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Abstract 6 

This paper proposes the application of three different methods for preserving the correlation between 7 

duration and intensity of synthetically generated water demand pulses. The first two methods, i.e., the 8 

Iman and Canover method and the Gaussian copula respectively, are derived from known statistical 9 

approaches, though they had never been applied to the context of demand pulse generation. The third is a 10 

novel methodology developed in this work and is a variation in the Gaussian copula approach. Poisson 11 

models fitted with the methods are applied to reproduce the measured pulses in one household, with 12 

parameters being obtained with the method of moments. Comparisons are made with another method 13 

previously proposed in the scientific literature, showing that the three methods have similar effectiveness 14 

and are applicable under more general conditions. 15 
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Introduction 20 

In the last two decades, residential water demand generation has been extensively investigated. Various 21 

models (Buchberger and Wu, 1995; Buchberger and Wells, 1996; Guercio et al., 2001; Alvisi et al., 2003; 22 

Garcia et al., 2004; Buchberger et al., 2003; Alcocer et al., 2006; Blokker et al., 2010; Alcocer-Yamanaka 23 

and Tzatchkov, 2012; Alvisi et al., 2014; Creaco et al., 2015) have been proposed to generate water 24 

demand pulses at the scale of individual user with fine temporal resolution (down to 1 sec). In fact, this 25 

modelling is useful in the framework of the “bottom-up” approach (Walski et al., 2003) for network 26 

demand definition, since the generated pulses can be aggregated temporally and spatially to yield nodal 27 

demands inside water distribution models. Unlike other demand generation models, which produce 28 

demand values at prefixed time steps, pulse generation models generate the time arrival, duration and 29 

intensity of each pulse. Therefore, the local flow field given by these models can also be used as an input 30 

to water-quality models that require ultrafine temporal and spatial resolutions to predict the fate of 31 

contaminants moving through municipal distribution systems (Buchberger and Wu, 1995). 32 

Some of these models (Buchberger and Wu, 1995; Buchberger and  Wells, 1996; Guercio et al., 2001; 33 

Buchberger et al., 2003; Garcia et al., 2004; Alcocer et al., 2006; Creaco et al., 2015) use the Poisson 34 

pulse model for the generation of pulse time arrivals, whereas pulse durations and intensities are 35 

generated using suitable probability distributions. In most cases (Buchberger and  Wu, 1995; Buchberger 36 

and  Wells, 1996; Guercio et al., 2001; Buchberger et al., 2003; Garcia et al., 2004; Alcocer et al., 2006), 37 

pulse duration and intensity were considered to be independent random variables. However, Creaco et al. 38 

(2015) have recently shown that a non-negligible positive correlation exists between the two variables. 39 

The same authors then postulated that this has to be considered in order to obtain synthetic water demand 40 

pulses that are more consistent in terms of overall daily water demand volumes, while respecting 41 

statistical properties of measured demand pulses. In particular, the Authors’ method is based on the use of 42 

a bivariate probability distribution (in particular, the bivariate normal distribution). However, researchers 43 

may choose to represent pulse durations and intensities through marginal probability distributions that do 44 

not provide for any bivariate distribution modelling. For example, this was previously done by Guercio et 45 

al. (2001) and Garcia et al. (2004), who used the normal and exponential distributions and the Weibull 46 



and exponential distributions respectively. Therefore, the issue of how correlation can be preserved in a 47 

more general context, i.e. when a bivariate probability distribution does not exist, needs to be dealt with. 48 

In this paper, three methods are described that can be applied to obtain correlated pulse intensities and 49 

durations for any marginal distribution used to represent the two variables as independent random 50 

variables. 51 

In the following sections, first the methodologies are described, then they are applied to a literature case 52 

study and a comparison with the method of Creaco et al. (2015) is also provided. Finally, results are 53 

analysed and conclusions are drawn. 54 

 55 

Methodology 56 

Hereinafter, first the typical Poisson model with no correlation between pulse intensity and duration is 57 

described. Then, the methods used to preserve correlation are presented, followed by the model 58 

parameter estimation. 59 

 60 

Poisson model 61 

Time axis is sampled with a certain time resolution t. The probability P(z) of having z generated pulses 62 

in the time interval t that follows the generic time  is described by the Poisson distribution (Buchberger 63 

and Wu, 1995): 64 
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where rate parameter λ represents the expected number of “events” or “arrivals” that occur per unit time. 66 

For each pulse generated, the associate duration T and intensity I are generated using suitable probability 67 

distributions. As an example, the density functions of the beta and gamma distributions (Johnson and 68 

Bhattacharyya, 1992) are provided in eqs. (2) and (3) respectively: 69 
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where x is the random variable, equal to T or I, depending on which variable has to be generated;  and  72 

are the parameters of the beta distribution and B=B(,) is the beta function; k and  are the parameters 73 

of the gamma distribution and =(k) is the gamma function. Whereas the gamma distribution is defined 74 

on the interval [0,+∞[, the beta distribution is defined on the interval [xmin, xmax]. Therefore, in order for 75 

the latter to be used for the generation of either the duration or the intensity, the interval [xmin,xmax] has to 76 

be defined. In any case, the cumulative distribution function F that ranges from 0 to 1 can be obtained as 77 

(Johnson and Bhattacharyya, 1992): 78 

   
0

x

F x f x dx   (4) 79 

After distribution parameters values have been fixed, values of the generic random variable can be 80 

sampled by generating for F random numbers in the range [0,1] and then deriving the corresponding 81 

elements of x by inverting eq. (4). 82 

If a Poisson model is used with constant parameter values to generate water demand pulses for a certain 83 

time duration, a sequence of n pulses, each of which featuring its own time arrival i, duration Ti and 84 

intensity Ii, would be obtained, as shown in Table 1. 85 

Variables T and I, as they appear in columns 2 and 3 of Table 1, are independent random variables; the 86 

corresponding correlation matrix C (see eq. 5) should thus feature an expected value of , Pearson 87 

correlation coefficient out of the diagonal, equal to 0. 88 
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 90 

Preserving correlation 91 

Method 1: Iman and Canover (IC) (1982) 92 

The Iman and Canover (1982) procedure is made up of two steps. In step 1, variables T and I are 93 

generated as independent random variables, as is described above. This results in matrix X, which is in 94 



fact made up of columns 2 and 3 of Table 1; the corresponding correlation matrix C is given by eq. (5). 95 

Step 2 is then applied to find a new pairing for these variables, which enables the desired/observed 96 

correlation ep value to be preserved between the variables. 97 

In step 2, the following matrix operations are performed, which first entail constructing matrix Cp related 98 

to the desired/observed correlation ep to be preserved: 99 
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100 

Then, matrices L and Lp can be obtained as lower triangular matrices from the Cholesky decomposition 101 

(Press et al., 1990) of matrices C and Cp respectively.  102 

The new matrix X1, which features a correlation matrix equal to Cp in eq. (6), has to be calculated as: 103 

 1
T

  1 pX X L L  (7) 104 

The elements of each column of matrix X have to be reordered in order to have the same sorting as the 105 

elements of the corresponding column of matrix X1, thus producing the matrix X2. In this manner, the 106 

matrices X2 and X1 will have the same rank correlation matrix, and, consequently, similar (Pearson) 107 

correlation matrices. Since the application of step 2 simply modifies the sorting of the T and I values and 108 

does not change the values themselves, it preserves the exact form of the marginal distributions on these 109 

variables, as it comes from step 1. 110 

 111 

Method 2: Gaussian copula 112 

Unlike method 1 that is applied to pulse durations and intensities that have already been generated, 113 

method 2 precedes the generation. A further difference lies in the fact that method 2 does not entail 114 

matrix operations. 115 

Method 2 is known as the method of the Gaussian copula (Nelsen, 1999). It is based on generating n 116 

couples of auxiliary random variables y1 and y2 with average values equal to 0 and standard deviations 117 

equal to 1 through the bivariate normal distribution (eqs. 8 and 9): 118 

𝑓(𝑦1, 𝑦2) =
1
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�̇� 1

) (9) 120 

where �̇� represents correlation between y1 and y2. 121 

For each of the n values generated for y1, the value F1 of the cumulative probability of the marginal 122 

distribution can be calculated. In a similar way, for each of the n values generated for y2, the value F2 of 123 

the cumulative probability of the marginal distribution can also be calculated. 124 

The n values of F1 and F2 can be used to sample the probability distributions chosen for pulse durations 125 

and intensities (eq. 4) and then to obtain n couples of T and I. As a result of correlation �̇� imposed 126 

between y1 and y2, a certain degree of correlation is also imposed on T and I. In particular, the resulting 127 

correlation between T and I is a monotonous function of �̇�. Iterative methods can then be applied in order 128 

to determine the suitable value of �̇� that yields the expected correlation ep to be preserved between T and 129 

I. 130 

 131 

Method 3 132 

Method 3 is a modified version of method 2. Similar to the original method, it does not require matrix 133 

operations and is based on the use of the bivariate normal distribution (eqs. 8 and 9). However, following 134 

from method 1, it is applied after a preliminary first step, in which n uncorrelated couples of T and I are 135 

generated. 136 

Then, n couples of y1 and y2 with correlation equal to �̇� are also generated. As in method 2, the 137 

corresponding values of F1 and F2 can be obtained. T and I can be reordered using the same sorting as F1 138 

and F2 respectively. As a result of correlation �̇� imposed between y1 and y2, a certain degree of correlation 139 

is also imposed on T and I. Iterative methods can be applied in order to determine the suitable value of �̇� 140 

that yields the expected correlation ep to be preserved between T and I. 141 

 142 

Parameter estimation 143 

The set of parameters of a Poisson model for pulse generation, in which T and I are generated as 144 

independent random variables, by using either the beta (eq. 2) or the gamma distribution (eq. 3), or using 145 

any kind of 2 parameter probability distribution, is 5: one parameter () for pulse arrival and two 146 



parameters for either of T or I. If correlation between T and I needs to be accounted for, the number of 147 

parameter increases to 6 and correlation ep is the sixth parameter of the model. 148 

As it was done by some authors (Alvisi et al., 2003; Buchberger et al., 2003; Creaco et al., 2015), the 149 

generic day of the month can be subdivided into a certain number of time slots (e.g., 12 bihourly) for 150 

parameter estimation. Robust models can then be obtained by allowing pulse arrival-related parameter  151 

to take on a different value in each daily time slot. Each of the other parameters (in this case, the 152 

parameters related to T and I and correlation ep), instead, is allowed to take on a single value valid for all 153 

the time slots. 154 

For estimating the parameters of the Poisson model, the method of the moments (Hall, 2004) was used, 155 

which consists in setting the values of the parameters equal to the corresponding values in the measured 156 

pulses. 157 

 158 

Applications 159 

Case studies 160 

By making calculations on data collected during an experimental campaign in some households in 161 

Milford, Buchberger et al. (2003) were able to reconstruct, with one second time step resolution, the 162 

water demand pulses which were taking place in these households in the period from April to October 163 

1997. The data made available by the Authors concern pulse duration T, intensity I and volume V=T·I. 164 

As case study in this work, the indoor water demand pulses recorded in one of the households, i.e. 165 

household 2, in the month of April were selected. This case study has already been chosen by Creaco et 166 

al. (2015) on the basis of the regularity of the daily water consumption. The basic statistical parameters 167 

of measured water consumption variables z, T, I, V, D and  are reported in Table 2. 168 

The modelling framework of this paper is aimed at investigating the extent to which the methods 169 

described in this paper for preserving correlation lend themselves to being used inside Poisson models. 170 

Overall, four Poisson models were constructed and compared with two benchmark Poisson models, 171 

hereinafter indicated as models A and B and drawn from the work of Creaco et al. (2015). In particular, 172 

model A features pulse durations and intensities being generated through the bivariate lognormal 173 



distribution. This enables correlation to be obtained between the two variables in this model. Model B 174 

differs from model A in that pulse durations and intensities are generated as independent (uncorrelated) 175 

variables by making use of the lognormal distribution. The four models constructed in this work are 176 

models C-1, C-2, C-3, and D. Models C-1, C-2 and C-3 differ from model A in the way correlation is 177 

preserved. In fact, unlike model A, these models feature adoption of one of the three methods described 178 

hereinabove (methods 1, 2 and 3 respectively). Model D differs from model C-3 in the generation of 179 

pulse durations and intensities, which take place through the beta (eq. 2) and gamma (eq. 3) distributions 180 

respectively, instead of the lognormal distribution. 181 

Overall, applications consisted in 3 phases for each test: 182 

phase 1 – parameter assessment; 183 

phase 2 – generation of synthetic water demand pulses; 184 

phase 3 – analysis of the results of the models and comparison with the observed data. 185 

 186 

Results 187 

Phase 1 188 

The results of phase 1 for models C-1, C-2, C-3 and D are reported in Table 4 and 5. The results for 189 

models A and B, instead, can be found in the work of Creaco et al. (2015). For the analysis of these 190 

tables, it has to be recalled that only  is parametrized in 12 daily time slots; the other parameters, 191 

instead, are assigned a single daily value. The data reported in Tables 4 and 5, related to models C-1, C-2, 192 

C-3 and D, were obtained by applying the method of the moments (Hall, 2004). As was expected, Table 193 

4 shows that the  values obtained in the various time slots are identical for models C-1, C-2, C-3 and D. 194 

This is due to the fact that all these models deal with pulse arrival generation in the same way and they 195 

only differ in the way pulse intensities and durations are generated. In model D, in which the beta 196 

distribution is used to generate pulse durations, the interval [xmin,xmax] was set to [0,850] following 197 

analysis of the experimental pulses. 198 

 199 



Phase 2  200 

The models calibrated in phase 1 were then applied in order to create synthetic demand pulses for one 201 

month (i.e. 30 days - April) for each test. In order to account for the influence of the random seed, each 202 

generation was repeated 100 times. 203 

In each of the models which use one of the methods described hereinabove to preserve correlation 204 

(models C-1, C-2, C-3 and D), the method was applied once at the end of each of the 100 monthly 205 

generations of pulses. 206 

As an example, Figure 1 shows the single realization of the simulated total demand for a typical day at 207 

the scale of 1 sec, obtained by using model C. As expected, the figure shows a higher concentration of 208 

the pulses in the morning and in the late afternoon, when the household occupants usually get up and get 209 

back home after work. Very few pulses are instead generated at nighttime. This is a direct consequence 210 

of the  values in the bihourly time slots. 211 

 212 

Phase 3  213 

A first analysis was made concerning the basic statistical parameters of water consumption variables z, T, 214 

I, V and  derived from the pulses generated by models A-D, in comparison with those of the measured 215 

pulses (see Table 1). This table shows that all the models reproduce well mean(z), mean(T), var(T), 216 

mean(I) and var(I). This is a direct consequence of the goodness of the method of the moments for 217 

parameter calibration.  218 

Correlation  is only preserved in those models which are constructed considering the correlation, i.e. 219 

models A, C-1, C-2, C-3 and D. As expected, model B leads to =0, since the pulse duration and 220 

intensity are generated independently from each other in this model. Similar considerations can be made 221 

with regard to cov(T,I). With regard to , the analysis of Table 1 proves that the methods adopted in 222 

models C-1, C-2, C-3 and D have similar effects to the use of the bivariate distribution in model A. The 223 

advantage for these methods of being also applicable in the cases (see model D) where no bivariate 224 

distribution is available, that is when T and I are represented by two different kinds of marginal 225 

probability distributions, must also be highlighted. As for pulse volume V, only the models that consider 226 



correlation, i.e. A, C-1, C-2, C-3 and D, are those that return consistent values of mean(V), i.e. values of 227 

mean(V) close to the value mean(V)=9.45 L of the measured pulses. As a consequence of this, the same 228 

models provide consistent values of mean (D), i.e. values of mean(D) close to the value of mean(D)=442 229 

L/day associated with the measured pulses. 230 

Another test was then carried out to compare the synthetic water demand pulses generated by means of 231 

the models with the measured water demand pulses in terms of overall daily water demand volume D. In 232 

particular, the total synthetic water demand volume D was calculated for each day in the generic one 233 

month long pulse generation of each test. Then, the cumulative frequency curve was constructed 234 

reporting, for each value of D, the Weibull cumulative frequency F of days in the month that feature a 235 

value of the overall daily water demand volume lower than or equal to D. Since each model application 236 

comprises 100 one-month long pulse generations, a band of synthetic cumulative frequencies was then 237 

obtained for each test. For each test, the band upper envelope (BUE), lower envelope (BLE) and mean 238 

value (BMV) of the 100 cumulative frequency curves were determined for all the models. The 239 

cumulative frequency of the measured daily water demand volume (ECF) was also calculated. 240 

The graphs in Figure 2 report BUE, BLE and BMV obtained using the various models as well as ECF. 241 

Analysis of the graphs shows that, as already highlighted by Creaco et al. (2015), the BMV obtained with 242 

model A (model that takes into account the mutual dependence of pulse intensity and duration by means 243 

of the bivariate distribution) follows ECF much more closely than that obtained with model B (model 244 

that neglects the mutual dependence of pulse intensity and duration). Furthermore, all the data points of 245 

ECF lie inside the band of cumulative frequency obtained with model A. Only a few ECF data points, 246 

instead, are found inside the band of cumulative frequency obtained with model B. This attests to the 247 

better capability of model A to generate water demand pulses that are consistent with the observed 248 

demand pulses in terms of overall daily water demand volume. Figure 2 also shows that models C-1, C-2 249 

and C-3, which use the methods described in this paper to preserve correlation, have an almost identical 250 

performance to model A. The change in the distributions used to represent the pulse durations and 251 

intensities does not affect results significantly (see results of model D with method 3). This is due to the 252 



fact that, in the case study considered, the beta and gamma probability distributions fit the measured 253 

pulse durations and intensities in a similar way to the lognormal distributions used in method A. 254 

 255 

Conclusions 256 

This paper presented the application of three different methods that can be used to preserve correlation 257 

between duration and intensity of water demand pulses. Whereas the first two methods are derived from 258 

the known statistical approaches, the third was newly developed in this work. Applications showed that 259 

the three methods yield similar results to those previously reported by Creaco et al. (2015) with the 260 

advantage of being applicable with any marginal distributions to represent the duration and the intensity. 261 

Subsequently, the following consideration can be made as far as the preservation of duration/intensity 262 

correlation in synthetically generated pulses is concerned. In order to preserve this correlation, a bivariate 263 

probability distribution has to be chosen to represent pulse durations and intensities, as was shown by 264 

Creaco et al. (2015), when the marginal distributions chosen to represent these two variables can be 265 

inserted in the framework of such modelling. If the latter condition does not hold, as it is the case with 266 

the probability distributions chosen by some authors (e.g., Guercio et al., 2001; Garcia et al., 2004), one 267 

of the three methods described in this paper can be profitably applied if correlation needs to be preserved.  268 

Though the three methods have similar effectiveness, methods 1, based on the Iman-Canover (1982) 269 

method, and method 3, novel variation in the Gaussian Copula (Nelsen, 1999), may turn out to be more 270 

attractive for engineers. In fact, they can be easily implemented downstream of the standard methods for 271 

generating independent pulse durations and intensities, in order to impose the correlation by post-272 

processing the results of the latter. 273 

After the work of Creaco et al. (2015) showed that pulse generation models fitted with duration/intensity 274 

correlation have advantages in comparison with traditional models and after this work has shown how 275 

correlation can be obtained in a more general way, future work will be dedicated model parameter 276 

assessment on the basis of smart meter readings. Compared to the current parameterization, which is 277 

based on the method of the moments and stringently requires knowledge of real pulse features, the new 278 



parameterization will significantly extend the applicability of the pulse generation models fitted with 279 

duration/intensity correlation. 280 
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Tables 332 

Table 1. Arrival time , duration T and intensity I of the pulses generated by the Poisson model. 333 

  (s) T (s) I (L/s) 

1 
1T  

1I  

2 
2T  

2I  

   

i 
iT  

iI  

   

1n 


1nT 
 

1nI 
 

n 
nT  

nI  

  334 



Table 2. Basic statistical parameters of water consumption variables z, T, I, V, D and  derived from 335 

the measured pulses and from the pulses generated by the models. 336 

 pulse type mean (z) mean (T) var (T) mean (I) var (I) mean (V) mean (D) cov (I,T) 

  [s-1] [sec] [sec2] [L/s] [L2/s2] [L] [L/day] [L2] [-] 

measured 0.00054 56 12743 0.106 0.00742 9.45 442 3.50 0.36 

model A 0.00054 56 11822 0.106 0.00730 9.39 438 3.48 0.37 

model B 0.00054 56 12321 0.106 0.00737 5.95 278 0.03 0.00 

model C-1 0.00054 56 12321 0.106 0.00737 9.26 431 3.34 0.35 

model C-2 0.00054 56 12049 0.105 0.00712 9.17 427 3.27 0.35 

model C-3 0.00054 56 12321 0.106 0.00737 9.27 432 3.36 0.35 

model D 0.00054 56 12723 0.106 0.00744 9.44 440 3.50 0.36 

  337 



Table 3. Features of the models used in this work. 338 

  distribution for distribution for parameter  correlation 

  duration intensity estimation method method 

model A bivariate lognormal bivariate lognormal moments Creaco et al. (2015) 

model B lognormal lognormal moments no correlation 

model C-1 lognormal lognormal moments method 1 

model C-2 lognormal lognormal moments method 2 

model C-3 lognormal lognormal moments method 3 

model D beta gamma moments method 3 
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Table 4. Calibrated values of  for the various time slots, for models C-1, C-2 and C-3, D. 340 

 models 

 

slot 

0h-2h 

slot 

2h-4h 

slot 

4h-6h 

slot 

6h-8h 

slot 

8h-10h 

slot 

10h-12h 

slot 

12h-14h 

slot 

14h-16h 

slot 

16h-18h 

slot 

18h-20h 

slot 

20h-22h 

slot 

22h-24h 

C-1,C-2, 

C-3 

0.000065 

 

0.000028 

 

0.001056 

 

0.000991 

 

0.000579 

 

0.000356 

 

0.000130 

 

0.000333 

 

0.001023 

 

0.001032 

 

0.000745 

 

0.000157 

 

D 0.000065 0.000028 0.001056 0.000991 0.000579 0.000356 0.000130 0.000333 0.001023 0.001032 0.000745 0.000157 
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Table 5. Calibrated values of daily parameters for models C-1, C-2 and C-3, D. 342 

parameters for C-1,C-2,C-3 

 

values 

 

parameters for D 

 

values 

 

lnT 3.22  0.17 

lnT 1.27  2.33 

lnI -2.50  0.07 

lnI 0.71  1.51 

ep 0.36 ep 0.36 
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Figures 344 

 345 

Figure 1. Model C - single realization of the simulated total demand for a typical day at the scale of 1 sec. 346 
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 348 

Figure. 2. Upper (BUE) and lower (BLE) envelopes (grey lines) and mean value (BMV) (black line) of 349 

the band of Weibull cumulative frequencies F of daily water demand D produced by models A, B, C-1, 350 

C-2, C-3 and D, in comparison with the daily water demand cumulative frequency calculated starting 351 

from the measured data (ECF) (dots). 352 
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