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Optical fibres constitute a unique ground to investigate one of the most prolific and
controversial discovery of modern physics, namely the Fermi-Pasta-Ulam (FPU) recur-
rence, which becomes manifest as the growth and decay cycles of a comb of sideband
pairs from a weakly modulated pump, occurring via modulational instability (MI). To
date, however, the genuine spontaneous symmetry-breaking nature of the MI recur-
rence was never observed (in any area of physics) due to intrinsic limitations of the
experimental realizations. In this work, we overcome such limitations by implement-
ing a novel experimental technique which allows us to reconstruct the longitudinal
evolution in amplitude and phase of frequency modes via heterodyne detection of the
backscattered light. As a result, we clearly observe how the control of the input
modulation seed results into qualitatively different types of FPU recursive behavior
associated with the spontaneously broken symmetry.

The fact that nonlinear systems with several modes 
exhibit recurrence to the initial state after complex cou-
pling dynamics, instead of equipartition, is known as the 
FPU paradox [1, 2]. After several decades of research, the 
emerging picture is that the equipartition is eventually 
reached, though over extremely long times, whereas re-
currences dominate the behavior over shorter time scales 
[3]. In dispersive and nonlinear systems that represent 
the continuous limit of the oscillator chains originally 
considered by FPU, a similar behavior is envisaged. In 
particular, in optical fibres where the propagation is ruled 
by the nonlinear Schrödinger equation (NLSE), FPU re-
currence is triggered by the universal phenomenon of MI 
[4], i.e. the exponential growth of a modulation at the 
expense of a strong pump. MI induces a seeded modula-
tion frequency to be amplified along with its harmonics 
via multiwave mixing to form a spectral triangular comb, 
until the process is reversed leading to FPU recurrence [5]. 
To date, in single-pass optical experiments, obser-vations 
are limited to the first recurrence cycle [6, 7], whereas the 
long term dynamics is conjectured to lead to a 
thermalized state owing to the role played by amplified 
noise [8].

The investigation of such phenomena are attracting a 
tremendous interest in optics [9–23], boosted by their 
strong link with the formation of deterministic breathers 
[20], statistics of rogue waves [22, 23], supercontinuum 
generation [21], turbulence [9, 12], and frequency combs 
in microresonators [10]. Yet, in this context, the essen-
tial fact that nonlinear MI does not involve a simple re-
currence, but rather a complicated phase-space structure 
[24–27] associated with spontaneous symmetry breaking 
[28], was never observed. The signature of such structure 
is the occurrence of two type of qualitatively different re-

currences that are accessible under the same operating
conditions. This, however, was eluded so far due to fun-
damental limitations in the experiments. The major one
is represented by the losses which prevents the obser-
vation of both type of recurrence, as recently shown in
water wave experiments [29] (which are also affected by
higher-order effects [30]). An additional limitation, in fi-
bre optics, comes from the need to measure the longitudi-
nal variation of the phases of the mixing products, which
turns out to be extremely challenging. In this paper we
overcome both of such limitations in a fibre experiment,
introducing a (i) loss compensation scheme, and (ii) a
novel measurement technique which allows to map the
powers and the relevant phases along the fibre. As a re-
sult we clearly observe for the first time the signature of
the spontaneously broken symmetry of FPU recurrence.

The MI and its recurrent FPU stage are described by
the NLSE that rules the propagation of the electric field
envelope E(Z, T ) in the anomalous dispersion regime of
an optical fibre
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where γ is the nonlinear coefficient, β2 is the negative
(anomalous) group-velocity dispersion, Z is the distance,
and T is the retarded time. According to Eq. (1), MI
involves the growth with exponential gain g(ω) [see Fig.
1(a)] of a modulation with frequency fm (sideband pair
with frequency detuning ±fm) at the expense of a con-
tinuous wave pump with power P , provided that the
normalized frequency ω = 2πfm

√
|β2|/γP is such that

ω ≤ 2. When such instability is seeded, FPU cycles of
amplification and back-conversion occur [6, 24, 26, 27].
In order to understand the richness and complexity of
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FIG. 1. Spontaneous symmetry-breaking of MI and FPU: (a) MI gain vs. ω and sketch of the equivalent potential
associated to the mixing process, exhibiting spontaneous symmetry breaking (change from single to double well), when going
across the onset of MI at ω = 2; (b) phase-plane evolutions in the plane (x, y) ≡ (η1 cos ∆φ, η1 sin ∆φ), as obtained from the
simple oscillator (Hamiltonian in Eq. (2), where ω = 1.25 as in the experiment) describing the interaction of the pump and
first-order sidebands, as from the schematic drawing of the comb; the separatrix (dashed green line) and the inner and outer
orbits (thick orange and blue solid lines) correspond to motions characterized by the total energy levels reported with the same
color in (a); (c,d,e) Projections of NLSE trajectories (open dots) on the 3WM phase plane (x, y) for weak initial modulation
with different initial phase: (c) ∆φ0 = 0; (d) ∆φ0 = π/2; (e) ∆φ0 = −0.285π; (f,g,h) Corresponding full temporal evolutions
obtained from the NLSE showing (f) in-phase and (g) out-of-phase recurrences, and (h) the separatrix or Akhmediev breather.

In (f,g,h) distance and time are in units nonlinear length Znl = (γP )−1 and characteristic time T0 =
√
|β2|Znl, respectively.

the recurrence, the key point is that the onset of MI im-
plies a spontaneous symmetry breaking, as sketched in
Fig. 1(a). Indeed the mixing process is equivalent to
the motion of an ideal particle in the potential sketched
in Fig. 1(a), where the equilibrium in the origin corre-
sponds to the pump wave. Decreasing ω across the onset
of MI, induces the potential to undergo a spontaneous
symmetry breaking transition from a single well (with
minimum representing the stable pump for ω > 2) to a
double well for ω < 2, where the pump exchanges its sta-
bility with two new minima. The simplest formalization
of this concept, which allows for emphasizing the promi-
nent role of the phases in the dynamics, is the truncation
to three-wave mixing (3WM) [27, 31], according to which
the mixing can be described in terms of a one-dimensional

oscillator with Hamiltonian (see methods)

H = η1(1− η1) cos(2∆φ) +
(
1− ω2/2

)
η1 − 3η21/4, (2)

where η1 is the power fraction of the first-order (n = 1) 
sidebands and ∆φ = φ0 − φ1 is the only effective phase, 
φ0 and φ1 being the pump and sideband phase, respec-
tively. The level curves of H, shown in Fig. 1(b) in 
the plane (x, y) ≡ (η1 cos ∆φ, η1 sin ∆φ) clearly show the 
double-loop structure characteristic of the motion in a 
double-well potential in x. The centres or stable points C0 
and Cπ correspond to the minima of the potential and are 
the 3WM representation of invariant modulated waves 
with equal modulation depth and opposite side-band 
phase ∆φ = 0 or ∆φ = π (relative to the pump). In time 
domain they stand for identical wavetrains except for a 
temporal shift of half period π/ω due to such shift.
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A separatrix or homoclinic loop (dashed green curve in 
Fig. 1(b)) divides the possible trajectories into: (i) inner 
orbits (thick orange curves in Fig. 1(b), corresponding to 
evolutions in a single well) surrounding only one stable 
centre, either C0 or Cπ, thus experiencing phase varia-
tions bounded in one (right or left) semiplane; (ii) outer 
orbits or double-well evolutions (thick blue curve in Fig. 
1(b)), surrounding both stable centres and hence featur-
ing unconstrained phase variations in the whole range [0, 
2π]. In particular, in this case, maximum depletion is 
obtained in alternation between ∆φ = 0 and ∆φ = π, 
corresponding to temporal wavetrains mutually shifted by 
half period.
We are interested in the so-called homoclinic crossing 
phenomenon [24, 26, 27], that is, switching between type 
(i) and type (ii) orbits controlled by the launching con-
ditions. For a weakly modulated pump, this occurs in the 
whole range of unstable frequencies, by changing the 
input phase ∆φ0 = ∆φ(z = 0) from amplitude mod-
ulation ∆φ0 = 0 to frequency modulation ∆φ0 = π/2 
(other conditions for switching, though frequency depen-
dent, are discussed in the supplementary information). 
We show this by means of direct numerical integration of 
the NLSE. Figure 1(c,d,e) report indeed the projec-tions 
of the NLSE evolutions on the 3WM phase-plane for (c) 
∆φ0 = 0; (d) ∆φ0 = π/2; (e) ∆φ0 = −0.285π (separatrix). 
Apart from slight quantitative deviations (due to the 
neglected higher-order sidebands), the or-bits present 
exactly the same qualitative features ex-pected from 
3WM. The corresponding spatio-temporal evolutions 
displayed in Fig. 1(f,g,h) show that homo-clinic crossing 
implies, as expected, switching from the unshifted 
recurrences shown in Fig. 1(f) to the alter-nance of 
patterns shown in Fig. 1(g) induced by the shift ∆φ = π, 
periodically acquired only by the double loop orbits. 
Finally, the separatrix in Fig. 1(h) repre-sents the well 
known exact solution of the NLSE known as Akhmediev 
breather [20, 21, 23, 24, 27].

In order to further show that the qualitatively different 
FPU recurrences associated with the homoclinic crossing 
can be detected in an optical fibre, we reported in Fig. 2 
further simulations based on the full NLSE with realistic 
real-world values. We find that, for a very weak input 
modulation (pump to sideband power ratio of 20 dB, or 
η1 = 0.98), nearly 18 km of optical fibre are necessary 
to see two recurrences with ∆φ0 = 0, as shown in Fig. 
2(a-d), whereas with ∆φ0 = π/2 only one full recurrence 
is completed over the same length. Indeed, while in both 
cases two cycles of conversion and back-conversion are 
achieved in terms of powers [see full spectra in Fig. 2(c,g) 
or power fractions in Fig. 2(a,e)], when ∆φ0 = π/2 the 
phase, which spans the whole range [0, 2π], recurs only 
over a double distance. Indeed, in the latter case, the ini-
tial condition in phase plane is recovered only after mov-
ing through the double loop shown in Fig. 2(h), which 
require nearly twice the distance needed to move through

FIG. 2. Homoclinic crossing and period doubling in 
fibre FPU recurrence: Evolutions along fibre distance 
of (a,e) pump and sidebands powers; (b,f) effective phase 
∆φ(Z); (c,g) full MI power spectrum. (d, h) phase-plane por-
trait of the evolution. Upper row (a-d) and lower row (e-h) 
panels differ only for the input relative phase, set to ∆φ0 = 0 
(amplitude modulation) and ∆φ0 = π/2 (frequency modu-
lation), respectively. fibre parameters: β2 = − 19 ps2/km, 
γ = 1.3 (W km)−1, modulation frequency fm = 35 GHz, 
pump power P = 450 mW, pump to signal input power ra-
tio is equal to 20 dB. All power plots are normalized to their 
respective maxima.

a single loop as in Fig. 2(d). Interestingly, in both cases 
the weakness of the input modulation induces the conver-
sion process, which is very rapid around the maximum 
extension of the comb, to strongly slow down near the re-
currences (see the plateau in power in Fig. 2(a,e)) when 
the point passes, in phase-plane, close to the saddle point 
(i.e., the unstable pump), a feature which is universal for 
nonlinear oscillators.

In order to have an almost real time access to the 
ongoing dynamics along the fibre, we have developed a 
multi-channel vector optical time domain reflectometer 
(VOTDR). It is optimized for non-linear measurements. 
Indeed, Rayleigh backscattered light excited from a co-
herent light source exhibits a jagged appearance due to 
the fading phenomenon. It originates from the random 
state of polarization of the scattered light and from a 
speckle-like phenomenon due to the huge number of scat-
tered waves involved in the process [32]. To overcome this 
strong limitation, we perform an error correction calibra-
tion thanks to a double pulse sequence. A strong signal 
pulse is first launched inside the experiment fibre (SMF-
28) and a weak reference pulse, typically attenuated by 
13 dB, shortly follows. We assume that the weak pulse 
and its backscattered light experiences similar linear ef-
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FIG. 3. The novel measurement technique: Basic dia-
gram of the experimental setup. f1,2 are the frequencies of
the main laser and the local oscillator laser, respectively, with
∆F = f1 − f2 = 800 MHz. Here fm = 35 GHz is the input
modulation frequency (i.e., pump frequency at f1, input side-
band frequencies at f1 ± fm). MI evolution is studied in the
L = 7.7 km long single mode fibre (SMF28). The backscat-
tered signal from the SMF28 goes through a circulator and is
analyzed via heterodyning (beating with the local oscillator)
and then filtered (filters A and B) to isolate the power and
phase evolutions of the pump and the first order sideband in
the MI spectral comb.

fects than the strong one, but negligible nonlinear ef-
fects. We then correct the amplitude and phase of each
strong backscattered wave with those of the weak one.
Fig. 3 shows a simplified overview of the experimental
setup, see supplementary information for a more thor-
ough discussion and description. After the pulse mod-
ulation stage, the incoming light is phase modulated at
fm = 35 GHz in order to generate two phase-locked sym-
metric side bands to initiate the FPU process. Thanks to
a commercial Waveshaper, we have a full arbitrary con-
trol of the relative phase and intensity of these side bands
with respect to the carrier, i.e. the pump. Addition-
ally, along the experiment fibre, a counter-propagating
Raman pump (1480 nm) accurately compensates the fi-
bre’s linear losses. On the detection side, the Rayleigh
backscattered light is mixed with a local oscillator (LO).
To perform a coherent heterodyne detection, the LO is
phased locked and detuned by ∆F = 800 MHz with
respect to the pump. In order to provide a local oscilla-
tor to each optical component of interest, the LO is also
modulated at fm = 35 GHz. Since they contain all the
information to describe the whole dynamics of our system
(see methods), the analysis is restricted to the evolution
of the pump and the signal (first order sideband). The
time of flight of their beat-note with the modulated LO
is isolated with an optical filter, and logged with a real
time oscilloscope for further demodulation processing.

In the experiment, the modulation frequency is set to
fm = 35 GHz, i.e. slightly below the peak MI gain
(nonlinear phase matching) frequency at 40 GHz, and

FIG. 4. Observed recurrences and their phase-plane 
projections: (a,b) spectra at (a) the input of the SMF28 (b) 
triangular MI spectra at maximal compression point. Evolu-
tion along the fibre length of (c,f) the pump power (dashed 
lines) and the first sideband pair power (dotted lines); (d, g) 
the relative phase ∆φ(z). (e,h) Projections of the evolutions in 
the 3WM phase plane (the insets show the corresponding 
evolutions obtained numerically from the NLSE). Numerical 
simulations are depicted in black lines and experiments in 
solid rainbow lines. (c,d,e) and (f,g,h) differ only for the ini-
tial relative phase of the modulation ∆φ0 = 0 and ∆φ0 = π/2, 
respectively. Parameters as in Fig. 2 except for L = 7.7 km 
and pump-signal power ratio is equal to 8.5 dB. All power 
plots are normalized to their respective maxima.

such that all the harmonics nfm n = 2, 3, . . . are sta-
ble, thereby experiencing synchronous growth and decay 
with the main injected pair [17]. The input spectrum in 
the SMF28 [see Fig. 4(a)] clearly shows the three main 
input frequencies, along with very weak (< −25 dB) har-
monics due to residual FWM in the fibers used to carry 
the signal to the main SMF28 fiber. Figure. 4(b) show 
the output triangular spectrum under maximal temporal 
compression. By means of our set-up we have recorded 
experimentally the longitudinal evolutions of the powers 
of the pump and of the first-order sideband and their rel-
ative phase for two different initial pump-signal relative 
phase values (∆φ0 = 0 and ∆φ0 = π/2). All the evo-
lutions are displayed in Fig. 4(c-h) in solid rainbow lines. 
Ideally, one should use a very weak modulation at the 
input. However this results into a large conversion and 
recurrence distances, which in turn makes the compensa-
tion scheme more demanding due to the increased losses
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and enhances the impact of noise amplification due to 
spontaneous MI, which is ultimately responsible for ther-
malization [8]. In our experiment, the trade-off between a 
weak modulation and reasonable fiber length has led us to 
operate with a pump to sideband power ratio of 8.5 dB 
(compared with 20 dB in the ideal case of Fig. 2), which 
allowed for scaling down two recurrence periods below the 
length of 7.7 km of our fibre. Noteworthy, such a stronger 
modulation results in a less pronounced plateau in power 
(see Fig. 4(c,f), and compare with Fig. 4(a,e)), due to 
passages at larger distances from the saddle point (i.e., the 
pump) in phase plane. Interestingly enough, by 
comparing Fig. 4(c) and (d), we notice a nearly perfect re-
currence in terms of power levels for ∆φ0 = π/2, whereas 
the recurrence is within 20% for ∆φ0 = 0, in spite of the 
same level of Raman pump to compensate for the losses. 
We mainly attribute this to the fact that, in the presence 
of strong two sideband modulation, the trajectories fol-
lowed by the injected amplitude modulation (∆φ0 = 0) 
show a stronger deviation against the ideal case of weak 
modulation (Fig. 2), compared with the case of the in-
jected frequency modulation (∆φ0 = π/2). This is in-deed 
evident also from the simulated trajectories (black curves) 
in Fig. 4(c,f), which highlight the non-ideal be-havior 
which is also manifest from a slight spatial shift between 
the dip of the pump and the peak of the side-bands as well 
as a certain degree of asymmetry between the first cycle 
and the second, which also reflects in the non perfect 
superposition of phase-space trajectories in phase-plane 
(compare Fig. 2(d) and Fig. 4(e)).

Nonetheless we emphasize that the measured data 
clearly highlight the two qualitatively different type of 
recurrences. Indeed the range of variation of the phase 
is bounded between ±1 rad for ∆φ0 = 0 [see Fig.4(d)], 
whereas for ∆φ0 = π/2 the phase turns out to span 
nearly the whole range of 2π over a single recurrence [see 
Fig. 4(g)]. The evidence for the impact of the relative ini-
tial phase is even more clear by reconstructing the phase 
portrait evolutions. For ∆φ0 = 0, as shown in Fig. 4(e), 
the evolution exhibit more than two quasi-periodic orbits 
spanning only half of the phase plane, as predicted in the 
ideal scenario (Fig. 2(a-d)). Conversely, for ∆φ0 = π/2, 
the phase plane evolution in Fig. 4(h) span the whole 
phase plane making two loops which are nearly symmet-
ric around the vertical axis. All the results are confirmed 
by numerical simulations of the NLSE (1), with a pretty 
good agreement (solid black lines). We have also per-
formed additional measurements corresponding to initial 
conditions located on the other cardinal points of the 
phase plane, i.e. ∆φ0 = π, 3π/2, which show good agree-
ment with the expected dynamics. Indeed we found that 
symmetric initial conditions in phase plane, ∆φ0 = ±π/2 
and ∆φ0 = 0, π, respectively, give almost symmetric or-
bits in the phase plane (see supplementary information). 
Finally, we have also provided further evidence for homo-
clinic crossing by performing additional measurements

obtained by varying the phase across the critical value 
fixed by the slope of the separatrix near the origin (see 
supplementary information).

We believe that our experimental technique opens new 
perspectives in the characterization of parametric mix-ing 
processes in guided wave optics, including the regime of 
phase-sensitive amplification. On the other hand, our 
results pave the way towards a more complete under-
standing of the extremely rich and formidably complex 
phenomenon of FPU recurrence. In this respect, it must 
be noticed that most of the recent progresses toward un-
derstanding the recurrence and its deterioration have the-
oretical nature (see e.g. [3, 8, 9] and references therein). 
Conversely, very few experimental tests exist that deepen 
the mechanisms of mode interaction and the recurrence in 
a truly conservative (Hamiltonian) setting, as orig-inally 
proposed by FPU. Our results establish optical fibres to 
be a viable platform for investigating all as-pects of mode 
interactions including the role of the mu-tual phases, at 
the same time highlighting for the first time the role of 
spontaneous symmetry breaking and the existence of a 
complex homoclinic structure in FPU dy-namics ruled by 
MI. This opens the doors to further experimental 
investigations that range from the mech-anisms of 
thermalization and their universality [8, 9], the 
observation of higher-order separatrices, their associated 
phase plane dynamics and their role in rogue wave forma-
tion [22] and supercontinuum generation, the link with 
new mechanisms of soliton-mediated recurrences in fibres 
[33], as well as the transition to chaos induced around the 
homoclinic structure (homoclinic chaos) in strongly per-
turbed structures such as fibre passive cavities and mi-
croresonators for frequency comb generation [10], where 
MI remains a key driving mechanism.

METHODS

Numerics: The simulations reported in Fig. 1-2 are
made by integrating the NLSE [Eq. (1)] with pseu-
dospectral or split-step method with typical grid spacing
∆T = 0.5 ps and ∆Z = 5 cm. Boundary conditions are
implicitly imposed on a temporal windows which take
several periods of the modulation period Tm = 1/fm.
The initial condition is set to E(Z, T ) =

√
Pp +√

Ps exp(−i∆φ0) [exp(i2πfmT ) + exp(−i2πfmT )], where 
Pp and Ps are the pump and sideband power, respectively, 
which fix the pump to signal power ratio 10 log10 Pp/Ps 
given in the text (20 dB in Fig. 2 or 8.5 dB in Fig. 4, 
corresponding to Ps = 4.5 mW and Ps = 63.6 mW, 
respectively). We have also checked numerically that 
higher order dispersion terms, as well as Raman effect 
have a negligible impact on our results and can be 
neglected, so that the whole dynamics of the system can 
be accurately captured by the NLSE.

Theory: Starting from the NLSE, the description
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of the nonlinear stage of MI in term of the reduced
oscillator (2), can be obtained as follows. The
comb that develops from depleted MI is of the form
E(Z, T ) =

√
P
∑
n an(Z) exp(i2πfmT ), where the sum

is over all integers n = . . . ,−2,−1, 0, 1, 2, . . ., fm is
the input modulation frequency and P is the injected
(conserved) power, a0(Z) and a±|n|(Z) are the complex
amplitudes of the pump and the n-th sideband pair,
respectively. Since the spectrum is triangular [21] with
strong decay between adjacent sidebands of increasing
order (|an+1|2/|an|2(dB) = 10 log10(2 − ω)/(2 + ω)
at conversion apex, e.g. ∼ −8 dB at peak gain
ω =

√
2 [15]), we can accurately approximate the

process by means of three modes (3WM, n = −1, 0, 1),
neglecting higher-order sidebands |n| ≥ 2 that remain
enslaved and phase-locked to the main pair n = ±1
upon propagation. Hence, further assuming symmet-
ric sidebands (a1 = a−1) as in the experiment, we
plug into the NLSE (1) the 3WM ansatz E(Z, T ) =√
P
{
a0(Z) + a1(Z) [exp(i2πfmT ) + exp(−i2πfmT )] /

√
2
}

,
and obtain coupled equations by grouping terms at the
same frequency. Then, following the approach developed
in Refs. [27, 31], we exploit the Hamiltonian structure of
the resulting system of equations to reduce them to a one
degree of freedom oscillator in terms of the conjugated
variables η1 = |a1|2 = 1− |a0|2 and ∆φ = φ0−φ1, which
are found to obey the following evolution equations

dη1
dz

=
∂H

∂∆φ
= −2η1(1− η1) sin(2∆φ),

(3)

d∆φ

dz
= −∂H

∂η1
=

(
1− ω2

2

)
− 3

2
η1 + (1− 2η1) cos(2∆φ),

where z = Z/Znl is the normalized distance in units
of the nonlinear length Znl = (γP )−1. Clearly, H =
H(η1,∆φ) in Eqs. (3) takes the expression of the Hamil-
tonian reported in Eq. (2). The invariance of H along
the motion allows to draw the level curves reported in
Fig. 1(b).

Experiment: Two major challenges faced in the exper-
iment are: (i) the loss compensation in the 7.7 km long
SMF-28, that would induce all the evolutions to drop on
phase-shifted evolution [29], thus hiding the broken sym-
metry of FPU; (ii) to overcome the fading phenomenon
that is likely to occur when a quasi-monochromatic wave
is launched in an optical fibre [32]. The losses of the
SMF-28 are almost perfectly compensated by means of a
scheme borrowed by telecommunication systems, which
exploits a counter-propaganting wave centred at 1480 nm
acting as a Raman pump (see Fig. 3 and supplemental
material for further informations). Concerning the sec-
ond issue, we remind that a random noise in amplitude
and phase is superimposed on the backscattered light
originating from variations of the state of the polarisation
of the light and/or from local thermo-mechanical fluctu-

ations of the scattering volume. We removed the contri-
bution of this detrimental linear phenomenon on the re-
flected pulse as follows. We launch two consecutive pulses
in the fibre. The first one is strong and is responsible for
the nonlinear dynamics, whereas a following weaker one
(-13 dB) experiences essentially linear effects. These lin-
ear effects are similar to those experienced by the first
strong pulse because the time delay between these pulses
is extremely short (1 ms) compared to the characteristic
response time of thermo-mechanical fluctuations in the
fibre. The amplitude and the phase of the backscattered
strong signal is then corrected by means of the weak one.
This scheme allows to effectively remove the contribution
of the fading effect (the effectiveness of the scheme is fur-
ther discussed in the supplemental, showing in Fig. S3 a
typical trace before and after the correction).

The drawback of this method is that all linear con-
tributions are removed, including the phase due to the
group velocity dispersion acquired during the propaga-
tion. This contribution is linked to the linear phase mis-
match term of the four-photon process underlying the MI
process, and can not be neglected. However, it can be
easily restored by adding to the compensated phase evo-
lution the characteristic phase term arising from GVD,
i.e. 1

2β2(2πfm)2Z.
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