considered real locations of potential volunteers in order to

efine the values of u . 

The trade-off parameter ε for D2S 1 is equal to 0.1 for instances

ith n ≤ 30 and it is equal to 0.01 for all other instances. With such

alues the secondary objective function does not interfere with the

rimary one since its value is always lower than 1. In D2S 2 ε is

qual to 10 −5 for all instances, in this way the contribution of the

econdary objective is always lower than 0.001. 

.2. Implementation Details 

All algorithms presented in this paper have been implemented

n Python 2.7 using Pyomo 5.5 as optimization modeling language

 Hart et al., 2017 ) and GUROBI 8.0 as LP an MIP solver ( Gurobi Op-

imization, 2018 ). All tests have been carried out using a computer

quipped with Intel i7-6700K processor, 16 GB of RAM and running

buntu Linux 16.04. 

In a preliminary testing phase the best setting for the heuristic

lgorithms (see Sections 6.1 and 6.2 ) have been identified. In par-

icular, when solving D2S 1 we run phases one and two 1 + � n/ 10 �
imes for each instance and we use n s = 1 + � 

∑ 

i ∈ H q i 
ρ (1 − δ′ ) � in the

reedy procedure. The time-limit on the third phase is equal to

 /2 seconds. The first and second phases of the heuristic algorithm

or D2S 2 have been run twenty times, each time with a different

andom seed while the time-limit on the third phase is set to n

econds. The time-limit on the total computational time is 7200

econds. 

uts separation. In compact models described in Section 4 , subtour

limination constraints, capacity cuts and k-path inequalities can

e included to improve the value of the linear relaxation. In our

mplementation, subtour elimination constraints on binary vari-

bles y ij are separated using a max-flow-based procedure inspired

y Fischetti and Toth (1997) . Capacity cuts impose both the con-

ectivity of the solution and the capacity requirements. In order

o separate them we start from the values x ∗
i j 

of the variables x ij 
n the optimal solution of the linear relaxation of the arc-based

odel. Then we generate several sets of nodes C using multi-

le heuristic procedures based on Naddef and Rinaldi (2002) and

ysgaard et al. (2004) and we check whether 

∑ 

(i, j ): i ∈ C, j 	∈ N\ C 
x ∗i j < 

⌈∑ 

i ∈ C q i 
ρ

⌉
(47)
onalized walking bus service requiring optimized route decisions: 
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hen we impose 

∑ 

i, j ): i ∈ C, j 	∈ N\ C 
x i j > = 

⌈∑ 

i ∈ C q i 
ρ

⌉
(48) 

ote that if 

⌈ ∑ 

i ∈ C q i 
ρ

⌉ 

= 1 inequality (48) represents a subtour

limination constraint and can also be imposed on binary variables

 ij . Finally, for each set of nodes C : | C | ≤ 15 that did not yield a ca-

acity cut, we look for violated k-path inequalities. We solve the

rc-based model (1) –(14) on a restricted graph where only nodes

elonging to set C ∪ {0} are considered (using �ub instead of �

n D2S 2 ). Then, we use the value of the first component of the

bjective function (1) in the optimal solution as the right-hand

ide for (47) and (48) . If (47) holds then (48) represents a valid

ut. 

In our procedure, all violated cuts found are included in the for-

ulation. Then the new linear relaxation of the model is solved

nd we look for violated cuts again. We stop when no effective cut

s found or when a time-limit equal to n seconds in reached. 

.3. D2S 1 results 

The arc-based and the path-based approaches have been tested

n all 152 instances in test sets 1 and 2 using the solution found

y the heuristic algorithm (see Section 6.1 ) as starting point for the

ptimization. 

The arc-based model is able to achieve the optimal solution in

2 instances, 32 random instances and 30 school bus instances. Re-

ults are particularity good on small instances, indeed all instances

ith n ≤ 30 are solved to optimality. However, the optimal solu-

ion is found for only 12 instances with n ≥ 80. In 90 instances the

ime-limit is reached and the final MIP gap is on average equal

o 8.71%, the average MIP gap being especially large ( > 14%) on in-

tances with n ≥ 100, δ′ ≥ 0.5 and ρ = 10 . All such cases are charac-

erized by an initial poor linear relaxation at the root node whose

alue does not improve much (less than 1% on average) with the

nclusion of additional cuts. 

The column generation procedure reaches its natural end on all

nstances with n ≤ 50 and hits the time-limit in 58 instances, 33

andom instances and 25 school bus instances. The average gap

etween the optimal continuous solution of the RMP and the best

nteger solution found is 9.18%. However, in almost half of the in-

tances the gap is below 5%. The average number of branching

odes to explore is 3.73. It is worth noting that on instances with

 ≤ 150 the number of branching nodes is always lower than 9 and

hat in 44 instances this value is either 0 or 1. 

Analyzing the results, it turns out that most of the computa-

ional time is spent solving the RMP or the final MILP problems

hile the pricing phase usually takes less than 10% of the compu-

ational time. This behavior is due to the fact that the decompo-

ition is not particularly efficient since all requirements associated

ith ρ (students per driver ratio), the structure of the network,

nd the children flow are addressed in the RMP. 

Comparing the arc-based and the path-based models, there is

o ultimate winner. On the one hand, the arc-based model pro-

ides better solutions in 110 instances but the average improve-

ent, with respect to the column generation, is about 2% and in

nly 14 instances the improvement is above 5%. On the other hand,

he path-based model is able to find better solutions in only 12

nstances but the improvement is on average larger than 7%. All

uch instances are characterized by n ≥ 50, δ′ ≥ 0.5 and ρ = 10 that

s basically the same type of instances with large final MIP gap

n the arc-based model. Comparing the optimal value of the lin-

ar relaxation at the root node in both methods we can see that

he path model dominates when additional cuts are not consid-

red in the arc-based model. Indeed, it provides a value that is on
Please cite this article as: E. Tresoldi, F. Malucelli and M. Nonato, A pers
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verage 5.32% better and in 25 instances the difference is larger

han 10%. However, the inclusion of the cuts improves, on average,

he linear relaxation of the arc model by more than 3.5%, reduc-

ng the gap from the linear relaxation of the path model to less

han 1%. It must be noted that, although in 57 instances cuts are

ery effective, increasing the linear relaxation by almost 10%, in

3 instances the inclusion of cuts does not improve the value of

he linear relaxation and in 42 instances no effective cut can be

ound. 

The behavior of both models is similar on both sets of instances

nd it is not possible to find any clear trend that differentiates one

et from the other. 

The input parameters ρ and δ′ influence the solution process

n similar ways. Increasing ρ always makes the problem more dif-

cult to solve and indeed the majority of the instances with large

IP gap have ρ = 10 . These instances are also characterized by the

argest pricing time since many pricing iterations are required for

he column generation process to converge. The influence of δ′ is

imilar but less noticeable. Higher values of δ′ lead to poor lin-

ar relaxations and to pricing sub-problems that take more time

o be solved in the path-based model. In details, the average pric-

ng time per iteration increases from 9 seconds in instances with
′ = 0 . 1 to 68 seconds in instances with δ′ = 1 . 0 . On average, in-

tances with larger δ′ take longer to be solved but feasible solu-

ions can be found sooner; this tends to increase the convergence

ate of the column generation (e.g. see results on instances R079,

080, B046, B072, R047, R055, R056 in the supplementary material

vailable online). 

Finally, as regard as the quality of the heuristic algorithm

 Section 6.1 ), it provides solutions that are on average within 5%

rom the best solution found. On almost half of the instances the

lgorithm is able to generate a solution within 1% from the best

ound. Moreover, whether only the first component of the objec-

ive function is considered, the heuristic algorithm finds the op-

imal solution in 66 instances. These solutions are equally spread

mong small and large instances with any value for δ′ and ρ . It is

orth noting that the third step of the heuristic is very effective in

nhancing the quality of the solutions. Indeed, it provides an aver-

ge improvement of about 14% with respect to the solutions found

t the end of the second step. This improvement is more notice-

ble, about 20%, for large instances with n ≥ 200. 

Detailed results are reported in the supplementary material

vailable online. See Tables 3, 4, 5 and 6 for results on all in-

tances and Figs. 1 and 2 for a graphical comparison of the solution

uality. 

.4. D2S 2 results 

In the testing campaign for D2S 2 the arc-based model was able

o find the optimal solution in 77 instances with an average com-

utational time equal to 513 seconds. In particular, all instances

ith n ≤ 30 have been solved to optimality. In 75 instances the

xecution reaches the time-limit. Near optimal solutions (MIP gap

ower than 1%) are achieved in 10 instances while in 36 instances

he computation terminates with residual MIP gap larger than 20%.

n average, the value of the linear relaxation is equal to 89% of the

est-known solution and in 33 instances the value of the linear re-

axation and the value of the optimal solution are the same. It is

orth noting that, on both sets of instances, very few cuts have

een found and that they do not have any impact on the value of

he linear relaxation. Since in all instances there are more adults

n the lines than the minimum required, the capacity constraints

re rarely violated in the linear relaxation. 

Input parameters υ and ρ greatly affect the difficulty of

he problem and consequently the performance of the arc-based

odel. On the one hand, the higher is υ the easier is the problem
onalized walking bus service requiring optimized route decisions: 
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Fig. 2. Instance W007, lines red and green merge at node 3, lines gray and purple 

merge at node 31. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Instance W004: real volunteers’ locations � = 3 . 22 . (For interpretation of 

the references to color in this figure, the reader is referred to the web version of 

this article.) 

Fig. 4. Instance W004: drivers selected in T3 � = 1 . 73 . (For interpretation of the 

references to color in this figure, the reader is referred to the web version of this 

article.) 
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to solve. With high υ there are more drivers and more, shorter

lines. In fact, the model is able to solve 75% of instances with

υ = 1 . 8 but only 30% of instances with υ = 1 . 1 . On the other hand,

increasing ρ makes the problem more difficult since longer lines

have to be taken into account and less drivers are provided (see

Section 7.1 ). The arc-based model achieves optimality in 68% of the

instances with ρ = 5 and in only 35% of the instances with ρ = 10 .

Combining the effect of υ and ρ we can identify two distinct

classes of instances: easy instances with υ ≥ 1 . 5 and ρ = 5 , which

are solved to optimality 87% of the times, and hard instances υ ≤
1 . 2 and ρ = 10 in which the optimal solution is reached in only

21% of the instances. 

As regard as the path-based model, the column generation pro-

cedure terminates within the time-limit in 126 instances. The gap

between the optimal continuous solution of the RMP at root node

and the best-known integer solution is on average 1.89%. In 47

instances the value of the linear relaxation is equal to the best-

known solution. Analyzing how the computational time is split be-

tween the solution of the RMP and the pricing sub-problems we

notice that on average, almost 60% of the computational time is

spent by the pricing. It is worth noting that this percentage is sub-

stantially higher in D2S 2 than in D2S 1 . This is mainly due to three

reasons, i) in the pricing algorithm of D2S 2 paths basically have

no a-priori maximum duration and infinite capacity. We provide

a limitation on the duration using the value of the heuristic so-

lution, but this limitation can be loose depending on the instance

and on the quality of the heuristic procedure. Moreover, since the

value of best � is on average 30% larger than the average δ in

D2S 1 the paths to be generated are 30% longer in D2S 2 . ii) The

almost flat landscape of bottleneck functions, such as the main ob-

jective function component of D2S 2 , typically poses a challenge to

column generation based solution approaches. Indeed, in several

initial iterations of the column generation process many columns

with negative reduced cost are found but the value of the linear

relaxation does not change. iii) Removing columns with �p > �

every time the primal heuristic improves the incumbent limits the

time spent solving the RMP. 

Comparing the results obtained by both models, we observed

that on average, the arc-based model achieves better solutions. The

value of these solutions is about 4.61% lower than the ones ob-

tained by solving the path-based model. However, the column gen-

eration procedure takes on average less than 50% of the computa-
Please cite this article as: E. Tresoldi, F. Malucelli and M. Nonato, A pers
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ional time of the arc-based model. Moreover, in 14 instances it is

ble to find a better solution within the time-limit with an aver-

ge improvement equal to 6.64%, and almost all of these instances

elong to the hard class. 

Finally, the heuristic algorithm finds solutions that are on av-

rage within 10% from the best-known one. This gap is smaller,

bout 5%, on instances with less than 150 nodes while it is about

7% on larger ones. In 22 instances it finds the optimal solution.

n our test, the heuristic procedure is always able to find feasible

olutions after the first two steps. These solutions are greatly en-

anced in the last step where the MILP model is solved on a re-

tricted graph: the average improvement from step two is 40.51%.

n 22 instances the solution improves by more than 60% and only

n 5 instances the third step has little effect on the solution quality

improvement below 1%). It is worth noting that, although the arc-

ased model is largely influenced by input parameters, the heuris-

ic algorithm is not and indeed the quality of the solutions found

s not much sensitive to changes in υ and ρ . 

Detailed results on all instances are reported in the supplemen-

ary material available online. See Tables 7, 8, 9 and 10 for a com-

lete list of the results and Figs. 3 and 4 for a graphical compar-

son of the performance achieved by the heuristic algorithm, the
onalized walking bus service requiring optimized route decisions: 
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rc-based model and the column generation procedure on test sets

 and 2. 

.5. Results on real-world scenarios 

In order to test our approach in a practical context, we run our

lgorithms on test set number 3 whose instances come from real-

orld scenarios. 

From a pure performance point of view the behavior of the al-

orithms on test set 3 is very similar to the one on test sets 1 and

. The same can be said on the average quality of the solutions

ound. 

Results for D2S 1 show that, in designing a Pedibus service net-

ork, the value of δ′ is the most critical one and that in small net-

orks changing ρ is almost not influential. Indeed, with a small
′ setting up a Pedibus network may require more than twice as

any drivers as the theoretical minimum amount lb . Increasing δ′ 
rom 0.1 to 1.0 reduces the number of drivers by almost 40%. This

ncrease in the value of δ′ corresponds to an increase in the maxi-

um allowed deviation from the shortest path equal to 700 meters

or children in T1. However, even with δ′ = 1 . 0 no student in our

olutions walks more than 2.4 kilometers. 

Fig. 2 shows the solution for D2S 1 on a real-world instance with

2 nodes (35 children, 2 children in locations 5, 8 and 23), δ′ = 1 . 0

nd ρ = 5 . Nine drivers are used, one for each line. The initial loca-

ions of the drivers are marked by black nodes. Two line mergings

re performed to reduce the second component of the objective

unction: the red line merges with the green one at node 3 while

he gray and the purple lines join together at node 31. 

For D2S 2 we performed two distinct batches of tests, one with

rivers randomly located over the nodes in T3 and another us-

ng real locations of potential volunteers. Performance-wise differ-

nces between the two tests are minimal. On both tests the MILP

odel was able to reach the optimal solution in all instances with

 = 32 and in instances with n = 116 and υ ≥ 1 . 5 . The column gen-

ration procedure terminates within the time-limit in all instances

ut one. 

Looking at the quality and structure of the solutions, the differ-

nces are more evident. The position of drivers is crucial in or-

er to achieve a good quality solution, in particular when only

ew drivers are available ( υ ≤ 1 . 5 , ρ = 10 ). The improvement in

he first component of the objective function � is on average 30%

hen drivers are selected in T3. This may lead to situations, like

nstance W004, where, when volunteers’ locations are given, chil-

ren walk on average 2.6 kilometers, while with drivers located in

3 they walk only 1.4 kilometers on average. 

A comparison of the results obtained on instance W004 is de-

icted in Figs. 3 and 4 . In this instance there are 5 drivers located

n the black nodes on the map, υ = 1 . 2 and ρ = 10 . Three of the

olunteers live within 700 from school (T1) and so they must take

 long detour from their shortest path in order to pick up children

n their way to school. This, considered the min/max structure of

he objective function, has a detrimental effect on the yellow line.

ndeed, as its driver lives about 1.9 kilometers from school and

= 3 . 22 , the driver could walk up to 6.2 kilometers without any

mpact on the objective function. Clearly, in order to provide an ac-

eptable solution for this instance either more drivers or different

tarting locations must be considered. If randomly selected drivers

n T3 are used instead of volunteers, the solution (see Fig. 4 ) is far

ore reasonable; indeed, as � = 1 . 73 , the driver of the yellow line

ill not walk more than 3.2 kilometers. 

Finally, it is worth noting that heuristic solutions are on aver-

ge within 10% from the best ones. This corresponds to an increase

f less than 100 meters in the average walking distance and it is

btained within a fraction of the computational time required by

oth models. 
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The complete list of the results achieved on real-world scenar-

os for D2S 1 and D2S 2 is reported in the supplementary material

vailable online (see Tables 11, 12 and 13). 

. Conclusions 

This paper studies the problem of designing walking bus lines

ccording to a new paradigm. The walking bus analyzed here is a

roposal born within a project funded by the Italian Environment

epartment to shift rides from private cars to more sustainable

odes in the trip from home to school. The idea diverges from

he classical walking bus services since it produces Door to School

tineraries that can potentially attract more users. The benefit of

aving efficient Door to School lines is twofold. In the short term,

t reduces traffic congestion in front of the school, with positive

ffects on safety and health. In the long term, it induces a behav-

oral change and raises the sustainable mobility awareness of next

eneration citizens. 

We showed that the peculiarities of the problem make it dif-

erent from previously studied problems, such as the school bus

ine planning. The two variants of the problem take into account

pecific practical settings arising from the case study. In one case

he main objective is minimizing the number of drivers, which is

 major concern when the cost for the accompanying persons is in

harge of the school administration. Since it is a walking service,

here is an explicit constraint on the maximum deviations from the

alking time of the shortest itinerary for each child. The second

ase arises when the drivers are volunteers. Thus, the drivers and

heir starting locations are given and the objective is to minimize

he maximum deviation from the shortest path walking time. In

oth variants, the feature that makes the problem interesting from

 combinatorial optimization point of view is the upper bound on

he number of children per driver. Indeed, this constraint makes

t profitable to merge lines at some intermediate point and join

esidual capacity. 

In order to exploit this feature we proposed three different ap-

roaches. The first is an arc model that is fed to a commercial

olver. The second one is a path model that is tackled with a col-

mn generation approach. The third one is a heuristic procedure

hat identifies a subgraph on which the arc model can be quickly

olved. While it has been possible to apply all the three approaches

o the first variant of the problem, the min-max nature of the ob-

ective function of the second one makes the pricing sub-problem

articularly inefficient to be solved, as confirmed by the poor per-

ormance of the column generation based solution approach. 

The outcomes of the experiments are interesting. Though there

s not a clear dominance regarding solution quality, the application

etting could dictate the best solution strategy to adopt according

o the available computing time. Every school year the lines should

e pre-planned to forecast the need for drivers. In that case run-

ing time is not that critical and a few hours can be devoted to

he search for a good solution. However, the Door to School ser-

ice tends to be extremely dynamic regarding children and drivers

s well. It could be necessary to recompute the lines on a daily

ase, when real time information becomes available. In such a

ase the heuristic approach provides a flexible and effective tool

o recompute the lines affected by the changes. Not only demand

nd available drivers may vary, though; updated information con-

erning walkability may arise from children and drivers reporting

hanging safety conditions along the lines, thus triggering a modi-

cation on the walkability parameters of the mathematical models.

his implies that either a general solution is re-optimized to con-

ider the changes, or new lines are recomputed from scratch. Hav-

ng a variety of methods allows the planner to choose each time

he most suitable one, knowing the size of the problem, the actual

emand, and the available human and material resources. 
onalized walking bus service requiring optimized route decisions: 
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Supplementary material associated with this article can be
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