
FREE SURFACE AXIALLY SYMMETRIC FLOWS

AND RADIAL HYDRAULIC JUMPS

Alessandro Valiani 1

Valerio Caleffi 2

ABSTRACT

Free surface, axially symmetric shallow flow is analysed in both the centrifugal and centripetal

directions. Referring to the inviscid steady flow over a flat plate characterised by a unique value

of specific energy, the analytical sub- and supercritical solutions are determined. Furthermore, the

sub- and supercritical steady solutions for the flow with friction over a flat plate are determined,

provided that inertial terms are important compared with frictional terms. As the inviscid case, the

sub- and supercritical solutions over a bottom topography are determined, provided that the bottom

unevenness is compatible with a continuous solution. In the fundamental case of inviscid flow

over a flat plate, the discontinuous solution is also analysed for a direct hydraulic jump imposed

by proper boundary conditions. In the simple scheme of an inviscid shock of zero length, the

jump position and the sequent depths are analytically derived, thus indicating that all results are

uniquely functions of one dimensionless number, i. e. the specific energy ratio between the sub-

and supercritical flows.

Keywords: Analytical solution, Circular hydraulic jump, Radial flow, Shallow flow

1Dept. of Engineering, University of Ferrara, via G. Saragat 1, Ferrara, ITALY I-44122. E-mail: alessan-

dro.valiani@unife.it
2Dept. of Engineering, University of Ferrara, via G. Saragat 1, Ferrara, ITALY I-44122. E-mail: vale-

rio.caleffi@unife.it

This material may be downloaded for personal use only. Any other use requires prior permission of the American

Society of Civil Engineers. This material may be found at https://doi.org/10.1061/(ASCE)HY.1943-7900.0001104.

1 Valiani and Caleffi, Sept. 9, 2015

ar
X

iv
:1

91
2.

06
45

8v
1 

 [
ph

ys
ic

s.
fl

u-
dy

n]
  1

3 
D

ec
 2

01
9



INTRODUCTION

This work is part of a series of research on radial, axially symmetric free surface flows studied

for both their intrinsic interest and their significance as test cases to validate numerical models

that integrate two-dimensional (2D) Shallow-Water Equations (SWE) (Valiani and Caleffi, 2003;

Caleffi and Valiani, 2012). Basic contributions typically address the hydraulic jump in radial

flow and/or diverging or converging channels, and the subsequent stability analysis (Lawson and

Phillips, 1983; Hager, 1985; Akers and Bokhove, 2008; Foglizzo et al., 2012). Their practical im-

portance consists of supporting the design of stilling basins and similar hydraulic structures. The

radial hydraulic jump, both as it is diverging or converging, is studied by Valiani and Caleffi (2011,

2013), including the spatial development along its length.

The issue is also topical from an interdisciplinary viewpoint: recent experimental studies on

physical hydraulic models are devoted to study the phenomenon of the standing accretion shock

instability of collapsing stellar cores in astrophysics (Foglizzo et al., 2012).

This work makes available reference analytical solutions. Recent work in the field of compu-

tational hydraulics has shown the importance of these analytical solutions (Delestre et al., 2013)

to validate the consistency, accuracy and robustness of shock-capturing numerical methods for the

1D and 2D SWE.

THE MECHANICAL SCHEME

An axially symmetric free surface radial flow is considered, due to the incidence of a vertical

free jet against a plane horizontal plate, perpendicular to the jet axis, which is designated as z axis.

The radial velocity is positive if directed outward from the centre of the coordinate system (r, θ, z).

Sufficiently far from the z axis, the vertical velocity is small with respect to the radial velocity, and

the tangential velocity is null. The same flow structure is valid, except for the sign of u, for an

axially symmetric radial centripetal flow, which flows from the external boundary of a circular

plate towards its centre. The feeding (from outside) results from a circular sluice gate, along with

a free fall into a central pipe at the plate centre. The flow moves downward in the central free

flowing weir. Figure 1 provides a sketch of the reference flow field. All classical hypotheses of the

2 Valiani and Caleffi, Sept. 9, 2015



r

z

r

z

r

 

FIG. 1. Sketch of typical axially symmetric flows, in (a) centrifugal and (b) cen-
tripetal direction.

SWE are assumed applied to an incompressible liquid in the gravitational field. Inertial and gravity

effects are considered as dominant with respect to viscous effects. Surface tension is neglected.

The pressure distribution over each vertical is hydrostatic; the radial velocity is assumed uniform

on each vertical; and the vertical velocity is assumed negligible with respect to the radial velocity.

The axial symmetry is maintained everywhere.

Basic steady flow equations

Under the specified assumptions, the continuity and dynamic equations for radial steady flow

read
∂

∂r
(U r Y ) = 0 ; U

∂U

∂r
+ g

∂Y

∂r
+ g

∂zb
∂r

+
f

2

U2

Y
= 0 (1)

Here Y is the flow depth; U the vertically-averaged radial velocity (r direction); g the gravity

acceleration; zb the bottom elevation; f the friction coefficient defined by τ0 = (1/2) f ρU2; ρ the

liquid density, assumed constant; and τ0 the bed shear stress. A reference liquid discharge, Q, is

considered, which flows in a reference circular sector of half angular amplitude α (α = π in the

fully circular case). Q/ (2α) is the liquid discharge per unit angular width. A reference specific

energy, E0, is also considered, which is related to the steady inviscid flow over the flat bed, with

E = Y + Q2/
[
2g (2αrY )2

]
. The total force of the flow is F = (1/2) ρg rY 2 + ρQ2/ (2αrY ).

The reference steady flow is characterised by a constant specific energy E0 and a constant liquid

discharge Q.

Non-dimensional equations are derived from Eq. (1) with the critical depth as the vertical
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length scale, Y0 = Yc = (2/3)E0; the critical radius r0 = rc =
[
Q/
(
2αYc

√
g Yc

)]
as the longitudi-

nal length scale; and the critical velocity, U0 = Uc =
√
gYc as velocity scale. Critical quantities Yc

and rc are defined as those minimising the specific energy and the total force, respectively (Valiani

and Caleffi, 2011). The non-dimensional reference discharge is Γ =
[
Q/
(
2αE2

0

√
gE0

)]
. It fol-

lows that the typical aspect ratio of the problem is β = rc/Yc = (3/2)5/2 Γ ' 2.76Γ . The

non-dimensional radius, depth, velocity, bottom elevation are, respectively: ξ = r/r0; η = Y/Y0;

u = U/U0; ζ = zb/Y0.

For steady flow the continuity equation is reduced to the condition of constant liquid discharge

as

(u ξ η) = 1 (2)

The dynamic equation is expressed in terms of F = [(1/2) ξ η2 + 1/ (ξ η)], the non-dimensional

total force, or in terms of E = [η + 1/ (2 ξ2 η2)], the non-dimensional specific energy, with H =

ζ + E as the non-dimensional total head

d

dξ

(
1

2
ξ η2 +

1

ξ η

)
=

1

2
η2 − 1

2
β f

(
1

ξ η2

)
− ξ η

dζ

dξ
(3)

d

dξ

(
ζ + η +

1

2 ξ2 η2

)
= −1

2
β f

(
1

ξ2 η3

)
(4)

Both formulations, which are equivalent for a continuous solution (though not for a discontinuous

solution, as well known from the shallow-water theory of inviscid shocks) are useful to determine

analytical solutions and to discuss a detailed analysis of the conservation properties of the system.

ANALYTICAL SOLUTION: INVISCID FLOW OVER FLAT HORIZONTAL BED

An analytical solution is obtained by setting ζ = 0 and f = 0 in Eq. (4) and corresponds to

the specific energy conservation E = E0 = (3/2)Yc, E = 3/2, in the entire flow domain. The

solution for the flow depth is apparent in the following implicit form

ξ =
1

η
√

3− 2 η
(5)
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FIG. 2. Flow depth profiles in inviscid steady flow over flat horizontal bed; (a) depth
η (ξ) vs. radius ξ, (b) Froude number Fr and F/Fc vs. radius ξ

This relationship determines the position where a prescribed depth occurs. Equation (5) can be

inverted using symbolic software (i.e., Mathematica, see www.wolframalpha.com) to obtain three

solutions in the complex field. A procedure, omitted here for brevity, which bears similarities to

that in Valiani and Caleffi (2008) is finally used.

In the flow domain of physical interest (ξ ≥ 1; ϕ = arcsin (1/ξ) ; π/2 ≥ ϕ > 0), the solutions

read

η1 = ηsb =
1

2
+ cos

(
2

3
ϕ

)
: 1 ≤ ηsb <

3

2

η2 = ηsp =
1

2
− 1

2
cos

(
2

3
ϕ

)
+

√
3

2
sin

(
2

3
ϕ

)
: 1 ≥ ηsp > 0

(6)

These solutions represent the explicit analytical solutions, not yet provided in the literature, namely:

the subcritical (sb) flow solution and the supercritical (sp) flow solution. The physically meaning-

less, negative depth solution, is omitted here but is shown in Fig. 2. The trends of the Froude

number Fr = u η−1/2, and of the total force F are also plotted.

ANALYTICAL SOLUTION: FLAT HORIZONTAL BED WITH FRICTION

This solution is obtained by setting ζ = 0 in Eq. (4) and by referring to the specific energy

E = E0 = (3/2) Yc , E = (3/2), in the critical section. The friction term is computed by assuming

a constant (small) friction coefficient. Equations (5) and (6), with reference only to the physical
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FIG. 3. Comparison between inviscid solution, numerical solution and analytical
first order solution for ε = 0.02; (a) subcritical flow, (b) supercritical flow

meaningful solutions, are considered to be the basic 0th-order solutions inside a perturbation ap-

proach as

η = η0 + ε η1 + . . . ; ε =
1

2
β f � 1 (7)

At the 0th-order, the inviscid solution applies, determined in the previous section. It suffices to

establish that η0 = ηsb or η0 = ηsp in Eqs. (6), depending on the case.

It is straightforward to demonstrate that at first order, the depth profile is the solution of the

differential equation
d

dξ

(
η1 −

η1
ξ2 η30

)
= − 1

ξ2 η30
(8)

Using mathematics, Eqs. (5) and (7), the solution is found as

η1 =

(η0 − 1)
√

3− 2 η0
2 η20

+
arctanh

(√
1− (2/3) η0

)
√

3
− arctanh

(
1/
√

3
)

√
3

 η0
3 (η0 − 1)

(9)

In Eq. (9), arctanh is the hyperbolic arc tangent function. The integration constant is determined by

establishing the critical depth at the critical radius, i.e.: η1(1) = 0. The proposed analytical solution

is valid for both cases, i. e. when the basic solution is super- or subcritical. Figure 3 compares

both flow states, with the complete solution of Eq. (4) determined with a Runge-Kutta 4th order

numerical method (Buchanan and Turner, 1992). For the selected values of the parameters, Fig. 3
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shows the computed error, which is the difference between the analytical depth computed from

Eqs. (7) and (9) and the numerical solution of Eq. (4). The analytical solution is strictly close to

the numerical, so that the perturbation procedure (7) ends at first order.

ANALYTICAL SOLUTION: INVISCID FLOW OVER A VARIABLE BOTTOM

TOPOGRAPHY

This solution is obtained by setting, in Eq. (4), ζ 6= 0 and f = 0, and by considering that

ζ = ζ(ξ). The procedure to obtain the analytical solution is similar to that of Valiani and Caleffi

(2008). Consider as a constant the total head H = zb + E = (3/2)Yc, and its non-dimensional

counterpart, H = ζ + E = (3/2). By setting ψ = 2 (3/2− ζ) ; φ = arcsin
[
3
√

3/
(
ψ3/2 ξ

)]
in

the flow domain of physical interest (discarding the negative depth solution) the solutions are

ηsb =
1

6
ψ +

1

3
ψ cos

(
2

3
φ

)
ηsp =

1

6
ψ − 1

6
ψ cos

(
2

3
φ

)
+

√
3

6
ψ sin

(
2

3
φ

) (10)

These solutions are the explicit analytical solutions for flow depth: the subcritical solution

ηsb = ηsb(ξ) and the supercritical solution ηsp = ηsp(ξ), respectively. They satisfy the implicit

relationship ξ =
[
1/
(
η
√
ψ − 2 η

)]
.

The condition to obtain a real solution is

3
√

3

ψ3/2 ξ
≤ 1 ⇒ ζ ≤ 3

2
− 1

2

(
3
√

3

ξ

)2/3

(11)

thus indicating that the bottom elevation must be sufficiently small with respect to the available

total head; the threshold also depends on the non-dimensional position. Flow choking requires the

treatment of the hydraulic jump, which is analysed separately in the following section. In other

words, a hydraulic jump occurs if inequality (11) is unsatisfied. In Fig. 4, the behaviour of the

free surface (without choking) is shown for sub- and supercritical flows, respectively. The bottom

elevation is assumed as given according to the following equations, which are applied, respectively,
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FIG. 4. Inviscid flow over uneven bottom; (a) subcritical flow, (b) supercritical flow

for the sub- and supercritical cases ζ = (3/5) exp
[
−2 (ξ − 3)2

]
+ (3/5) exp

[
− (ξ − 5)2

]
; ζ =

(1/10) exp
[
−2 (ξ − 3)2

]
+ (3/5) exp

[
− (ξ − 5)2

]
.

ANALYTICAL SOLUTION: DIRECT HYDRAULIC JUMP

To ensure simplicity and generality, this solution is determined for the simplest conditions,

described above (flat bottom, inviscid flow). The jump is considered an inviscid shock of zero-

length, including the entire energy dissipation. A more detailed treatment, which incorporates the

gradual variability of the physical quantities inside the jump, which is inversely considered to have

a finite length, is reported by Valiani and Caleffi (2011) and Valiani and Caleffi (2013). Here,

the scheme concerning the mechanics is much more simple and general, even if less detailed.

Neglecting the length of the jump allows to obtain an analytical solution for sequent depths and

jump position, which cannot be obtained previously. In the inviscid frame, the specific energy E1

is a constant upstream of the jump, whereas a different, lower constant value E2 corresponds to the

downstream flow portion. All quantities are made non-dimensional using the upstream depth and

upstream radius. Note that the word ’upstream’ is used in the physical sense of the flow direction,

so that it indicates smaller values of the radius for diverging flows and larger values of the radius

for converging flows.

Using these hypotheses Valiani and Caleffi (2011) demonstrate that the only non-dimensional

parameter governing the phenomenon is the specific energy ratio ER = E2/E1, whose completion
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to unity (1− ER) is the rate of mechanical energy per unit weight dissipated in the jump. The im-

plicit expressions for the supercritical and subcritical free surface profiles are ξ =
[
1/
(
ηsp
√

3− 2 ηsp
)]

;

ξ =
[
1/
(
ηsb
√

3 ER − 2 ηsb
)]

.

Let superscripts ∗ and ∗∗ be the sequent quantities upstream and downstream of the jump,

respectively (the depth and the velocity giving the same total force). Denoting ξj as the shock

position, the conditions at the jump are: i) the uniqueness of jump position, ii) mass conservation,

and iii) total force conservation as ξj = ξ∗ = ξ∗∗ ; (u η)∗ = (u η)∗∗ ; [(1/2) ξ η2 + u2 η]
∗

=

[(1/2) ξ η2 + u2 η]
∗∗ . A nonlinear system (with η∗ and η∗∗ as unknowns) is obtained. The funda-

mental equation for the sequent depth ratio, Λ = η∗∗/η∗ then is

ER Λ3 − (4− ER) Λ2 + (4 ER − 1) Λ− 1 = 0 (12)

In the range 0 < ER < 1, it has only one real solution

Λ =
4− ER
3 ER

+
Υ

3 ER
+

16− 5 ER − 11 E2R
3 Υ ER

(13)

with: Υ =
(

64− 30ER − 51E2R + 17E3R + 9
√

20E2R + E3R − 42E4R + E5R + 20 E6R
)1/3

.

The corresponding super- and subcritical depths are

η∗ =
6

Λ2 + Λ + 4
; η∗∗ =

6 Λ

Λ2 + Λ + 4
(14)

The shock position is

ξj = ξ∗j =
1

η∗
√

3− 2 η∗
= ξ∗∗j =

1

η∗∗
√

3 ER − 2 η∗∗
(15)

Usually, the literature gives the sequent depth ratio, the sequent depths and the jump position as

functions of the upstream Froude number Fr∗ (or some equivalent quantity), and more or less

complicate computations are required to find its position. Note that Eqs. (13), (14), (15) are
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FIG. 5. Hydraulic jump (a) depth and force profiles η (ξ) and F (ξ) for ER = 0.5, (b)
depth profiles η (ξ) for different ER values for diverging and converging flows
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direct/undular jump. Experimental data from (Rubatta, 1963, 1964): (+) diverging,
(o) converging; experimental points in (b) refer to sequent depths ratio

really predictive, at least in the framework of the inviscid-shock theory. For a prescribed value

of discharge, the quantity ER is directly found if well-posed boundary conditions are known. In

Fig. 5, for a prescribed value of the energy ratio ER = 0.5, the behaviour of a jump is plotted (a)

using the derived equations, whereas the physical flow features are plotted in (b) for three different

values of ER.

Figure 6 shows (a) the behaviour of the sequent depths and the jump position versus the energy
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ratio and (b) the behaviour of the sequent depths ratio and sequent Froude numbers, as functions of

the same parameter. A comparison with experimental data from Rubatta (1963) and Rubatta (1964)

is also shown. The selected dataset is chosen because experiments were performed at a quite large

scale; further details are given in Valiani and Caleffi (2011) and Valiani and Caleffi (2013). The

dashed lines represent existence limits for the direct jump. Under the classical limit Fr∗2 < 3,

corresponding to η∗ > 0.6 and ER > 0.95, the undular jump occurs, for which the present theory

does not hold. Notably, the above-mentioned limit for the upstream Froude number matches the

condition that the undular jump occurs when no greater than five percent of the available specific

energy is dissipated in the jump.

CONCLUSIONS

Analytical results concerning radial, axially symmetric, steady free surface flows are deter-

mined and discussed. The selected results can be used in field-scale hydraulic engineering because

they pertains to the radial flow in stilling basins, where gravitational and inertial effects are dom-

inant. The simplest case is the explicit solution for a flat horizontal bottom under inviscid flow.

Analytical expressions for the sub- and supercritical flow depths are determined. An additional

solution in the form of a perturbation solution is presented for the flat bottom and frictional flows,

with the limit of small friction, both for sub- and supercritical flows. An analytical solution is

also determined for inviscid flow over a spatially-varied bottom elevation, both for sub- and super-

critical flows. The existence condition for these types of flows is determined and consists of the

hypothesis of sufficiently small bottom elevation with respect to the prescribed level of the total

head.

Analytical expressions are determined for the sequent depths and the jump position over a flat

bed as functions only of the prescribed energy dissipation rate. This quantity is the unique param-

eter governing the phenomenon for inviscid flow outside the jump and based on the hypothesis

of an inviscid shock of zero length. These analytical results represent useful benchmarks to test

numerical integration schemes for Shallow-Water Equations and as important reference conditions

for the stability analysis of the radial hydraulic jump.
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APPENDIX I. NOTATION

The following symbols are used in this paper:

E, E = specific energy of the flow (m), non-dimensional specific energy (-);

ER = specific energy ratio between flows downstream/upstream the hydraulic jump (-);

F,F = total force of the flow (N), non dimensional total force (-);

Fr = Froude number (-);

f = friction coefficient (-);

g = gravity acceleration (m s−2);

H,H = total head of the flow (m), non-dimensional total head (-);

Q = liquid discharge (m3 s−1);

(r, θ, z) = radial, angular, vertical coordinate (m, -, m);

U, u = vertically averaged radial velocity (m s−1), non dimensional radial velocity (-);

Y, η = flow depth (m), non-dimensional flow depth (-);

zb, ζ = bottom elevation (m), non-dimensional bottom elevation (-);

α = half angular amplitude of the reference circular sector (-);

β = aspect ratio of the flow (-);

Γ = non-dimensional reference discharge (-);

ε = non-dimensional small parameter in equation (7) (-);

Λ = sequent depths ratio in the hydraulic jump (-);

ξ = non-dimensional radial coordinate (-);

ρ = liquid density (kg m−3);

τ0 = bed shear stress (N m−2);
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