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Abstract

In this work, the exact reproduction of a moving-water steady flow via the numer-
ical solution of the one-dimensional shallow water equations is studied.

A new scheme based on a modified version of the HLLEM approximate Rie-
mann solver [Dumbser M. and Balsara D.S., J. Comput. Phys. 304 (2016) 275–
319] that exactly preserves the total head and the discharge in the simulation of
smooth steady flows and that correctly dissipates mechanical energy in the pres-
ence of hydraulic jumps is presented. This model is compared with a selected set
of schemes from the literature, including models that exactly preserve quiescent
flows and models that exactly preserve moving-water steady flows.

The comparison highlights the strengths and weaknesses of the different ap-
proaches. In particular, the results show that the increase in accuracy in the steady
state reproduction is counterbalanced by a reduced robustness and numerical ef-
ficiency of the models. Some solutions to reduce these drawbacks, at the cost of
increased algorithm complexity, are presented.

Keywords: Shallow water equations, well-balanced schemes, energy-balanced
schemes, HLLEM schemes, path-conservative schemes

1. Introduction

In recent years, the attention of several researchers involved in studying the
numerical discretization of the classical nonlinear shallow water equations (SWE)
has been focused on the exact preservation of specific asymptotic flow states.
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In particular, two asymptotic states over a non-flat bottom are considered: the
first one consists of the motionless steady state that is characterized by a constant
free-surface elevation and a zero specific discharge, and the second one consists of
the moving steady flow, which is characterized by the constancy of the total head
and of the specific discharge [16]. The attention devoted to the exact reproduction
of these steady cases is because some common flows can be interpreted as small
perturbations of such asymptotic states [7, 15, 46].

In the case of quiescent flows, the preservation of such a state is related to
the correct balancing between the flux gradients and the bottom-slope source term.
Therefore, the numerical schemes that exactly reproduce this asymptotic case are
denoted as well balanced (WB). Following the work of Bermúdez and Vázquez-
Cendón [7], a numerical model that is able to exactly preserve an initial quiescent
flow is also denoted as C-property satisfying. An updated review on this topic can
be found in [45]. At present, for several scheme families, different techniques can
be found in the literature to achieve the well balancing.

A popular approach for the well-balancing problem is developed in the context
of the balance laws in non-conservative form [13, 17, 23, 35, 36]. In general, study-
ing the balance laws in the non-conservative form is complicated by the difficulty
in rigorously defining the correct weak solution if a discontinuity is present. To
address this problem, the DLM theory proposed by Dal Maso et al. [17] represents
a very powerful tool. In the DLM theory, a family of paths that link the conserved
variables across the discontinuity is selected to define the weak solution. The con-
cept of using a family of paths to address the solution discontinuity is used by
Parés in [35] to construct the path-conservative (or path-consistent) schemes. The
application of the path-conservative schemes to the SWE is performed by Castro
et al. in [13]. The first key element of this approach is enriching the classical
SWE by a trivial equation obtained by equating to zero the time derivative of the
bottom elevation. In this augmented system of equations, the source term related
to the bottom slope is written as a non-conservative product, and the entire system
is therefore in the non-conservative form [13, 23]. This augmented formulation
allows the conservative part of the SWE and the source term related to the bottom
elevation to be solved in a unified manner. Castro et al. [13] show that the use of
a linear path leads to well-balanced schemes without further complications. Note
that the eigenvalues and the eigenvectors associated with the augmented SWE are
very simple, and this allows very efficient numerical models to be developed.

The same formalism of the path-conservative schemes is adopted by Dumbser
and Toro in [19] to extend the Riemann solver of Osher and Solomon [34] to cer-
tain classes of hyperbolic systems in non-conservative form, leading to the DOT
Riemann solver. This path-conservative Osher-type scheme has several advantages
with respect to other path-conservative schemes. It does not require an entropy fix,
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it is very simple to implement, and it can be considered a complete Riemann solver
[41]. The application of the DOT Riemann solver to the augmented SWE, together
with a linear path, leads to a well-balanced scheme [10, 19]. This scheme, denoted
in the following as the PC model, is taken into account in this work for comparison
with other methods.

Revisiting classical solutions for the Riemann problem (RP), Dumbser and Bal-
sara [18] introduce a new simple and very general formulation of the approximate
solver HLLEM. The HLLEM Riemann solver, originally proposed in [20] and [21],
has interesting properties, such as robustness, the positivity preserving property
and entropy enforcement. In the new formulation presented in [18], these proper-
ties are preserved while the resolution of the linearly degenerated waves is greatly
improved at the cost of the computation of the only eigenvalues and eigenvectors
related to the linearly degenerated fields. Moreover, in [18], a formulation of the
HLLEM solvers for a non-conservative system of equations is proposed. Again,
the formalism of the path-conservative schemes is adopted to extend the approach
to the non-conservative balance laws. The use of a segment (linear) path in the
definition of the scheme applied to the augmented SWE leads to a scheme that
satisfies the C-property. This last form of the HLLEM solver is considered in this
work for the comparison.

In the PC and HLLEM models, the source term is taken into account by in-
creasing the number of equations involved in the mathematical model. Following
a dual approach, in [31], the source term is accounted for by increasing the number
of elementary waves in the Riemann solver used to construct a Roe-type scheme.
In the classical formulation of the Roe Riemann solver [37], the approximate RP
solution is obtained by exactly solving a suitable linearization of the homogeneous
part of the balance laws. Consequently, the approximate solution of the system
with m equations is constituted by m waves that separate m + 1 constant states. The
source term is discretized apart. In the augmented Roe solver (ARoe) [31], the
source term is discretized together with the homogeneous part of the balance law
and, by again using a suitable linearization, the approximated solution composed
of m + 1 waves and m + 2 constant states is achieved. The application of these
concepts to the SWE allows obtaining an RP approximate solution to be used in
a Godunov-type scheme. The corresponding model, denoted as the ARoe model
herein, is well balanced.

To the best of our knowledge, the first scheme developed to exactly preserve
a moving-water steady state was proposed by Noelle et al. [33]. In this work,
a high-order accurate finite volume scheme, which is exactly well balanced for
the general steady flow, is presented. In the case of an asymptotic steady state,
this scheme is able to preserve the total head where the flow is smooth while the
correct amount of energy dissipation is obtained in the hydraulic jumps. From the
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perspective of energy conservation and dissipation, this scheme can be denoted as
energy balanced (EB) [32].

Following the pioneering work of Noelle et al. [33], several studies have been
devoted to analyzing the energy balancing of the schemes. The reader is referred to
[10, 15, 22, 25, 29, 32, 33, 44] for a non-exhaustive list of references. These works
address both theoretical and practical aspects of the problem.

The importance of exactly preserving a moving-water steady state is high-
lighted in [15, 46]. In particular, the advantages of the energy-balanced schemes
over the well-balanced schemes are shown in [46]. In this work, by analyzing the
numerical reproduction of small perturbations of steady flows, the superiority of
the EB methods over the WB methods is proven.

The main theoretical analysis of the exact preservation of meaningful asymp-
totic states is conducted in the general context of the balance laws. For exam-
ple, Tadmor [39] studies the problem in terms of an entropy function using the
concepts of entropy-conservative and entropy-stable schemes introduced in [38].
These analyses can easily be applied to the SWE taking into account that the total
energy plays the role of an entropy function in the context of the shallow water
equations with a bottom source term. In fact, in the case of a steady flow governed
by the SWE, it is important to distinguish the cases characterized by the presence
or absence of a hydraulic jump. If the solution is continuous (i.e., a hydraulic
jump is not present), then the asymptotic case is characterized by the uniformity
of the specific discharge and the total head. In this case, the scheme is called en-
ergy preserving [32]. When a hydraulic jump is present and the correct amount
of mechanical energy is dissipated, the appropriate definition of the scheme is en-
ergy consistent [32]. In [22], the stability analysis of an SWE numerical model in
terms of entropy (total energy) is specifically addressed for the first time, and the
corresponding model is entropy stable. Working in the same framework, different
authors propose entropy-stable models. For example, in [25], a shock-capturing
space-time discontinuous Galerkin method that is energy stable, C-property satis-
fying, and able to cope with unstructured grids is presented.

Murillo and Garcı́a-Navarro [32], in the context of the augmented Roe solvers
[31], propose a strategy to extend the well-balanced property for the quiescent state
of the ARoe scheme to the moving-water steady state. This approach is based on a
revisited integration of the bed source term for the discontinuous bottom. We have
considered this extension, and we denote the corresponding model as the ARoeEB
scheme.

In the framework of the path-conservative schemes, a general definition of a
well-balanced scheme for a generic asymptotic state is given in [14, 36]. In these
works, a numerical method is defined as well balanced for a given integral curve
related to a linearly degenerated vector field if, given any steady solution that be-

4



longs to that integral curve and an initial discrete state that belongs to the same
integral curve, the initial state is exactly preserved [14, 36]. For the particular case
of the SWE (2), the definition of the well-balanced scheme proposed in [14, 36]
and the definition of the energy-balanced scheme used in [32] are coincident be-
cause it is easy to show that the generalized Riemann invariants associated with
the integral curve of the linearly degenerated field are the specific discharge and
the total head [10]. Working in the context described in [14, 36], in [10], a new
path-consistent and energy-balanced scheme is obtained by combining a suitable
curvilinear path with a DOT Riemann solver [19]. The corresponding numerical
scheme, denoted as the PCEB model herein, is considered for the comparison with
the other schemes.

The good results obtained using the curvilinear path in the DOT framework
[10] have motivated the authors to investigate the use of the same approach in
different schemes. Taking into account that the HLLEM model is developed using
the same formalism of the path-conservative schemes, the application of a non-
linear path follows in a natural manner. Therefore, in this work, we present an
original formulation of the HLLEM solver, denoted as the HLLEMEB method
herein, that allows the energy balancing of the scheme for moving-water steady
flows to be achieved.

Another classical approach developed to achieve the C-property satisfaction
that can be extended to the energy-balanced scheme is the hydrostatic reconstruc-
tion [3]. In [3], a flux correction to be applied to a Godunov-type finite volume
scheme is introduced to achieve the well balancing. Following the same idea of
a suitable flux correction, Caleffi and Valiani [9] suggest a strategy to achieve the
exact solution of a steady flow. This method is based on a suitable reconstruction
of the conservative variables at the cell interfaces, coupled with a correction of the
numerical flux based on the local conservation of total energy. For this reason, we
can denote this approach as a hydrodynamic reconstruction. A first-order imple-
mentation of this scheme is considered in this work and is denoted as the HDEB
model.

Finally, it is interesting to note that several approaches available in the litera-
ture assume a discontinuous bottom topography. In this condition, the augmented
SWE [14, 29, 36] is not a strictly hyperbolic system of equations, and this allows
the occurrence of the resonance phenomenon [29]. This situation is achieved when
the characteristic speeds become coincident and the solution of a Riemann problem
may be not unique or can be constituted by a larger number of elementary waves
with respect to the non-resonant solution. Understanding the behavior of the nu-
merical models in the resonant regime is an important aspect for validating each
numerical scheme.

In this work, together with the presentation of the new energy-balanced scheme
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HLLEMEB, we present a comparison between a set of schemes from the literature,
including models that exactly preserve quiescent flows and models that exactly pre-
serve moving-water steady flows. The seven selected schemes are the PC, PCEB,
HLLEM, HLLEMEB, ARoe, ARoeEB and the HDEB schemes. The comparison
highlights the strengths and weaknesses of the different approaches. The compar-
ison shows that the better reproduction of the steady flows, or small perturbation
of such steady flows, is counterbalanced by a loss of numerical efficiency and ro-
bustness of the models. Some solutions to reduce these drawbacks, at the cost of
increased algorithm complexity, are presented.

The remainder of this paper is organized as follows. In section 2, the SWE
mathematical model is presented in both the conservative and non-conservative
forms. The eigenvalues and eigenvectors, together with the relevant physical quan-
tities associated with the SWE, are introduced. In section 3, the description of
each considered model is presented. Each description is well detailed to improve
the reproducibility of the results. A large space is devoted to the new HLLEMEB
model, which is presented here for the first time. In section 4, detailed comparisons
between the models are described. To show the behavior of the different models in
the reproduction of the resonant regime, a specific Riemann problem is also used
as a test case. Finally, some conclusions are drawn.

2. The mathematical model

We consider the classical nonlinear shallow water equations [16]. To simplify
the comparison between models, only the source term related to the bottom to-
pography is taken into account, while the source term related to the friction is
neglected. Under this assumption, the SWEs become:

∂tu + ∂x f = s; with: u =

[
h
q

]
; f =

 q
gh2

2 +
q2

h

 ; s =

[
0

−g h zx

]
; (1)

where u(x, t) is the vector of the conservative variables, f (u) is the flux vector,
s(u, x) is the source term vector, h(x, t) is the water depth, q(x, t) is the specific
discharge, z(x) is the bottom elevation, g is the gravity acceleration, and x and t are
the space and time, respectively.

To apply the theoretical framework of the path-conservative schemes [35], the
SWE can be written as a quasi-linear PDE system introducing the trivial equation
zt = 0 [14]:

∂tw + A(w) ∂xw = 0; with: w =

hq
z

 ; A(w) =

 0 1 0
c2 − v2 2v c2

0 0 0

 ; (2)
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where w(x, t) is the augmented vector of the conservative variables, v = q/h is the
depth-averaged velocity, and c =

√
g h is the wave celerity. The matrix A has the

following eigenvalues:

λ1 = v − c; λ2 = 0; λ3 = v + c; (3)

and, indicating the Froude number with Fr = |v|/c, the following right eigenvectors:

R1 =

 1
λ1
0

 ; R2 =


1
0

Fr2 − 1

 ; R3 =

 1
λ3
0

 . (4)

The three eigenvalues (3) are collected in the diagonal matrix Λ = diag(λ1, λ2, λ3),
and the three eigenvectors (4) are collected in a matrix R = [R1,R2,R3] (i.e., the
j-th column of the matrix R is the vector R j).

In the following, we extensively use the specific energy, E:

E = h +
q2

2 g h2 ; (5)

and the total head, H [16]:
H = z + E. (6)

3. The numerical models

To improve the reproducibility of this study, an accurate description of the mod-
els is provided in this section. In particular, a large space is devoted to explaining
the HLLEMEB model, which is presented here for the first time. To focus the at-
tention on the comparison between the different approaches, we only consider the
simplest first-order implementations without the complexities related to the high-
order versions. However, the extension to high-order accuracy can be performed
using standard techniques. All the schemes are explicit in time, and a standard CFL
condition is used [41].

3.1. The PC model - A DOT path-conservative model

In this section, the standard DOT path-conservative model, which is well bal-
anced only for the quiescent flow, is described.

Integrating Eq. (2) over the cell I j =
[
x j−1/2, x j+1/2

]
, the fundamental equation

for a first-order path-conservative scheme is [35]:

wn+1
j = wn

j −
∆t
∆x

[
D−

j+ 1
2

+D+

j− 1
2

]
; (7)
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where wn+1
j and wn

j are the cell-averaged values of the vector w at time levels tn+1

and tn, respectively. The fluctuations D±j+1/2, generally depending on the discon-
tinuous values w−j+1/2 and w+

j+1/2 at the cell interfaces x j+1/2, are computed using
the Dumbser-Osher-Toro (DOT) Riemann solver [19]:

D±
j+ 1

2
=

1
2

∫ 1

0

[
A(Ψ(w−

j+ 1
2
,w+

j+ 1
2
, s)) ±

∣∣∣∣∣A(Ψ(w−
j+ 1

2
,w+

j+ 1
2
, s))

∣∣∣∣∣] ∂Ψ

∂s
ds (8)

where the absolute-value matrix-operator is defined by |A| = R |Λ|R−1, with |Λ| =
diag(|λ1|, |λ2|, |λ3|). Ψ(w−j+1/2,w

+
j+1/2, s) is the integration path, which is typically

given as a parametrized function of s ∈ [0, 1]. In the case of a first-order accurate
model, we have the identities w−j+1/2 = wn

j and w+
j+1/2 = wn

j+1.
To complete the description of this model, we must introduce an explicit ex-

pression for the path Ψ(w−j+1/2,w
+
j+1/2, s) to be inserted in Eq. (8).

To understand the necessity of the integration path, recall that the presence of
non-conservative products in Eq. (2) makes the definition of a correct weak solution
difficult in the case of discontinuities of the bottom profile or of the solution itself
[17, 35]. A well-established approach for overcoming this difficulty is proposed by
Dal Maso et al. [17] in the so-called DLM theory. In this theory, by introducing a
suitable family of paths that link the conservative variables across a discontinuity,
the definition of the weak solution becomes possible (see the original work by Dal
Maso et al. [17] for details of the theory). Here, we recall only that in the DLM
theory must the admissible path satisfy a generalized Rankine-Hugoniot condition
for shocks in the following form [2, 17]:∫ 1

0
A(Ψ(w−,w+, s))

∂Ψ

∂s
ds = ζ

(
w+ − w−

)
, (9)

where ζ is the celerity of the shock and w− and w+ are the values of the variables
before and after the interface, respectively.

Unfortunately, the DLM theory does not provide information about the choice
of the path for general balance laws. Notwithstanding, several proposals for defin-
ing the physically correct path exist (see [2] and the references therein). Among
these proposals, the vanishing viscosity approach introduced in [26] is well es-
tablished. In this framework, the physically correct path that should be inserted in
Eq (9) for a general system of the form of (2) can be selected studying the traveling
wave (i.e., the viscous profile) associated with the modified system of equations:

∂twε + A(w) ∂xwε = ε∂x
(
B(wε)∂xwε) ; (10)

with a Heaviside initial condition, where wε is the solution of the system (10), B is a
physically based viscosity matrix, and ε is the viscosity parameter. The admissible
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solution of (2) is the vanishing viscosity limit of the solution of (10) [8, 26, 27].
More precisely, the solution w of the system (2) is considered admissible for a given
matrix B if w = limε→0 wε (almost everywhere). Consequently, some mathematical
manipulations allow showing that the correct path connecting w− and w+ must be
the solution wε after a suitable re-parameterization [26, 27]. This approach requires
the definition of a viscosity matrix B on a physical basis, and this is not always
easy. Moreover, the form of this matrix has to be rather simple to obtain a system
of the form of Eq. (10) that can be analytically solved for and a Heaviside initial
condition. Some attempts to obtain this matrix in the family of the shallow water
models are performed in [8], but a definitive answer on the nature of B for the SWE
with a bottom discontinuity is not provided.

In this work, following the idea introduced in several works [e.g.: 18, 19, 35,
36], rather simple paths are used in our numerical model, and the correctness of the
choice is verified a posteri. In this manner, we preserve some degree of freedom
in the selection of the path to obtain a simple implementation of the model and
specific behaviors of the numerical solutions.

In particular, working on the SWE, the use of a very simple linear path is
sufficient to obtain reasonable results if only the motionless steady state has to be
preserved [36]. In this case, indicating with J?K the jump of the generic variable ?
across the cell interface (i.e., J?K = ?+ − ?−), the path Ψ(w−,w+, s) is defined as:

Ψ(w−,w+, s) = w− + s(w+ − w−) = w− + sJwK; (11)

or, explicitly:

Ψ(s) =

h̄(s)
q̄(s)
z̄(s)

 =


h−

j+ 1
2

+ sJh j+ 1
2
K

q−
j+ 1

2
+ sJq j+ 1

2
K

z−
j+ 1

2
+ sJz j+ 1

2
K

 .
Eq. (11) is inserted in Eq. (8), and the integration is performed numerically. A
Gaussian quadrature with 3 points yields satisfactory results; see [19] for details.
The use of Eq. (11) in Eq. (8) leads to a well-balanced model for a quiescent flow
[36].

3.2. The PCEB model - A DOT path-conservative model with a nonlinear path

The use of the segment path does not allow an initial moving-water steady state
to be exactly preserved [10]. For this reason, a different path, inspired by Müller
and Toro [30] and Parés and Castro [14], is introduced in [10].

To justify the nature of the new path, we must take into account the role of the
integral curve related to the linearly degenerated vector field in the definition of a
well-balanced scheme for a general steady flow. As mentioned in the introduction,
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a numerical method is well balanced for a given integral curve related to a linearly
degenerated vector field if any initial steady solution that belongs to that integral
curve is exactly preserved at the discrete level [14, 36]. This general definition,
when applied to the context of the SWE, can be formulated assuming that a model
is energy balanced if an initial steady condition that is characterized by a constant
specific discharge and a constant total head is preserved at the discrete level [14].

With some algebra, it is simple to show that the use of a path in (8) that, in
steady conditions, is a parametrization of an arc of the integral curve related to the
linearly degenerated field allows obtaining an energy-balanced model in the sense
of [14, 36]. The details can be found in [10].

In the particular case of the SWE, the quantities that are invariant along the
integral curve (i.e., the generalized Riemann invariants) are the specific discharge
and the total head. Therefore, it is natural to parametrize the integral curve (and
therefore the selected path) in terms of specific discharge and total head.

A path Ψ(w−,w+, s) that in the case of steady state corresponds to an arc of the
integral curve is:

Ψ(s) =

h̄(s)
q̄(s)
z̄(s)

 =


Ē(s)−1

q−
j+ 1

2
+ s(q+

j+ 1
2
− q−

j+ 1
2
)

z−
j+ 1

2
+ s(z+

j+ 1
2
− z−

j+ 1
2
)

 ; (12)

with:

Ē(s) = h̄(s) +
[q̄(s)]2

2 g [h̄(s)]2
= H̄(s) − z̄(s); (13)

and:
H̄(s) = H̄−

j+ 1
2

+ s(H̄+

j+ 1
2
− H̄−

j+ 1
2
). (14)

The computation of Ē−1, i.e., finding the values of h̄ that satisfy (13), is not trivial.
In fact, Eq. (13) for given values of H̄, q̄ and z̄ is a cubic equation in h̄ that is
generally solved numerically. In this work, to obtain a computationally efficient
scheme, we have used the analytical exact solution given in [42].

Note that the trivial introduction of the path defined by Eq. (12) into Eq. (8)
leads to a computationally expensive model. However, the availability of the ana-
lytical expressions for the eigenvalues, the eigenvectors and Ē−1 allows analytical
simplifications to be performed that lead to a very efficient computation of the
fluctuations. In Appendix A, we show the fully explicit expressions to be used for
computing the fluctuations (8).

The path (12) works correctly only in the cases where both w− and w+ are
subcritical or supercritical. In the case of a transcritical flow, better performance is
obtained using a path divided into three parts, as described in Appendix B.
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3.3. The HLLEM model

We treat the approximate Riemann solver HLLEM for systems in non-conservative
form, recently proposed by Dumbser and Balsara [18]. This approach can be con-
sidered as an extension of the classical HLL solver [24]. In this work, we present
the formulation of the scheme specific for the SWE, and the details about the for-
mulation for general balance laws can be found in [18].

To introduce the HLLEM Riemann solver, the SWEs are written in the follow-
ing form:

∂tw + ∂x f̂ + B(w) ∂xw = 0; (15)

with:

w =

hq
z

 ; f̂ (w) =


q

gh2

2 +
q2

h
0

 ; B(w) =

0 0 0
0 0 c2

0 0 0

 ; (16)

where the genuinely conservative part of the system is represented by the non-
linear flux f̂ (w) and the non-conservative part is represented by B(w) ∂xw. Clearly,
we have the relationship ∂w f̂ + B = A. Note that only one element of the matrix
B is different from zero; therefore, every computation that involves B(w) ∂xw or its
derived quantities are in general computationally cheap. To simplify the computa-
tion, Eq. (15) is rewritten introducing the similarity variable ξ = x/t, following the
approach also used in [4–6]:

w − ∂ξ(ξw) + ∂ξ f̂ + B(w) ∂ξw = 0; (17)

Because the HLL Riemann solver [24] is used as a starting point for the devel-
opment of the HLLEM solver, we start our description from the reinterpretation of
the HLL solution. In the original HLL Riemann solver, the approximate solution
is strongly simplified. In particular, the solution is constituted by one intermediate
state w∗ separated from the unperturbed states w− and w+ by the fastest outward-
moving waves:

w(ξ) =


w−, if ξ ≤ s−,
w∗, if s− < ξ < s+,

w+, if ξ ≥ s+

(18)

where s− and s+ are the celerity estimates of the two outward waves. See § 3.3.1
for a brief discussion about the computation of the outward wave celerities.

Taking into account the solution (18), the discontinuities at s− and s+, the pres-
ence of the non-conservative product in (17) and the DLM theory [17], the integra-
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tion of (17) between s− and s+ can be written as:

w∗(s+ − s−) − (w+ s+ − w− s−) + ( f̂ + − f̂ −)+

+

∫ 1

0
B(Ψ(w−,w∗, s))

∂Ψ

∂s
ds +

∫ 1

0
B(Ψ(w∗,w+, s))

∂Ψ

∂s
ds = 0. (19)

where f̂ ± = f̂ (w±). Introducing the segment path (11) into (19), we obtain:

w∗(s+ − s−) − (w+ s+ − w− s−) + ( f̂ + − f̂ −)+

+ B̃(w−,w∗)(w∗ − w−) + B̃(w∗,w+)(w+ − w∗) = 0. (20)

with:

B̃(wa,wb) =

∫ 1

0
B(Ψ(wa,wb, s))ds =


0 0 0
0 0 1

2 g(ha + hb)
0 0 0

 . (21)

It is important to note the very simple expression of the matrix B̃. Only one element
is different from zero, and its computation is straightforward. To avoid matrix-
vector products, we can introduce the following vector:

b̂(wa,wb) = B̃(wa,wb)(wb − wa) =


0

1
2 g(ha + hb)(zb − za)

0

 (22)

Now, from (20), we can write:

w∗ =
(w+ s+ − w− s−) − ( f̂ + − f̂ −) −

(
b̂(w−,w∗) + b̂(w∗,w+)

)
(s+ − s−)

. (23)

Eq. (23) represents an implicit expression of w∗ that can be solved numerically
starting from the guess value, w0

∗, given explicitly by:

w0
∗ =

(w+ s+ − w− s−) − ( f̂ + − f̂ −) − b̂(w−,w+)
(s+ − s−)

. (24)

The computed w∗ is a key element of the HLL solver.
The fluctuations associated with the HLL scheme are obtained by integrating

(17) in [s−, 0] and [0, s+]:∫ 0

s−

(
w − ∂ξ(ξw)

)
dξ +

∫ 0

s−

(
∂ξ f̂ + B(w) ∂ξw

)
dξ = 0; (25)∫ s+

0

(
w − ∂ξ(ξw)

)
dξ +

∫ s+

0

(
∂ξ f̂ + B(w) ∂ξw

)
dξ = 0. (26)

12



The second terms on the left-hand sides of the above equations correspond to the
numerical fluctuations; therefore, we can write:

D−HLL(w−,w+) =

∫ 0

s−

(
w − ∂ξ(ξw)

)
dξ; (27)

D+
HLL(w−,w+) =

∫ s+

0

(
w − ∂ξ(ξw)

)
dξ. (28)

The right-hand sides are known quantities if we assume that w∗ is computed
using (23). In fact, the substitution of (23) in (29)-(30) leads to:

D−HLL(w−,w+) = −
s−

s+ − s−
P̂(w−,w+,w∗) +

s−s+

s+ − s−
(w+ − w−); (29)

D+
HLL(w−,w+) = +

s+

s+ − s−
P̂(w−,w+,w∗) −

s−s+

s+ − s−
(w+ − w−); (30)

with:
P̂(w−,w+,w∗) = f̂ + − f̂ − + b̂(w−,w∗) + b̂(w∗,w+). (31)

It is well known that the resolution of the contact discontinuity related to the
presence of linearly degenerated fields by the HLL scheme is poor [41] due to an
excessive numerical diffusion. To improve the behavior of the scheme, an anti-
diffusive term is introduced. As suggested in [20, 21], to extend the HLL Riemann
solver to take the presence of the linearly degenerated intermediate waves into
account, the constant intermediate state w∗ is replaced with a piecewise linear state:

w(ξ) =


w− if ξ ≤ s−,
w∗ + ϕR∗(w̄)2δ∗(w̄)L∗(w̄) w+w−

s+s−
(
ξ − 1

2 (s− + s+)
)

if s− < ξ < s+,

w+ if ξ ≥ s+

(32)

where w̄ =
(
w− + w+) /2; R∗ and L∗ are the matrices of the right and left eigen-

vectors associated with the linearly degenerated fields, respectively; ϕ is a regular-
ization parameter that allows smoothly switching between the HLL solver and the
HLLEM solver; and δ∗ is given by:

δ∗ = I −
Λ−∗

s−
−

Λ+
∗

s+
; (33)

where I is the identity matrix and Λ∗ is the diagonal matrix containing the eigen-
values associated with the linearly degenerated fields and Λ±∗ = 1

2 (Λ∗ ± |Λ∗|). See
[18] for further details.
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Following the procedure for computing the HLL fluctuations, the HLLEM fluc-
tuations can be computed by substituting (32) into:

D−HLLEM(w−,w+) =

∫ 0

s−

(
w − ∂ξ(ξw)

)
dξ (34)

D+
HLLEM(w−,w+) =

∫ s+

0

(
w − ∂ξ(ξw)

)
dξ; (35)

obtaining, after some algebraic manipulations:

D−HLLEM(w−,w+) = D−HLL(w−,w+)+

− ϕ
s−s+

s+ − s−
R∗(w̄)δ∗(w̄)L∗(w̄)(w+ − w−); (36)

D+
HLLEM(w−,w+) = D+

HLL(w−,w+)+

+ ϕ
s−s+

s+ − s−
R∗(w̄)δ∗(w̄)L∗(w̄)(w+ − w−). (37)

In the specific case of the SWE (15), also considering (4), it is:

R∗ = R2 =


1
0

F̄r2
− 1

 ; L∗ =
[
0 0 1

F̄r2
−1

]
; δ∗ = 1; (38)

where F̄r is the Froude number computed for w̄. Defining T as:

T (w−,w+) = R∗(w̄)δ∗(w̄)L∗(w̄)(w+ − w−) =


1

F̄r2
−1

(z+ − z−)
0

(z+ − z−)

 (39)

and assuming ϕ = 1, the HLLEM fluctuations become:

D−HLLEM(w−,w+) = D−HLL(w−,w+) −
s−s+

s+ − s−
T (w−,w+); (40)

D+
HLLEM(w−,w+) = D+

HLL(w−,w+) +
s−s+

s+ − s−
T (w−,w+). (41)

The computation of the HLLEM fluctuations can be summarized in the follow-
ing steps: an estimate of w∗ is obtained iteratively from Eq. (23) using w0

∗ given by
(24) as a guess value; the HLL fluctuations D±HLL are computed using (29)-(31);
the anti-diffusive term T (w−,w+) (39) is evaluated; finally, the HLLEM fluctua-
tionsD±HLLEM are computed using (40)-(41).

The third components of the HLLEM fluctuations, which are related to the bot-
tom behavior, are always zero. To demonstrate this fact, it is sufficient to note that
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the third components of f̂ and b̂ are null by construction, and therefore, the third
component of P̂ in Eq. (31) is also always zero. Finally, the third components of the
second terms of (29)-(30) exactly cancel out the third component of the last terms
in (40)-(41). In other words, regarding the bottom elevation, the anti-diffusive term
exactly balances the numerical diffusion introduced by the HLL scheme.

As shown in [18], this scheme satisfies the C-property.

3.3.1. Wave speed estimates
The HLLEM solver is quite sensitive to the estimates of s− and s+. In [18], for

general systems of conservative laws, the following approximations are suggested:

s− = min
(
0,Λ(w−),Λ(w̄)

)
; and s+ = max

(
0,Λ(w+),Λ(w̄)

)
; (42)

where w̄ =
(
w− + w+) /2. In this work, this simple approach does not provide

optimal results, and therefore, we have used an indirect approach based on the
two-rarefactions approximation [40].

An approximate intermediate state is computed assuming that the elementary
waves that separate the intermediate state from the unperturbed states are rarefac-
tions. Under this assumption, the intermediate state is characterized by:

v∗ =
1
2

(v− + v+) + c− − c+; and c∗ =
1
2

(c− + c+) +
1
4

(v− − v+); (43)

where v∗ and c∗ are the velocity and the celerity in the intermediate state, respec-
tively. The wave celerities become:

s− = min
(
0, v− − c−, v∗ − c∗

)
; and s+ = max

(
0, v+ + c+, v∗ + c∗

)
. (44)

3.4. The HLLEMEB model - An energy-balanced HLLEM model

To improve the behavior of the HLLEM scheme in the case of a steady solu-
tion, we modify the computation of the fluctuations. An original energy-balanced
model, denoted here as HLLEMEB, is obtained in this way.

First, we denote with Ĵ the Jacobian matrix of the flux f̂ , i.e., Ĵ = ∂w f̂ , and we
recall that: ∫ 1

0
Ĵ(Ψ(wa,wb, s))

∂Ψ

∂s
ds = f̂b − f̂a; (45)

independently from the chosen path. Clearly, we also have Ĵ + B = A. Conse-
quently, the integration of (17) between s− and s+ can be written as:

w∗(s+ − s−) − (w+ s+ − w− s−) + P(w−,w+,w∗) = 0. (46)
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where:

P(w−,w+,w∗) =

∫ 1

0
A(Ψ(w−,w∗, s))

∂Ψ

∂s
ds +

∫ 1

0
A(Ψ(w∗,w+, s))

∂Ψ

∂s
ds. (47)

Eq. (46) represents a different formulation of Eq. (19). Straightforward manip-
ulations also lead to:

w∗ =
(w+ s+ − w− s−) − P(w−,w+,w∗)

s+ − s−
. (48)

Eq. (48) represents an implicit expression for w∗.
To obtain an energy-balanced scheme, we require that if w− and w+ belong to

the same integral curve related to the linearly degenerate field (i.e., are character-
ized by the same specific discharge and total head), then w∗ also belongs to the
same integral curve. In general, this property is not exactly respected by (48); thus,
we introduce a suitable path and some small corrections.

First, we use the same non-linear path of the scheme described in § 3.2 defined
by the relationship (12)-(14). This choice becomes particularly interesting when
w−, w+ and w∗ belong to the same integral curve related to the linearly degenerate
field. In fact, taking into account the relationships in Appendix A, and in particular
Eq. (A.6), it is easy to show that Eq. (47) becomes:

P(w−,w+,w∗) =

 (q+ − q−)
Iv1(q∗ − q−) + Ic1(H∗ − H−) + Iv2(q+ − q∗) + Ic2(H+ − H∗)

0


(49)

with:

Iv1 =

∫ w∗

w−
v dw; Iv2 =

∫ w+

w∗
v dw; (50)

Ic1 =

∫ w∗

w−
c2 dw; Ic2 =

∫ w+

w∗
c2 dw; (51)

and P clearly becomes zero in the case of a steady flow with q− = q+ = q∗ and
H− = H+ = H∗.

The use of the curvilinear path is useful but not sufficient; in fact, if we as-
sume treating a steady state characterized by q̄ and H̄, i.e., q± = q̄ and z± + h± +

(q±)2/[2g(h±)2] = H̄, and to have P = 0, we obtain from (48) the relationships
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(written by components):

h∗ =
(h+ s+ − h− s−)

s+ − s−
; (52)

q∗ =
(q+ s+ − q− s−)

s+ − s−
; (53)

z∗ =
(z+ s+ − z− s−)

s+ − s−
; (54)

that show that we have q∗ = q̄ but not h∗ = H̄−1. Therefore, for steady states, w±

from Eq. (48) does not lead to a consistent steady state w∗.
To correct this behavior, we introduce Heb as:

Heb =
(H+ s+ − H− s−)

s+ − s−
. (55)

and we compute h̃ inverting the total head Heb assuming as given q∗ and z∗ (i.e.,
that are the second and third components of w∗). Then, heb can computed as:

heb = h̃ −
P(1)(w−,w+,w∗)

s+ − s−
. (56)

where P(1) is the first component of the vector P. We also introduce hnb given by:

hnb =
(h+ s+ − h− s−) − P(1)(w−,w+,w∗)

s+ − s−
, (57)

which corresponds to the unmodified first component of (48). The depth heb sat-
isfies the energy-preserving requirement for a steady flow, while hnb is the correct
value of the depth for a general unsteady flow. Note thatP(1)(w−,w+,w∗) = q+−q−,
and therefore, it does not depend on w∗. Thus, this computation is not numerically
expensive.

For a smooth transition between hnb and heb, we introduce a weight φ:

φ = tanh
(
α
∣∣∣H+ − H−

∣∣∣) ; (58)

with α = 10 (the results are not sensitive to the value of α), and we compute h∗ as:

h∗ = φ hnb + (1 − φ) heb. (59)

The substitution of (59) in the first component of (48), taking into account
Eqs. (55)-(58), provides a system of equations to be solved numerically to obtain
h∗, q∗ and z∗. The guess value is again computed using Eq. (24). With these
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corrections, in the case of a steady flow, the numerical solution of (48) converges
to a proper solution.

Additionally, the anti-diffusive term (39) has to be modified. To this end, we
introduce the following coefficient:

C =
h− + h+

2
√

h−h+
; (60)

and the new term:

T̃ (w−,w+) =


(z+−z−)

C(Fr−Fr+)−1
0

(z+ − z−)

 . (61)

Now, the other elements of the HLLEMEB model are analogous to the corre-
sponding elements of the HLLEM model. Following exactly the same procedure
presented in the previous section § 3.3, the HLL-like fluctuations are computed as:

D−HLLEB(w−,w+) = −
s−

s+ − s−
P(w−,w+,w∗) +

s−s+

s+ − s−
(w+ − w−); (62)

D+
HLLEB(w−,w+) = +

s+

s+ − s−
P(w−,w+,w∗) −

s−s+

s+ − s−
(w+ − w−); (63)

with P(w−,w+,w∗) given by (49). Clearly, Eqs. (62)-(63) are the counterparts in
the HLLEMEB model of Eqs. (29)-(30) in the HLLEM model.

Finally, the energy-preserving fluctuations are computed as:

D−HLLEMEB(w−,w+) = D−HLLEB(w−,w+) −
s−s+

s+ − s−
T̃ (w−,w+); (64)

D+
HLLEMEB(w−,w+) = D+

HLLEB(w−,w+) +
s−s+

s+ − s−
T̃ (w−,w+); (65)

which are the HLLEMEB counterparts of Eqs. (40)-(41) in HLLEM.
The computation of the HLLEMEB fluctuations can be summarized in the fol-

lowing steps: an estimate of w∗ is obtained iteratively from Eq. (48) using w0
∗ of

(24) as a guess value; the HLL fluctuationsD±HLLEB are computed using (62)-(63);
the anti-diffusive term T̃ (w−,w+) is evaluated by (61); and finally, the HLLEMEB
fluctuationsD±HLLEMEB are computed using (64)-(65).

3.5. The ARoe model - an augmented Roe model

The augmented Roe model (ARoe) is based on the approximate solution of the
Riemann problem (RP) defined by the shallow water equations (1) and a piecewise
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initial condition [31]:

∂tu + ∂x f = s; (66)

u(x, 0) =

 un
j , if x ≤ x j+ 1

2
;

un
j+1, if x > x j+ 1

2
;

(67)

where un+1
j and un

j are the cell-averaged values of the vector u at the time levels
tn+1 and tn, respectively.

Because the classical Roe approximate solution is used to define the ARoe
method, we recall here the key elements of the Roe solver [41]. The classical Roe
solution is obtained by exactly solving the linearized RP:

∂tu + J̃ j+ 1
2
(un

j , u
n
j+1)∂xu = s; (68)

u(x, 0) =

 un
j , if x ≤ x j+ 1

2
;

un
j+1, if x > x j+ 1

2
;

(69)

where J̃ j+1/2(un
j , u

n
j+1) is a suitable constant Jacobian matrix for the homogeneous

system. In particular, J̃ j+1/2(un
j , u

n
j+1) must be diagonalizable with real eigenvalues

(i.e., the approximate linear system must be hyperbolic) and J̃ j+1/2(un
j , u

n
j+1) →

J̃ j+1/2(un
j) smoothly as un

j+1 → un
j (the linearized system must be consistent with

the original SWE) [41]. We use a well-established technique to construct a valid
linearized Jacobian matrix by introducing the Roe averages [41]:

cRoe =

√
g

hn
j + hn

j+1

2
; vRoe =

vn
j

√
hn

j + vn
j+1

√
hn

j+1√
hn

j +
√

hn
j+1

; (70)

and defining J̃ j+1/2(un
j , u

n
j+1) as:

J̃ j+1/2(un
j , u

n
j+1) =

[
0 1

c2
Roe − v2

Roe 2vRoe

]
; (71)

The associated eigenvalues λ̃(i)
j+1/2 and eigenvectors R̃(i)

j+1/2 can easily be computed
as:

λ̃(1)
j+ 1

2
= vRoe − cRoe; λ̃(2)

j+ 1
2

= vRoe + cRoe; (72)

R̃(1)
j+ 1

2
=

 1
λ̃(1)

j+ 1
2

 ; R̃(2)
j+ 1

2
=

 1
λ̃(2)

j+ 1
2

 . (73)
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As usual, the eigenvalues and the eigenvectors are collected in the matrices Λ̃ j+1/2
and R̃ j+1/2.

To introduce the ARoe solution, we integrate (66) in space between x j and
x j+1:

d
dt

∫ x j+1

x j

u(x, t) dx = −
[
f (u(x j+1, t)) − f (u(x j, t))

]
+

∫ x j+1

x j

s(x, t) dx; (74)

and in time between tn and tn+1 = tn + ∆t, taking into account the initial condition
(67):∫ x j+1

x j

u(x, tn+1) dx =
∆x(un

j + un
j+1)

2
− ∆t

(
f n

j+1 − f n
j

)
+

∫ tn+1

tn

∫ x j+1

x j

s(x, t) dx dt;

(75)
where f n

j = f (un
j).

Introducing the approximation for the source term integral S j+1/2 given by
[31, 32]:

S j+ 1
2

=
1
∆t

∫ tn+1

tn

∫ x j+1

x j

s(x, t) dx dt =

 0
−

g
2

(
hn

j + hn
j+1

) (
z j+1 − z j

) ; (76)

we have: ∫ x j+1

x j

u(x, tn+1) dx =
∆x(un

j + un
j+1)

2
− ∆t

(
f n

j+1 − f n
j

)
+ ∆t S j+ 1

2
. (77)

In the framework of the Roe Riemann solvers, we consider again the RP (66)-
(67), and we write (66) in the following linearized form:

∂tû + Ĵ j+ 1
2
∂xû = 0; (78)

where the Jacobian matrix Ĵ j+1/2(un
j , u

n
j+1) will be specified later. Ĵ j+1/2(un

j , u
n
j+1)

includes the effects due to the source term and have to satisfy two conditions:
Ĵ j+1/2(un

j , u
n
j+1) must be diagonalizable with real eigenvalues and Ĵ j+1/2(un

j , u
n
j+1)→

Ĵ j+1/2(un
j) smoothly as un

j+1 → un
j .

To provide the explicit form of the matrix Ĵ j+1/2, we perform the following
step. We integrate in space and time, obtaining:∫ x j+1

x j

û(x, tn) dx =
∆x(un

j + un
j+1)

2
− ∆tĴ j+ 1

2

(
un

j+1 − un
j

)
. (79)
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The consistency condition (i.e., the integral of the solution û is equal to the integral
of the solution u over a suitable control volume [31, 41]) and Eqs. (77)-(79) lead
to:

Ĵ j+ 1
2

(
un

j+1 − un
j

)
=

(
f n

j+1 − f n
j

)
− S j+ 1

2
. (80)

We focus our attention on the left-hand side of Eq. (80), particularly on J̃ j+1/2 and
the corresponding eigenvectors and eigenvalues. Then, we can write:

J̃ j+ 1
2

= R̃ j+ 1
2
Λ̃ j+ 1

2
R̃−1

j+ 1
2
. (81)

We consider the projection of the difference un
j+1 − un

j and the source term S j+1/2

over the orthogonal basis constituted by the eigenvectors of the matrix R̃ j+1/2, i.e.,
we compute the coefficients α j+1/2 = [α(1)

j+1/2, α
(2)
j+1/2]T and β j+1/2 = [β(1)

j+1/2, β
(2)
j+1/2]T

that satisfy:
R̃ j+ 1

2
α j+ 1

2
= un

j+1 − un
j ; R̃ j+ 1

2
β j+ 1

2
= S j+ 1

2
. (82)

and we can apply to the right-hand side of the Eq. (80) the following manipulation:(
f n

j+1 − f n
j

)
− S j+ 1

2
= J̃ j+ 1

2

(
un

j+1 − un
j

)
− S j+ 1

2
=

= R̃ j+ 1
2
Λ̃ j+ 1

2
R̃−1

j+ 1
2

(
un

j+1 − un
j

)
− S j+ 1

2
=

= R̃ j+ 1
2
Λ̃ j+ 1

2
R̃−1

j+ 1
2
R̃ j+ 1

2
α j+ 1

2
− R̃ j+ 1

2
β j+ 1

2
=

= R̃ j+ 1
2

(
Λ̃ j+ 1

2
α j+ 1

2
− β j+ 1

2

)
=

2∑
i=1

(
λ̃(i)

j+ 1
2
α(i)

j+ 1
2
− β(i)

j+ 1
2

)
R̃(i)

j+ 1
2
; (83)

or in a more compact form:(
f n

j+1 − f n
j

)
− S j+ 1

2
=

2∑
i=1

[
λ̃ α − β

](i)

j+ 1
2

R̃(i)
j+ 1

2
; (84)

Introducing the relationship:

Ĵ j+ 1
2

= R̃ j+ 1
2
Λ̂ j+ 1

2
R̃−1

j+ 1
2
; (85)

where Λ̂ is the diagonal matrix of eigenvalues λ̂i, the left-hand side of the Eq. (80)
can be manipulated in the following manner:

Ĵ j+ 1
2

(
un

j+1 − un
j

)
= R̃ j+ 1

2
Λ̂ j+ 1

2
R̃−1

j+ 1
2

(
un

j+1 − un
j

)
=

= R̃ j+ 1
2
Λ̂ j+ 1

2
R̃−1

j+ 1
2
R̃ j+ 1

2
α j+ 1

2
= R̃ j+ 1

2

(
Λ̂ j+ 1

2
α j+ 1

2

)
=

=

2∑
i=1

(
λ̂(i)

j+ 1
2
α(i)

j+ 1
2

)
R̃(i)

j+ 1
2
. (86)
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or in a more compact form:

Ĵ j+ 1
2

(
un

j+1 − un
j

)
=

2∑
i=1

[
λ̂α

](i)

j+ 1
2

R̃(i)
j+ 1

2
. (87)

Taking into account Eqs. (80), (84) and (87), we have:

2∑
i=1

[
λ̃ α − β

](i)

j+ 1
2

R̃(i)
j+ 1

2
=

2∑
i=1

[
λ̂α

](i)

j+ 1
2

R̃(i)
j+ 1

2
; (88)

which allows defining the eigenvalues λ̂i as:

λ̂(i)
j+ 1

2
= λ̃(i)

j+ 1
2
−

β(i)
j+ 1

2

α(i)
j+ 1

2

; (89)

Given a suitable Roe matrix for the homogeneous part of the system, J̃ j+1/2,
the construction of Ĵ j+1/2 is performed using (89) and (85).

In the framework of a Roe scheme, an approximate solution of the RP asso-
ciated with (78) can easily be found. In the classical approach, the approximate
solution consists of piecewise constant functions with the number of discontinu-
ities equal to the number of equations in the hyperbolic system. In our case, the
classical solutions are constituted by three constant states separated by two waves.
In the approach proposed in [31], a new state and a new wave are introduced.
Whereas the original waves are characterized by a celerity related to the Jacobian
matrix eigenvalues, the new wave is steady. The corresponding three-wave solu-
tion [31] depends on the flow condition, that is, on the signs of λ̃i, and takes into
account the presence of the bottom discontinuity.

In the case of subcritical flows, the solution is given by [31]:

û(x, t) =


un

j , if (x − x j+ 1
2
) ≤ λ̃1t;

u∗j , if (x − x j+ 1
2
) > λ̃1t and x ≤ x j+ 1

2
;

u∗∗j+1, if x > x j+ 1
2

and (x − x j+ 1
2
) < λ̃2t;

un
j+1, if (x − x j+ 1

2
) ≥ λ̃2t;

(90)

with:

u∗j = un
j +

[
α −

β

λ̃

](1)

j+ 1
2

R̃(1)
j+ 1

2
; (91)

u∗∗j+1 = u∗j+1 −

[
α −

β

λ̃

](2)

j+ 1
2

R̃(2)
j+ 1

2
; (92)

22



In the supercritical case, if v > 0, the solution becomes:

û(x, t) =


un

j , if x ≤ x j+ 1
2
;

u∗j+1, if x > x j+ 1
2

and, (x − x j+ 1
2
) ≤ xλ̃1t;

u∗∗j+1, if (x − x j+ 1
2
) > λ̃1t and (x − x j+ 1

2
) < λ̃2t,

un
j+1, if (x − x j+ 1

2
) ≥ λ̃2t;

(93)

with:

u∗j+1 = u∗∗j+1 −

[
α −

β

λ̃

](1)

j+ 1
2

R̃(1)
j+ 1

2
; (94)

In the supercritical case, if v < 0, the solution becomes:

û(x, t) =


un

j , if (x − x j+ 1
2
) ≤ λ̃1t;

u∗j , if (x − x j+ 1
2
) > λ̃1t and (x − x j+ 1

2
) < λ̃2t;

u∗∗j , if (x − x j+ 1
2
) > λ̃2t and x < x j+ 1

2
;

un
j+1, if x ≥ x j+ 1

2
;

(95)

with:

u∗∗j = u∗j +

[
α −

β

λ̃

](2)

j+ 1
2

R̃(2)
j+ 1

2
; (96)

With this approximate solution, we are now able to write the expression for
updating the cell-averaged state. To this end, we can integrate the approximate so-
lutions of the two Riemann problems at the cell interfaces as usual in the Godunov-
type schemes. Without loss of generality, we consider the subcritical case and the
cell I j =

[
x j−1/2, x j+1/2

]
. The cell-averaged values un+1

j on the j-th cell at time tn+1

are defined as:

un+1
j =

1
∆x

∫
I j

u(x, tn+1) dx ≈
1

∆x

∫
I j

û(x, tn+1) dx; (97)

The substitution of the approximate solution (90) in (97) allows writing:

un+1
j ∆x = u∗j

(
−λ̃(1)

j+ 1
2
∆t

)
+ un

j

(
∆x − λ̃(2)

j− 1
2
∆t + λ̃(1)

j+ 1
2
∆t

)
+ u∗∗j

(
λ̃(2)

j− 1
2
∆t

)
; (98)

that can be written as:

un+1
j ∆x = un

j∆x +
(
un

j − u∗j
) (
λ̃(1)

j+ 1
2
∆t

)
+

(
u∗∗j − un

j

) (
λ̃(2)

j− 1
2
∆t

)
; (99)

and straightforward algebraic manipulations lead to:

un+1
j = un

j −
∆t
∆x

{[(
λ̃α − β

)
R̃
](1)

j+ 1
2

+
[(
λ̃α − β

)
R̃
](2)

j− 1
2

}
. (100)
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Analogous computations that take into account both subcritical and supercriti-
cal flows provide the general updating expression for the numerical solution:

un+1
j = un

j −
∆t
∆x

[
D̃−

j+ 1
2

+ D̃+

j− 1
2

]
; (101)

with:

D̃−
j+ 1

2
=

∑
λ̃(i)

j+ 1
2
<0

[(
λ̃α − β

)
R̃
](i)

j+ 1
2

; (102)

D̃+

j− 1
2

=
∑

λ̃(i)

j− 1
2
>0

[(
λ̃α − β

)
R̃
](i)

j− 1
2

; (103)

where the sum in (102) is performed on the indices i for which λ̃(i)
j+ 1

2
< 0, while the

sum in (103) is performed on the indices i for which λ̃(i)
j− 1

2
> 0.

To avoid entropy glitches [41] in the case of transcritical flows, an Harten-
Hyman entropy fix is used; see [31] for further details.

The ARoe scheme can be summarized by the following steps: the source term
integral S j+1/2 is computed using Eq. (76); the eigenvalues λ̃(i)

j+1/2 and eigenvec-

tors R̃(i)
j+1/2 are computed using (72) and (73), respectively; α j+1/2 and β j+1/2 are

computed using (82); D̃−j+1/2 and D̃+
j−1/2 are evaluated using (102) and (103), re-

spectively; and finally, the numerical solution is updated through (101).

3.6. The ARoeEB model - an energy-balanced augmented Roe model

The ARoe model described in § 3.5 is well balanced for the quiescent flow [31].
To obtain an energy-balanced model [32], denoted here as ARoeEB, the integral
S j+1/2:

S j+ 1
2

=
1
∆t

∫ tn+1

tn

∫ x j+1

x j

s(x, t) dx dt =

 0
S

(2)
j+ 1

2

 ; (104)

must be modified. First, we recall that S(2)
j+1/2 can be considered as the force exerted

by a step on the flow [9, 10, 32] and can be evaluated in different manners.
If we assume that the pressure distribution is hydrostatic over the step and

depends only on the free-surface level on the side of the discontinuity where the
bottom elevation is lower [32], we obtain the sb1 approximation given by:

sb1 = −g
(
hl −

|JzK′|
2

)
JzK′; (105)
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where:

l =

{
j, if JzK ≥ 0;
j + 1, if JzK < 0;

JzK′ =


hn

j , if JzK ≥ 0 and ηn
j < z j+1;

hn
j+1, if JzK < 0 and ηn

j+1 < z j;
JzK, otherwise;

(106)

with: JzK = z j+1 − z j and ηn
j = hn

j + z j.
A simpler approximation, denoted here as sb2, is given by:

sb2 = −gh̄n
j+ 1

2
JzK; (107)

with h̄n
j+ 1

2
=

(
hn

j + hn
j+1

)
/2.

The key idea is to combine Eqs. (105)-(107) to obtain an approximation of
S

(2)
j+ 1

2
that allows defining an energy-balanced scheme. To this end, the following

linear combination is proposed in [32]:

S
(2)
j+ 1

2
= (1 −A) sb2 +A sb1; (108)

withA to be defined.
To define the weight A, the first step consists of determining the value that A

must assume in steady conditions without shocks. We denote this value as AE .
In this case, the total head must be conserved across the bottom discontinuity, and
therefore, we can write:

Jz + h + v2/(2 g)K = 0. (109)

Eq. (109) can be cast in the form:

Jz + hK = −
1
g
Jv2/2K. (110)

For the same steady condition, straightforward computations performed on
Eq. (77) provide:

JqK = 0; (111)

Jh v2 + (g h2)/2K = (1 −AE) sb2 +AE sb1; (112)

and (112) becomes:

Jh v2K + gh̄n
j+ 1

2
JhK − sb2 = AE (sb1 − sb2) ; (113)

being J(g h2)/2K = gh̄n
j+ 1

2
JhK. The substitution of (107) into (113) leads to:

Jh v2K + gh̄n
j+ 1

2
Jz + hK = AE (sb1 − sb2) . (114)
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If we impose that the momentum balance and the total head preservation have
to be valid at the same time when the flow is steady, both (110) and (114) must be
true, and therefore:

Jh v2K − h̄n
j+ 1

2
Jv2/2K = AE (sb1 − sb2) ; (115)

which implies that:

AE =

Jh v2K − h̄n
j+ 1

2
Jv2/2K

sb1 − sb2
. (116)

Eq. (116) ensures that, in the case of steady conditions and away from hydraulic
jumps, the total head is preserved if A = AE . Conversely, in the presence of a
hydraulic jump, a proper fraction of the total head must be dissipated. Therefore,
a robust algorithm to compute both steady and unsteady flows, with or without
hydraulic jumps, is necessary. As suggested in [32], the following solution is used
in this work:

A =


AE , if vn

jv
n
j+1 ≥ 0 and |Fr j| < 1 and |Fr j+1| < 1;

AE , if vn
jv

n
j+1 ≥ 0 and |Fr j| > 1 and |Fr j+1| > 1;

1, otherwise.
(117)

This algorithm discriminates between smooth and discontinuous solutions [32]. In
the case of steady flows without hydraulic jumps, the solution guarantees the total
head preservation, while the still water case is correctly captured as a particular
case of steady flow. In the presence of a hydraulic jump, by imposing A = 1, the
correct rate of energy dissipation is obtained.

For completeness, we summarize the ARoeEB scheme here: the source term
integral S j+1/2 is computed using Eqs. (104) and (108) withA given by Eq. (117);
the eigenvalues λ̃(i)

j+1/2 and eigenvectors R̃(i)
j+1/2 are computed using (72) and (73),

respectively; α j+1/2 and β j+1/2 are computed using (82); D̃−j+1/2 and D̃+
j−1/2 are

evaluated using (102) and (103), respectively; and finally, the numerical solution is
updated through (101).

3.7. The HDEB model - a hydrodynamic reconstruction model
Here, we also consider the hydrodynamic reconstruction model, denoted HDEB,

proposed in [9] and revisited in [10].
The scheme is developed assuming the conservation of the total head and of

the specific discharge on the step for the steady condition. The scheme belongs to
the family of the finite volume methods, and the expression for the updating of the
solution is:

un+1
j = un

j −
∆t
∆x

[
f −

j+ 1
2
− f +

j− 1
2

]
; (118)
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where f −j+1/2 and f +
j−1/2 are suitable numerical fluxes to be given.

Recalling that the total force, Φ(u), and the specific energy, E(u), are given by:

Φ(u) =
g h2

2
+

q2

h
; E(u) = h +

q2

2 g h2 ; (119)

the numerical fluxes f −j+1/2 and f +
j−1/2 are:

f −
j+ 1

2
= f ∗(u∗,−

j+ 1
2
, u∗,+

j+ 1
2
) +

 0

Φ
(
un

j

)
− Φ

(
u∗,−

j+ 1
2

) ; (120)

f +

j− 1
2

= f ∗(u∗,−
j− 1

2
, u∗,+

j− 1
2
) +

 0

Φ
(
un

j

)
− Φ

(
u∗,+

j− 1
2

) ; (121)

where f ∗(uL, uR) is the standard HLL numerical flux [24, 41] and u∗,±j±1 is defined
as follows. The attention is focused on u∗,−j+1/2, and a similar procedure can be
constructed for u∗,+j−1/2.

A virtual section between the j-th and j+1-th cells is introduced, and a layer of
infinitely small length between the interface at x j+1/2 of the j-th cell and the virtual
section is considered. We assume that the bottom elevation at the virtual section
can be computed as z∗

j+ 1
2

= max(z j, z j+1). Then, we compute:

E∗,−
j+ 1

2
= (z j − z∗

j+ 1
2
) + En

j ; (122)

with En
j = E(un

j). This relation is obtained by imposing the conservation of the
total head and of the discharge into the virtual layer. Then, E∗,−

j+ 1
2

can be interpreted

as the function E computed at the virtual section at x−
j+ 1

2
, i.e.:

E∗,−
j+ 1

2
= h∗,−

j+ 1
2

+
(qn

j)
2

2 g(h∗,−
j+ 1

2
)2

(123)

that corresponds to an implicit expression for h∗,−
j+ 1

2
. Finding h∗,−

j+ 1
2

that satisfies

Eq. (123) for given values of qn
j and E∗,−

j+ 1
2

is performed analytically [42]. Two

depths make physical sense and correspond to a subcritical solution and a super-
critical solution. In this work, we select the solution consistent with the Froude
number Fr(un

j).
The HDEB scheme can be summarized in the following steps: we compute

u∗,−
j+ 1

2
= [h∗,−

j+ 1
2
, qn

j]
T, where h∗,−

j+ 1
2

is given implicitly by (123); we compute the HLL

numerical fluxes and the corrections; the HDEB fluxes are then computed using
Eqs. (120)-(121); and finally, the solution is updated using (118).

27



η q
Model L1 L2 L∞ L1 L2 L∞
PC 4.441e-17 1.404e-16 4.441e-16 3.592e-16 4.698e-16 9.557e-16
ARoe 9.992e-17 2.047e-16 4.441e-16 3.543e-16 4.259e-16 7.274e-16
HLLEM 5.551e-17 1.440e-16 4.441e-16 4.911e-16 6.230e-16 1.531e-15
PCEB 2.220e-17 9.930e-17 4.441e-16 6.119e-17 1.212e-16 3.296e-16
ARoeEB 9.992e-17 2.047e-16 4.441e-16 3.543e-16 4.259e-16 7.274e-16
HLLEMEB 2.220e-17 9.930e-17 4.441e-16 2.755e-16 3.780e-16 8.511e-16
HDEB 0.000e+00 0.000e+00 0.000e+00 2.808e-17 8.432e-17 3.186e-16

Table 1: C-property test case: the L1, L2 and L∞ error norms in terms of water elevation η and specific
discharge q, for a motionless steady flow, are shown for all the models.

4. Comparison between models

Several test cases are used to compare the different models. Only the meaning-
ful results are presented here. The CFL coefficient is set equal to 0.9 in almost all
the simulations with all the models, but in some particular cases, the time step is
decreased to achieve meaningful results. In these specific cases, the CFL used is
specified in the description of the tests.

4.1. C-property test case

To verify the fulfillment of the C-property over a non-flat bottom [7], the test
case proposed in [10] is used. The bottom profile is continuous and differentiable
but with two discontinuities and is given by:

z(x) =


sin(2πx) if 0.0 m < x ≤ 0.4 m;
cos(2π(x + 1)) if 0.4 m < x < 0.8 m;
sin(2πx) if 0.8 m < x ≤ 1.0 m;

(124)

The initial conditions are a constant free-surface elevation, η = 1.5 m, and a zero
discharge, whereas the boundary conditions are periodic. The simulations are per-
formed until t = 0.1 s, using a mesh of 20 cells. The analytical solution consists of
a quiescent flow that preserves the initial free-surface elevation.

The L1, L2 and L∞ error norms related to the water level and the specific dis-
charge are computed. The results, obtained using double-precision floating-point
arithmetic, are summarized in Tab. 1.

The differences of the numerical solutions from the reference solution are only
due to round-off errors; therefore, all the models considered in this work, both
the well-balanced and the energy-balanced models, are able to exactly satisfy the
C-property.
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4.2. Subcritical and supercritical flows over a bump
The purpose of this test case is to validate the seven models in the case of steady

flows over a parabolic bottom profile [10, 11, 43]. In particular, we are interested in
comparing between the energy-balanced models [32] and the models that are well
balanced only for the quiescent flow [7]. In this section, we take flows without a
transition through the critical state into account.

We consider a 20 m long channel, discretized with 400 cells (∆x = 0.05 m).
The bottom profile is given by the following function:

z(x) =

{
0.2 − 0.05 (x − 10)2 m if 8.0 m < x ≤ 12 m;
0 otherwise;

(125)

We consider both subcritical and supercritical flows. In the case of subcritical flow,
the upstream specific discharge is imposed equal to 4.42 m2/s, while the down-
stream water level is imposed equal to 2.00 m. As initial conditions, we set a
uniform specific discharge and a uniform depth of 4.42 m2/s and 2.00 m, respec-
tively. In the case of supercritical flow, we impose at the upstream section a specific
discharge and a depth of 4.42 m2/s and 0.85 m, respectively. The initial conditions
are again uniform with specific discharge and depth equal to the corresponding
upstream boundary values.

After an initial transitory flow, the constant boundary conditions must lead to
an asymptotic steady state characterized by a uniform specific discharge and total
head. The corresponding asymptotic analytical solutions are reported in Fig. 1 in
terms of free surface elevation for both the subcritical and supercritical states. We
assume that the steady state is reached after 100 s of simulation.

Note that we can define a scheme as energy balanced if, in the absence of a
hydraulic jump, it can exactly preserve an initial steady state characterized by a
uniform discharge and total head [32]. The initial conditions that we have selected
do not satisfy the total head uniformity, and the models must reproduce an unsteady
flow toward the steady asymptotic solution. Therefore, a numerical model works
correctly only if the correct asymptotic state is reached and maintained indefinitely.
Our choice of the initial conditions makes the test more demanding with respect to
the simple steady state preservation because the asymptotic state is not imposed by
the initial condition but is computed by the models.

The analysis is presented in terms of relative errors eq and eH in the computa-
tion of the asymptotic specific discharge and total head defined as:

eq =
q − qref

qref
; eH =

H − Href

Href
; (126)

where qref and Href are the specific discharge and the total head of the reference
analytical solution, respectively.
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Figure 1: Bottom profile and free-surface water level for the subcritical and supercritical flows over
a bump.

In Fig. 2, eq and eH are reproduced for all the considered models for the sub-
critical case (blue lines) and for the supercritical case (red lines).

As expected, two different trends can be observed in the results. Whereas the
well-balanced models (PC, ARoe and HLLEM) are not able to reproduce the steady
state exactly (at the round-off error level), all the four energy-balanced models
(PCEB, ARoeEB, and HLLEMEB) reach the asymptotic solutions exactly. This
can clearly be observed when examining the figures of the total head error. In par-
ticular, the analysis of the results obtained using the WB models shows a maximum
relative error in the total head computation on the order of 10−7, and interestingly,
all three models show exactly the same behavior. Moreover, the sign of the error is
equal for all the EB models in the case of both subcritical and supercritical flows.
Moreover, note that in our experience with the ARoeEB model, the related time
step must be reduced to achieve acceptable results for the supercritical test case
(i.e., the CFL coefficient is 0.5).

Small differences can be observed in the reproduction of the flow discharge.
For example, while the PC and HLLEM models do not allow achieving a uniform
exact specific discharge, as expected by the WB models, the ARoe model provides
exact results. Moreover, the performances of the models in the reproduction of
the supercritical flow appear to be better than in the reproduction of the subcritical
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Figure 2: Subcritical and supercritical flows: comparison between errors in the flow discharge and in
the total head. Blue lines refer to the subcritical flow, and red lines refer to the supercritical flow.
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PC ARoe HLLEM PCEB ARoeEB HLLEMEB HDEB
1.04 1.29 1.00 13.49 3.29 2.84 4.47

Table 2: Relative simulation time for the subcritical test case: ratio between the simulation time of
each model and the HLLEM model.

flows.
The simulation of the subcritical flow over the bump is also used to study the

numerical efficiency of the different models. To the best of our abilities, all the
models are developed with the same degree of optimization. In Tab. 2, the ratios
between the simulation time of each model and the simulation time of the HLLEM
model are shown. The HLLEM model results in the more efficient model, whereas
the longest time is achieved using the PCEB model. In general, the techniques that
preserve the total head lead to a certain increase in the computational time.

4.3. Transcritical flow over a bump

The total head preservation becomes more difficult to achieve if the solution
involves critical states or hydraulic jumps. In this test case, we consider a smooth
transcritical flow over a parabolic bump.

We consider the same channel, bottom profile and space discretization of the
test case presented in section 4.2. The boundary conditions are imposed to obtain
the transition through the critical state on the vertex of the bump, a subcritical flow
in the upstream part of the channel and a supercritical flow in the downstream part.
To this end, at the upstream section, the specific discharge is set to 1.53 m2/s. A
uniform specific discharge and a uniform water level of 0.4 m are initially imposed
along the channel. After the initial transient, the asymptotic steady state is reached
after 100 s of simulation. The analytical solution is reported in Fig. 3 in terms of
free surface elevation.

In Fig. 4, the errors eq and eH are reproduced for all the considered models. As
shown, all the models are not able to manage the transition on the critical state. This
is mainly due to the difficulties in developing a consistent numerical approach near
the critical point. In this condition, for a given value of the total head, it becomes
difficult to construct an algorithm to discern the correct physical flow state.

4.4. Transcritical flow with hydraulic jump over a bump

This test case is devoted to analyzing the influence of the presence of a hy-
draulic jump in achieving the energy consistency property of the models.

We consider the same channel, bottom profile and space discretization of the
test case presented in section 4.2. The upstream specific discharge is 0.18 m2/s,
and the downstream water-surface elevation is set to 0.33 m. The initial water
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Figure 3: Bottom profile and free-surface water level for the transcritical flow over the bump.

level is 0.33 m, and the initial discharge is 0.18 m2/s everywhere. After the initial
transient, the asymptotic steady state is reached after 100 s of simulation. The
analytical solution is reported in Fig. 5 in terms of free surface elevation.

Fig. 6 describes the solution in terms of water level for all the considered mod-
els, and Fig. 7 shows the errors eq and eH . As shown, all the models, both the
WB and the EB schemes, are not able to exactly manage the solution disconti-
nuity constituted by the hydraulic jump. Moreover, all the models lead to very
similar results. The only exception is the HLLEMEB scheme, which is less accu-
rate in the reproduction of the jump position. This poor behavior may be due to
the well-known problem of the path-conservative schemes in the reproduction of
strong shocks [1, 12]. In this case, the selection of a non-linear path leads to an
error in the prediction of the jump position. Notwithstanding, note that in the case
of moderate amplitude shocks, the HLLEMEB model also works properly (see the
test case 4.5). The overall performance of all the models is satisfactory, and we
can affirm that the technique used to achieve the energy consistency for the smooth
solution does not interfere with the behavior of the schemes near the discontinuity.

4.5. Non-resonant dam-break flow over a step

This Riemann problem is proposed in [10] to verify the behavior of the numer-
ical models in the reproduction of unsteady flows. In particular, the ability of the
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Figure 4: Transcritical flow: comparison between errors in the flow discharge and in the total head.
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Figure 5: Bottom profile and free-surface water level for the flow over a bump with a hydraulic jump.

models to reproduce both the steady discontinuity over the step and the moving
hydraulic jump is tested. The channel is 2 m long with a 0.5 m height forward
step at x = 1 m. The initial water level is 6 m for x < 1 m and 2 m for x > 1 m.
The specific discharge is zero in all of the domain. The solution is constituted by a
rarefaction, a steady contact wave and a shock. Fig. 8 shows the reference solution
of the problem in terms of free-surface elevation [28, 29].

Fig. 9 shows the comparison between analytical and numerical solutions in
terms of free-surface elevation. The analysis of the obtained results allows the
conclusion obtained in [10] to be confirmed. Both the WB and EB models work
well for this test case. Moreover, it is well known that the path-conservative models
may poorly reproduce the position and the amplitude of a shock [1, 12], but the
presented results make us confident regarding the shock-capturing properties of
all the models. This achievement is particularly relevant for the HLLEMEB and
PCEB models, where the choice of the non-linear path can raise some perplexities.

4.6. Resonant Riemann problem over a step

The possible discontinuity of the bottom makes the SWE a non-strictly hyper-
bolic system of equations. A first consequence of the possible loss of hyperbolicity
is the resonance phenomenon [29] for certain values of the initial conditions of the
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Figure 6: Transcritical flow over a bump with a hydraulic jump: comparison between analytical and
numerically computed free-surface water level. Only the part of the domain between x = 7 m and
x = 13 m is represented.
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Figure 7: Transcritical flow over a bump with a hydraulic jump: comparison between errors in the
flow discharge and in the total head.
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Figure 8: Bottom profile and free-surface water level for the non-resonant dam-break flow over a
bottom step.

Riemann problem. In these conditions, the elementary waves can interact, giving
rise to a flow that is challenging to be numerically solved. The resonant Riemann
problem proposed in [29] is selected here to validate the behavior of the different
models in the case of resonance.

The channel is 2 m long. The bottom elevation is 1 m for x < 1 m and 1.1
m for x > 1 m. The initial water level is 1 m for x < 1 m and 0.8 m for x > 1
m, and the initial flow velocity is 2 m/s for x < 1 m and 4 m/s for x > 1 m.
The solution is constituted by a rarefaction, a steady contact wave, a shock and a
rarefaction. Fig. 10 shows the reference solution of the problem in terms of free-
surface elevation and is computed according to [28, 29].

Figs. 11 and 12 show the comparison between the analytical and numerical
solutions in terms of free-surface elevation. Small portions of the computational
domain are represented to highlight the differences between the results.

From Fig. 11, it is possible to observe that the HLLEM model is not able to
reproduce the steady contact discontinuity at the step. In particular, overshoots
and undershoots of the water elevation near the step are clearly visible. Moreover,
the HLLMEB models required the use of smaller time steps to achieve satisfactory
results. Only in this test case and the HLLEMEB model, the CFL coefficient is
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Figure 9: Non-resonant dam-break flow over a bottom step: comparison between analytical and
numerically computed free-surface water level. Only the part of the domain between x = 0.7 m and
x = 1.5 m is represented.
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Figure 10: Bottom profile and free-surface water level for the resonant Riemann problem.

set equal to 0.2 rather than 0.9. Finally, the results related to the PCEB model
presented for this test case are obtained using the variant of the model described in
Appendix B.

In general, all the models, with the exception of the HLLEM model, are able to
reproduce the analytical solution quite well. Notwithstanding, the analysis of the
solution details reported in Fig. 12 shows that the EB models obtain better approx-
imations than the WB models. In particular, the amplitude of the free-surface jump
at the bottom step is correctly estimated by the EB models and is overestimated by
the WB models. This behavior is due to the incorrect energy dissipation introduced
at the step by the WB models.

5. Conclusions

In this work, we present for the first time a new energy-balanced scheme based
on a modified version of the HLLEM approximate Riemann solver. Then, we
perform a comparison between well-balanced models and energy-balanced models.
From this comparison, we are able to highlight the strengths and weaknesses of the
two approaches and to show the different behaviors of the different energy-balanced
models.
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Figure 11: Resonant Riemann problem: comparison between analytical and numerically computed
free-surface water level. Only the part of the domain between x = 0.8 m and x = 1.5 m is represented.
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Figure 12: Resonant Riemann problem: comparison between analytical and numerically computed
free-surface water level. Only the part of the domain between x = 0.95 m and x = 1.1 m is repre-
sented.
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From this study, we can conclude that different classes of well-balanced models
can be improved in the reproduction of the asymptotic steady state. In particular,
we have considered the path-consistent, the Roe, the HLLEM and the hydrostatic
reconstruction schemes. In general, we have found that the accuracy increase in the
steady state reproduction is counterbalanced by a reduced robustness and numer-
ical efficiency of the models. We have suggested some solutions to reduce these
drawbacks at the cost of increased algorithm complexity.
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Appendix A. The explicit expressions for the fluctuations in the PCEB model

The direct substitution of the path (12) in (8) leads to a time-consuming scheme.
In particular, the numerical integration of all the components of the product of the
matrices A and |A| with the path derivatives along the path itself is a computation-
ally demanding task. For this reason, in this appendix, we perform some algebraic
manipulations to develop a more efficient model.

First, the evaluation of the derivative with respect to s of the three components
of the path Ψ(w−,w+, s) has to be performed. The q an z components of the path
are linear, and therefore, the corresponding derivatives are straightforward. The
derivative of the h component is more involved because the depth is not given as a
closed expression of s but rather in an implicit form involving H. To address this
issue, we consider the total head as a function of s:

H(s) = z(s) + h(s) +

[
q(s)

]2

2 g [h(s)]2 ; (A.1)

and we perform the following algebraic manipulation:

∂H
∂s

=
∂z
∂s

+
∂h
∂s

+
q

g h2

∂q
∂s
−

q2

g h3

∂h
∂s

;⇒(
1 −

q2

g h3

)
∂h
∂s

=
∂H
∂s
−
∂z
∂s
−

q
g h2

∂q
∂s

;⇒

∂h
∂s

=

(
1 −

q2

g h3

)−1 [
∂H
∂s
−
∂z
∂s
−

q
g h2

∂q
∂s

]
; (A.2)
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which leads to the expression of the derivative of h:

∂h
∂s

=

(
c2

c2 − v2

) [
∂H
∂s
−
∂z
∂s
−

v
c2

∂q
∂s

]
. (A.3)

Taking into account the path (12), the linear variation of the total head (14) and
the relationship (A.3), the path derivatives become:

∂Ψ

∂s
=

∂h̄/∂s
∂q̄/∂s
∂z̄/∂s

 =


(

c2

c2−v2

) (
JHK − JzK − v

c2 JqK
)

JqK
JzK

 . (A.4)

We are now able to write the explicit form of the matrix products that appear
in Eq. (8), A∂Ψ

∂s and |A| ∂Ψ
∂s , where A is given in Eq. (2) and |A| = R |Λ|R−1.

In the former case, we have:

A
∂Ψ

∂s
=

 0 1 0
c2 − v2 2v c2

0 0 0



(

c2

c2−v2

) (
JHK − JzK − v

c2 JqK
)

JqK
JzK

 ; (A.5)

which, after a straightforward manipulation, becomes:

A
∂Ψ

∂s
=

 JqK
vJqK + c2JHK

0

 . (A.6)

To obtain the explicit expression for |A| ∂Ψ
∂s , we first introduce an explicit for-

mulation for the matrix |A|. With this aim, we write the matrices of the right eigen-
vectors and its inverse in the form:

R =


1 c2

v2−c2 1
v − c 0 v + c

0 1 0

 ; R−1 =


c+v
2c − 1

2c
c

2c−2v
0 0 1

c−v
2c

1
2c

c
2(c+v)

 ; (A.7)

where the R2 eigenvector of Eq. (4) is multiplied by c2

v2−c2 for convenience, and the
matrix |Λ| is:

|Λ| =

|v − c| 0 0
0 0 0
0 0 |v + c|

 . (A.8)

Using Eqs. (A.7) and (A.8), it is easy to write |A(w)| = R |Λ|R−1 in the form:

|A|= 1
2c


(c+v)|v−c|+(c−v)|c+v| |c+v|−|v−c|

c2 |v−c|
c−v +

c2 |c+v|
c+v

(v2−c2)(|v−c|−|c+v|) (c+v)|c+v|−(v−c)|v−c|
c2(v−c)|v−c|

c−v + c2 |c+v|

0 0 0

. (A.9)
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Assuming that v is positive (i.e., v + c > 0), we have the following two possi-
bilities. For a subcritical flow (i.e., v − c < 0), Eq. (A.9) becomes:

|A| =
1
c

 c2 − v2 v c2

c2v − v3 v2 + c2 c2v
0 0 0

 ; (A.10)

and for a supercritical flow (i.e., v − c > 0):

|A| =

 0 1 0
c2 − v2 2v c2

0 0 0

 ; (A.11)

Assuming that v is negative (i.e., v−c < 0), for a subcritical flow (i.e., v+c > 0):

|A| =
1
c

 c2 − v2 v c2

c2v − v3 v2 + c2 c2v
0 0 0

 ; (A.12)

equal to Eq. (A.10), and for a supercritical flow (i.e., v + c < 0):

|A| = −

 0 1 0
c2 − v2 2v c2

0 0 0

 . (A.13)

In other words, in the case of a subcritical flow, |A| is given by Eq. (A.10); in case
of a supercritical flow with v > 0, |A| = A; and in the case of a supercritical flow
with v < 0, |A| = −A.

Therefore, taking into account Eq. (A.10), in the case of a subcritical flow, we
have:

|A|
∂Ψ

∂s
=

1
c

 c2 − v2 v c2

c2v − v3 v2 + c2 c2v
0 0 0



(

c2

c2−v2

) (
JHK − JzK − v

c2 JqK
)

JqK
JzK

 ; (A.14)

and, after some manipulations:

|A|
∂Ψ

∂s
=

 cJHK
cJqK + cvJHK

0

 ; (A.15)

Whereas in the case of a supercritical flow, we have:

|A|
∂Ψ

∂s
=

 JqK
vJqK + c2JHK

0

 , and |A|
∂Ψ

∂s
= −

 JqK
vJqK + c2JHK

0

 ; (A.16)
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for v > 0 and v < 0, respectively.
Taking into account the Dumbser-Osher-Toro (DOT) Riemann solver [19] of

Eq. (8):

D± =
1
2

∫ 1

0
(A ± |A|)

∂Ψ

∂s
ds (A.17)

and Eqs. (A.6), (A.15) and (A.16), for the subcritical case:

D± =
1
2

∫ 1

0

 JqK ± cJHK
(v ± c)JqK + c(c ± v)JHK

0

 ds (A.18)

and for the supercritical case (v > 0):

D± =

(
1
2
±

1
2

) ∫ 1

0

 JqK
vJqK + c2JqK

0

 ds (A.19)

and for the supercritical case (v < 0):

D± =

(
1
2
∓

1
2

) ∫ 1

0

 JqK
vJqK + c2JHK

0

 ds (A.20)

Finally, Eqs. (A.6)-(A.20) can be also written as:

D± =


1
2JqK ± 1

2JHK
∫ 1

0 c ds
1
2JqK

∫ 1
0 (v ± c) ds + 1

2JHK
∫ 1

0 c(c ± v) ds
0

 (A.21)

for a subcritical flow, and:

D+ =


JqK

JqK
∫ 1

0 v ds + JHK
∫ 1

0 c2 ds
0

 ; D− =

00
0

 ; (A.22)

for a supercritical flow with (v > 0), and:

D+ =

00
0

 ; D− =


JqK

JqK
∫ 1

0 v ds + JHK
∫ 1

0 c2 ds
0

 ; (A.23)

for a supercritical flow with (v < 0).
Clearly, Eqs. (A.21)-(A.23) allow a very efficient implementation of the DOT

Riemann solver after the numerical evaluation of the integrals of the scalar quanti-
ties, c, c2, v and cv.
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Appendix B. The integration path for the transcritical flow in the PCEB model

The use of the non-linear path proposed in § 3.2 performs poorly in the case
of transcritical flow (i.e., the flow is subcritical for w− and supercritical for w+ or
vice-versa). For this reason, we propose a modified path to be inserted into Eq. (8)
in the case of transcritical flows. The key idea is to split the path into three parts:
one subcritical, one supercritical and one connecting the two.

The first step is the location of a coordinate, s0, along the path that corresponds
to the critical state characterized by a Froude number equal to 1 (i.e., Fr(s0) = 1).
To this end, we assume that the function Fr(s) is given by:

Fr(s) =
q(s)

h(s)
√

g h(s)
; (B.1)

with:
h(s) = h− + s(h+ − h−); and q(s) = q− + s(q+ − q−); (B.2)

and afterward, we numerically solve the relationship Fr(s0) = 1.
With s0 available, we can calculate:

z0 = z− + s0(z+ − z−); (B.3)

q0 = q− + s0(q+ − q−); (B.4)

H0 = H− + s0(H+ − H−); (B.5)

E0 = H0 − z0; (B.6)

and also h−0 and h+
0 , given by:

h−0 = E−1
0 ; with h−0 subcritical if Fr− < 1 else h−0 supercritical; (B.7)

h+
0 = E−1

0 ; with h+
0 subcritical if Fr+ < 1 else h+

0 supercritical. (B.8)

The computation of Ē0
−1, i.e., finding the values of h±0 that satisfy h±0 +q2

0/{2 g [h±0 ]2} =

E0, is analytically computed using the solution given in [42].
The following 4 points in the phase space are considered:

w− =

h
−

q−

z−

 w−0 =

h
−
0

q0
z0

 w+
0 =

h
+
0

q0
z0

 w+ =

h
+

q+

z+

 ; (B.9)

which define the path in three parts as w− → w−0 → w+
0 → w+. The intermediate

part is assumed to be linear, whereas the other parts are constructed following the
idea proposed in § 3.2. Moreover, indicating with ∆w1, ∆w2, ∆w3 the Euclidean

47



distances between the four points, w−, w−0 , w+
0 and w+, the following curvilinear

abscissa can be found:

s1 =
∆w1∑3

p=1 ∆wp
; s2 =

∆w1 + ∆w2∑3
p=1 ∆wp

. (B.10)

The path is given by:

Ψ(s) =

h̄(s)
q̄(s)
z̄(s)

 ; (B.11)

with:

z̄(s) =


z− + s z0−z−

s1
if 0 ≤ s ≤ s1;

z0 if s1 < s < s2;
z0−s2 z+

1−s2
+ s z+−z0

1−s2
if s2 ≤ s ≤ 1;

(B.12)

and:

q̄(s) =


q− + s q0−q−

s1
if 0 ≤ s ≤ s1;

q0 if s1 < s < s2;
q0−s2 q+

1−s2
+ s q+−q0

1−s2
if s2 ≤ s ≤ 1;

(B.13)

which corresponds to linear bottom elevation and specific discharge.
According to the procedure proposed in § 3.2, the computation of h̄ is slightly

more complex. First, the total head along the path is defined as:

H̄(s) =


H− + s H0−H−

s1
if 0 ≤ s ≤ s1;

H0 if s1 < s < s2;
H0−s2 H+

1−s2
+ s H+−H0

1−s2
if s2 ≤ s ≤ 1;

(B.14)

where we compute Ē = H̄ − z̄, and finally, h̄ is given by:

h̄(s) =



Ē−1; h̄ subcritical if Fr− < 1 else h̄ supercritical; if 0 ≤ s ≤ s1;

h−0 +
h+

0−h−0
s2−s1

(s − s1) if s1 < s < s2;

Ē−1; h̄ subcritical if Fr+ < 1 else h̄ supercritical; if s2 ≤ s ≤ 1;
(B.15)
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The derivative of the path with respect to s:

∂Ψ

∂s
(s) =



∂h̄
∂s (s)

∂q̄
∂s (s)

∂z̄
∂s (s)


; (B.16)

follows from the path definition. Taking into account Eqs. (B.12)-(B.13), it is easy
to write:

∂z̄
∂s

(s) =


z0−z−

s1
if 0 ≤ s ≤ s1;

0 if s1 < s < s2;
z+−z0
1−s2

if s2 ≤ s ≤ 1;

(B.17)

∂q̄
∂s

(s) =


q0−q−

s1
if 0 ≤ s ≤ s1;

0 if s1 < s < s2;
q+−q0
1−s2

if s2 ≤ s ≤ 1;

(B.18)

and, taking into account the relationship (A.3):

∂h̄
∂s

(s) =



(
c2

c2−v2

) [
∂H̄
∂s −

∂z̄
∂s −

q̄
g h̄2

∂q̄
∂s

]
if 0 ≤ s ≤ s1;

h+
0−h−0

s2−s1
if s1 < s < s2;(

c2

c2−v2

) [
∂H̄
∂s −

∂z̄
∂s −

q̄
g h̄2

∂q̄
∂s

]
if s2 ≤ s ≤ 1;

(B.19)

with:

∂H̄
∂s

(s) =


H0−H−

s1
if 0 ≤ s ≤ s1;

0 if s1 < s < s2;
H+−H0

1−s2
if s2 ≤ s ≤ 1;

(B.20)

Finally, Eq. (8) is written as:

D± =
1
2

∫ s1

0

[
A(Ψ(w−,w+, s)) ±

∣∣∣A(Ψ(w−,w+, s))
∣∣∣] ∂Ψ

∂s
ds+

+
1
2

∫ s2

s1

[
A(Ψ(w−,w+, s)) ±

∣∣∣A(Ψ(w−,w+, s))
∣∣∣] ∂Ψ

∂s
ds+

+
1
2

∫ 1

s2

[
A(Ψ(w−,w+, s)) ±

∣∣∣A(Ψ(w−,w+, s))
∣∣∣] ∂Ψ

∂s
ds; (B.21)

with the path, Ψ, and the path derivative, ∂Ψ/∂s, given by (B.11) and (B.16), re-
spectively.
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