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1. Introduction

ABSTRACT 

Application of a protective coating is the most widely used conservation treatment for outdoor 
bronzes (cast Cu-Sn-Zn-Pb-Sb alloys). However, improving coating protectiveness requires detailed 
knowledge of the coating/substrate chemical bonding. This is particularly the case for 3-mercapto-propyl
trimethoxy-silane (PropS-SH) applied on bronze, exhibiting a good protective behaviour in outdoor 
simulated conditions. The present work deals with X-Ray Photoelectron Spectroscopy (XPS) and Elec
tron Microscopy (FEG-SEM + FIB (Focused Ion Bearn)) characterization of a thin PropS-SH film on bronze. 
ln particular, in order to better understand the influence of alloying elements on coating performance, 
PropS-SH was studied first on pure Cu and Sn substrates then on bronzes with increasing alloy additions: 
Cu8Sn as well as a quinary Cu-Sn-Zn-Pb-Sb bronze. Moreover, considering the real application of this 
coating on historical bronze substrates, previously artificially aged ("patinated") bronze samples were 
prepared and a comparison between bare and "patinated" quinary bronzes was performed. ln the case 
of coated quinary bronze, the free surface of samples was analysed by High Resolution Photoelectron 
Spectroscopy using Synchrotron Radiation (HR-SRPES) at ANTARES (Synchrotron SOLEIL), which offers a 
higher energy and lateral resolution. By compiling complementary spectroscopie and imaging informa
tion, a deeper insight into the interactions between the protective coating and the bronze substrate was 
achieved. 

Cultural Heritage in outdoor conditions naturally undergoes 
a degradation process that can severely damage the historical 

and cultural traces of this heritage. This is typically the case for 
outdoor bronzes, which suffer corrosion inducing specific pati
nas on metallic surfaces [1,2). Particularly in urban atmosphere, 
corrosion phenomena lead to a marked degradation of bronze mon
uments, making patinas partially Ieachable, as demonstrated by 
green streaks on stone basements. ln this context, the application 
of protective coatings remains the best solution for limiting corro
sion damage of outdoor bronzes, as suggested in the last decades 
[3). 
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As regards protective treatments, organosilane coatings 
attracted a significant research attention in recent years, due to 
their protective efficiency towards the corrosion of several alloys 
in outdoor conditions. Research studies on the protection of copper 



and copper-based alloys were mainly carried out on octadecyl
trimethoxy-silane [4], glycidoxy-propyl-trimethoxy-silane [5] and 
-y-aminopropyltriethoxysilane (-y-APS) [6]. However, outstanding 
results were obtained with silanes containing sulphur or mercapto
groups, such as 3-mercapto-propyl-trimethoxy-silane (PropS-SH) 
[6-14]. 

The protective properties of PropS-SH coatings are connected 
to the formation of silanol groups (Si-OH) during silane hydrolysis 
and to their subsequent condensation in a polymeric dense Si-O-Si 
network [8]. 

On copper and copper alloys, surface chemisorption of PropS
SH through metal thiolate (Me-S-C) [7] and metal siloxane 
(Me-0-Si) bonds [15] ensures the desirable adhesion to the metal 
substrate. 

ln general, in the Cultural Heritage field the selection of pro
tective coatings and corrosion inhibitors therein requires taking 
into account the following key points: (i) a basic understanding 
of the corrosion mechanism and (ii) testing the efficiency and the 
aesthetical impact of the candidate treatments on representative 
substrates, which reproduce in a reliable way the complexity of 
real surfaces. Therefore, in the present work, a quinary bronze was 
prepared with the typical microstructure and morphology of cast 
bronzes. Subsequently, investigation was performed with the aim 
to reproduce the typical corrosion features of unsheltered areas 
in real outdoor bronze monuments and to investigate the chemical 
bonding between coating and aged substrate (key point ( ii )). Bronze 
samples were exposed to conditions closely simulating outdoor 
exposures [ 16, 17] and in particular to runoff conditions (through 
dropping test). The tested protective coating was obtained from 
PropS-SH, selected on the basis of previous electrochemical tests 
and accelerated ageing tests performed on the same bronze alloy 
[11,13]. 

ln order to achieve a better comprehension of the chemical 
bonds between Cu-based alloys and PropS-SH, Cu-based substrates 
with different alloying elements and pure tin were selected for the 
application and study of PropS-SH coating. Specifically, beside tin, 
investigations were performed on pure copper, binary tin-bronze 
alloy (Cu8Sn) and the more complex quinary alloy, also aged under 
conditions similar to those induced by outdoor dropping rains. XPS 
spectroscopy is one of the most appropriate techniques to charac
terize coatings and their interaction with substrates. In particular, 
in this study concerning the coated bare quinary bronze, High Res
olution Photoelectron Spectroscopy using Synchrotron Radiation 
{HR-SRPES) at ANTARES (Synchrotron SOLEIL) has been applied for 
the first time offering higher energies and lateral resolution [18]. 

2. Materials and methods

2.1. Materials 

Quinary bronze was used as the main substrate for coating appli
cation. The composition of quinary bronze is: 91.9 Cu, 2.4 Sn, 1.0 Pb, 
2.9 Zn and 0.8 Sb (wt%). It has a typical dendritic as-cast microstruc
ture with cored a-solid solution (i.e. local enrichment of Sn and Sb 
elements in the interdendritic spaces) also including non-miscible 
lead globules as detailed in [12,14]. Shrinkage due to cooling dur
ing the casting process was also observed, inducing the formation 
of micro-cavities. 

Pure copper (Cu) and tin (Sn) metals (purity higher than 
99.99 wt%), as well as a binary bronze alloy with 8 wt% Sn (Cu8Sn) 
were used as reference materials. Moreover, in order to investigate 
coating properties in the absence of interactions with bronze ele
ments, also a non-metallic, ceramic substrate (zirconium nitride, 
ZrN) was prepared. 

Only in the case of quinary bronze, both bare and patinated con
ditions were considered. The patination simulating natural patinas 
was performed by accelerated ageing test using a Dropping test 
device, described in detail elsewhere (17]. A synthetic rain solution 
(pH=4.3) was periodically dropped onto 45° inclined specimens 
through four rain channels per specimen, in order to maximize 
the aged surface, with alternated cycles of 2-days dropping/1-day 
drying, 3-days dropping/1-day drying. The Total Time of Wetness 
(ToW) was 30 days. The acid rain solution was prepared on the basis 
of ambient samples collected at a monitoring station in Bologna, 
Italy, with composition reported in [19]. The dropping tests simu
late the runoff condition of outdoor bronzes due to unsheltered 
exposure to rainwater. The application of this accelerated age
ing test was previously found to produce representative patinated 
substrates, comparable to natural patinas, suitable for testing pro
tective treatments (20]. 

Artificially patinated quinary bronze was characterised by a 
rough surface, with a corrosion-modified layer of variable thick
ness, higher within the core of the dendrites than in the peripheral 
areas, due to preferential dissolution of copper and zinc from the 
alloy [12, 14, 17]. 

2.2. Preparation and characterisation of PropS-SH coating 

Before coating application, the surfaces of bare samples were 
prepared by emery papers, then polished by using diamond 
spray with decreasing particle size (down to 1 µm), washed with 
deionized water and degreased with acetone. Instead, the rough 
artificially patinated surface (quinary bronze) was silane coated 
without any surface preparation. 

In order to prepare thin coatings sui table for XPS analysis of coat
ing/metal interfaces, bare samples of Cu, Sn, Cu8Sn and quinary 
bronze were immersed ("dip-coated") for short times (150 s) in 
hydrolysed silane solution (90/5/5 v/v ethanol/water/PropS-SH) at 
pH= 4, followed by fast withdrawal (Table 1 ). Then, the sampi es 
were washed by ethanol to eliminate physisorbed silane molecules. 
The obtained coatings were few nanometers thick as evaluated by 
weight gain measurements, assuming a density value of 1.1 g cm-3

for PropS-SH. By prolonging to 1 h the immersion time in hydrol
ysed silane solution, thicker coatings on ZrN were prepared, which 
permitted to investigate the coating bulk on a corrosion resistant 
substrate by XPS (Table 1 ). 

1 h dip coating is often adopted for PropS-SH to protect effi
ciently bronzes from corrosion (11-14]. Therefore on patinated 
quinary bronze, these thicker coatings were also applied to analyse 
their cross section stratigraphy and for surface XPS and HR-SRPES 
investigations. 

Ali the coated samples were cured at room temperature for at 
least 10 days before analyses. Finally, uncoated bare quinary bronze 

were used as representative substrate for XPS measurements in 
order to check the initial state of bronze surface before coating 
application. The surface was analysed after the polishing previously 
described. 

XPS analysis, performed on the samples collected in Table 1, 
was carried out by using a monochromatised Al Ka (hv = 1486. 7 eV) 
source on a ThermoScientific K-Alpha system. The X-ray spot size 

was about 400 µm. The pass energy was fixed at 130 eV with a step 
of 1 eV for surveys and 40 eV with a step of 0.1 eV for core levels. 
Ionie Ar+ sputtering of the surfaces was not applied in order to avoid 
modifications of the organosilane. The analysed core levels (C 1s, 0 
1s, Si 2p, S 2p, Cu 2p, Zn 2p, Sn 3d, Pb 4f) were calibrated against 
C 1 s binding energy ( conventionally BE= 284.6 ± 0.1 eV). XPS data 
were fitted by using Thermo Scientific™ Avantage Software and 
the background signal was removed by using Shirley method. Flood 
gun was also applied for avoiding charge effects. 



Tablel 

Sam pies on which XPS measurements were carried out: summary of sample acronyms and coating application conditions. 

Sample name Substrate 

BQ Bare Quinary Bronze 
ZrN Zirconium nitride 

Cu Pure copper 

Sn Pure tin 

Cu8Sn Binary bronze (8 wt% Sn) 

Q Quinary bronze 
Q_PAT Patinated quinary bronze 

Bare and patinated quinary bronze samples carrying thick 
PropS-SH coatings were investigated by Scanning Electron 
Microscopy (SEM) coupled with Energy Dispersive Spectroscopy 
(EDS) (Zeiss EP EVO 50 in variable pressure mode (8 0Pa) with 
an EDS X-ray detector Oxford Instruments INCA Energy 350 [z >4 
(Be)]) as well as by High Resolution Photoelectron Spectroscopy 
using Synchrotron Radiation (HR-SRPES) with excitation energy 
of 700eV, as already detailed in a previous work [18). lmaging 
of the free coated surface was carried out using the R4000 Sei
enta hemispherical analyser with a set of Fresnel Zone Plates (FZP), 
able to focalise the beam spot up to a few tenths of nanometres 
in spatial resolution [21,22). The main difference of the ANTARES 
microscope from other conventional ARPES instruments is that the 
specimens can be mounted on a high-precision plate that ensures 
their nanoscale positioning in the x, y and z directions (18,21,22). 
HR-SRPES experiments were conducted in the ANTARES beam line 
at the SOLEIL synchrotron. HR-SRPES chemical imaging maps were 
recorded on the same surface areas where EDS maps were subse
quently collected. 

From these samples, cross-sections were prepared by Focused 
Ion Bearn (FIB) milling and the coating/substrate morphology was 
investigated by combining a Ga+ ion beam and a thermal field emis
sion SEM, working at coïncidence on the sample (FEI Dual Bearn 
Strata 235 M System) [18). For FIB cross-sections, a protective Pt-C 
layer was deposited on top of the surface before milling, so as to 
protect the surface features. 

3. Results and discussion

3.1. Thick PropS-SH coatings on quinary bronze 

Starting from the most representative system of real outdoor 
bronzes, images of thick PropS-SH coatings on quinary bronze 
obtained by 1 h immersion are shown in Fig. 1 for both bare (left
hand side) and artificially patinated (right-hand side) samples. In 
Fig. 1 a and b, the low magnification tilted images of the free surface 
reveal different features when PropS-SH coating is applied on bare 
or patinated bronze, highlighting the influence of the substrate. In 
particular, they show that PropS-SH adapts tightly to the surface 
morphology of the substrate, so that a very smooth and planar 
surface is achieved on the polished alloy, while the initial rough 
morphology is still observed on the patinated sample. 

SEM images of the micrometric cross-section slices prepared 
by FIB lift-out technique are reported in Fig. 1 c-f for the same sam
pi es. Fig. 1 c and d gives a general view of bare and patinated bronze 
cross-sections respectively, while higher magnification images are 
reported in Fig. 1 e and f, so allowing a better identification of 
microstructural details and layer sequence. ln both cases, the Pt
e overlayer (for protection during FIB milling) is visible above the 
organosilane coating. 

The application of PropS-SH on bare bronze (Fig. la, c and e) 
produces a rather homogeneous layer with an average thickness of 
about 0.3 µm. However, when PropS-SH is applied by 1 h immer
sion on the uneven patinated bronze ( Fig. 1 b, d and f), the coating 
fills up the localised corrosion areas forming a layer with variable 

Coating Application mode 

No Coating 

PropS-SH (thick layer) Dip-coating (1 h immersion in silane sol.) 
PropS-SH Dip-coating (fast immersion in silane sol.) 

PropS-SH Dip-coating (fast immersion in silane sol.) 

PropS-SH Dip-coating (fast immersion in silane sol.) 

PropS-SH Dip-coating (fast immersion in silane sol.) 
PropS-SH Dip-coating (1 h immersion in silane sol.) 

thickness ( dark grey in Fig. 1 d and f). Fig. 1 d shows a crater of cor
rosion preferentially developed within the brighter grain on the 
right-hand side corresponding to dendrite core, being the grain 
microstructure of the bronze highlighted thanks to the electron 
channelling contrast. 

In order to investigate more deeply the elemental distribution 
within the PropS-SH coating on quinary bronze, EDS and HR-SRPES 
maps of elemental distribution were collected in the same locations 
on the free surface of the coated bare bronze samples. 

EDS maps are reported in Fig. 2 for a typical area where the 
PropS-SH coating covers a shrinkage micro-cavity at the dendrite 
border, located in the centre of each image. Regarding the charac
teristic elements belonging to PropS-SH, C and O show a relatively 
homogeneous distribution, while Si and S exhibit locally higher 
intensities in correspondence with the shrinkage micro-cavity. 
Hence, the more intense signal of Si and of S is related to a pos
sible accumulation of PropS-SH, filling up this cavity. In addition, 
due to the low thickness of the silane coating ( ~3 00 nm), also X
rays emission from bronze alloying elements is detected, revealing 
the microstructure of the as-cast bronze with Sn micro-segregation 
in the interdendritic space. 

HR-SRPES chemical imaging brings complementary information 
about coating elements distribution: it is worth noting that in the 
case of HR-SRPES only the top surface (a few nm) of the coat
ing is investigated, while EDS results reveal the alloying element 
distribution underneath the coating as previously discussed. 

Fig. 3a reports the optical observation of the same area where 
EDS maps of Fig. 2 were collected and where HR-SRPES maps of 
Fig. 3b-d was recorded as well. It shows some colorimetric inter
ference surrounding the central micro-porosity in the middle of the 
image. This could be linked to small variations of coating thickness 
according to a different elemental distribution on the surface, as 
revealed in Fig. 3b-d, related to the HR-SRPES maps of C ls, 0 1s 
and Si 2p at a micrometric scale. 

ln fact, these signais are rather strong in the area surrounding 
the cavity, while they are absent in the cavity itself. Conversely, 
EDS Si and O signais are more intense into the cavity than outside 
it and decrease towards the dendrite core, as shown by the Sn dis
tribution map in Fig. 2, highlighting microstructural features. These 
observations suggest that the organosilane coating accumulates at 
the bottom of the cavity (as shown by EDS signais, coming from a 
higher depth than HR-SRPES), replicating the surface topography, 
while it is not detectable in the upper volume of the cavity itself (as 
suggested by HR-SRPES signal from the uppermost layer) because 
the coating does not level up completely the surface. This is proba
bly due to the relatively low viscosity of the adopted silane solution 
and to capillary effects, which allow its penetration into recessed 
features. 

3.2. XPS ana/ysis: PropS-SH-coated meta/s and al/oys and 

uncoated quinary bronze 

In order to deeply investigate the coating-substrate bonding 
system, which is very important for understanding PropS-SH pro
tective properties both on bare and patinated bronze, XPS analyses 



Fig. 1. SEM observation of PropS-SH coatings on quinary bronze substrate. Left-hand side (a, c, e): bare bronze/Right-hand side (b, d, f): patinated bronze. (a, b) PropS-SH 

coating surfaces; ( c, d, e, f) cross-sections prepared by FIB (Focused Ion Bearn) lift-out technique. 

Fig. 2. PropS-SH on bare quinary bronze, SEM/EDS analysis of the free surface: SE image and X-ray maps of the main elements (C, 0, Si, S, Cu, Sn and Pb). 
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Table2 

Binding energies of the different chemical species detected in XPS core levels. 

Element Peak 

C ls CC,CH,C-Si 
C-0,C-S 
C= O, O=C-0 

0 ls 
Si 2p C-Si-0, Si-O-Si 

Si-O{Si02) 
S 2p312 S-C, S-Metal 

sulfates 
Cu 2PJ/2 Cu(O) 

Cu (I) 
Zn 2PJ/2 Oxide 
Sn 3ds12 Meta! 

Sn(ll ) 
Sn(IV) 

Pb 4f112 Oxide 

• KE (Cu LMM)=918.0 eV; n'= 1850.SeV-Cu(O) component. 
b KE (Cu LMM)=915.6 eV; n'= 1848.7 eV-Cu(I) component. 

on coated samples and on uncoated bare quinary bronze were per

formed, using a larger spot size than in HR-SRPES and taking into 

account very thin PropS-SH deposits on Cu, Sn, Cu8Sn and bare 

quinary bronze, so as to investigate the coating-substrate inter

face. Tests on ZrN and patinated quinary bronze, both coated by 

1 h immersion, and uncoated quinary bronze were also performed 

Position ( eV) References 

284.5 (9,10] 
286.2 
288.3 
531.8 (9,25] 
101.7 (9, 10,25,26I 
103.2 
162.5 (9,10,27,28,30] 
168.5 
932.s• [18,38.40.411 
933.lb [8] 
1022.1 [18.38] 
484.7 (33-37] 
485.9 
486.7 
138.7 (18,38] 

to investigate, respectively, the coating bulk, a sample more repre

sentative of a real coated system and the bronze substrate before 

coating application. Elemental Zn was not taken into consideration 

as a reference material, because in patinated bronze Zn is selec

tively dissolved in the environment, so that it is no more detected 

in patinas [23,24]. To help comprehension of the following results, 
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Fig. 4. XPS surveys of PropS-SH layer on: (a) ZrN. (b) Cu. (c) Sn, (d) CuSSn, (e) bare quinary bronze, (f) patinated quinary bronze and (g) uncoated bare quinary bronze (BQ), 
(thin coatings in (b), (c), (d) and (e)). 

Table 2 reports the values of XPS peak positions of the main ele

rnents detected on the top surfaces of the different PropS-SH coated 

sarnples in this study. 

3.2.1. ZrN (reference substrate) 

The obtained XPS surveys are reported in Fig. 4. Fig. 4a refers to 

PropS-SH layer on ZrN and it shows intense peaks of the character

istic elernents of the coating (C ls, 0 ls, Si 2p, S 2s and S 2p). No 

signal frorn the substrate (Zr 3d and N 1 s) is detected, suggesting 

that, as expected, the spectrurn in Fig. 4a is not affected by the sub

strate/coating interface and can be considered as a reference one 

for PropS-SH coating. 

The core level spectra of C 1 s, 0 1 s, Si 2p and S 2p are reported 

in Fig. Sa-d, respectively. 

Cl s spectrurn in Fig. Sa shows a sharp peak centred at 284.5 eV 

(BE), typical of aliphatic chain (C-H bond) of PropS-SH and 

atrnospheric cornpounds adsorbed on the surface. Characteristic 

contributions of silane layer are highlighted by O ls and Si 2p lev-
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Fig. 5. XPS core levels of the characteristic PropS-SH elements on the different substrates (thin coatings on Cu, Sn, CuSSn, and Q): (a) C 1s, (b) 0 1s, (c) Si 2p and (d) S 2p. 

els at binding energies of 531.9 eV ( 01 s core level spectra of Fig. Sb) 

and 101.8 eV (S2p core level spectra of Fig. Sc). These BE values indi

cate a main contribution of the Si-0-Si bonds, suggesting a good 

grade ofreticulation of the coating [9,25,26]. Fig. 5d evidences that 

the contribution of S 2p312 is centred at 162.9 eV, representative of

S-C bonds [27]. In particular, the analysis of S 2p signal takes into

account the presence ofa doublet structure of the core Ievel with a

spacing of 1.2 eV (S 2p112 - S 2p312 = 1.2 eV) and a theoretical inten

sity ratio of 2 (S 2p312/S 2p112 = 2). No evidence of unreacted thiol

groups (-SH) usually occurring at around 163.5 eV (BE) (9,28] was 

observed in the S 2p core level, likely due to prevalent adsorption 

through metal-thiolate bonds (29]. 

3.2.2. Pure Cu 

XPS survey of the thin PropS-SH layer a pp lied on pure Cu sub

strate is reported in Fig. 4b. Characteristic elements of the coating 

( C 1 s, 0 1 s, Si 2p, S 2 s and S 2p) are clearly detected as previously 

observed for the coating reference, as well as the intense signal of 

the substrate (Cu 2p). ln particular, Fig. 5 shows the main contri

butions of C ls, 0 ls, Si 2p and S 2p, centred at binding energies 

of 284.5 eV, 531.9 eV, 101.7 eV and 162.6 eV, respectively. C 1 s sig

nal also shows some small contributions at higher binding energies 

(Fig.Sa), that is at 286.2 eV and 288.3 eV, corresponding to C-S/C-O 

and O=C-O, respectively. The former C 1 s contribution (C-S) is typ-

ical of the studied silane molecule, while the latter suggests that 

some PropS-SH oxidation occurs [13]. On this substrate, S 2p signal 

shows two different contributions: S 2p312 BE= 162.6 eV, ascribed

to S-Cu thiolate bond (9, 10,30] or S-C, and BE= 168.2 eV, mai ni y 

related to sulfate, as better distinguishable in Fig. 5d. lt is well 

known that the partial oxidation of the thiol groups can occur in 

the presence of oxygen gas contamination (31,32] and it is catal

ysed by the presence of multiple-valence cations (like Cu and Sn 

ions), among which copper ions show high catalytic effects (31 ]. 

This justifies the presence of oxidized species on coated Cu, but 

not on coated ZrN, as from zirconium element only zirconium (IV) 

cations can be formed. It is significant that the thiol group oxidation 

occurs concurrently to the oxidation of silane aliphatic chain. 

3.2.3. Pure Sn 

XPS survey of coated pure Sn ( Fig. 4c) shows weaker peak inten

sities of the characteristic elements of PropS-SH, in comparison to 

pure Cu. In particular, contributions at higher BE for C 1 s (BE= 286.2 

and 288.3 eV) are more intense than those on Cu, indicating a higher 

degree of oxidation (Fig. Sa). Fig. Sb shows that for Ols a shoulder 

at BE= 530.4 eV occurs, typical of oxide species linked to Sn. Si 2p 

and S 2p signais (Fig. Sc and d) are with scarce intensity, noisy and 

characterized by broad peaks. For S 2p signal (Fig. 5d), the contri-
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butions due to the S-Sn/S-C environment (BE= 162.5 eV) and to SOx 
(BE= 168.5 eV) are comparable. 

Fig. 6a shows the characteristics of Sn 3d core level detected 
on coated Sn metal. Sn 3d exhibits three different contributions 
at 484. 7 eV, 485.9 eV and 486. 7 eV, corresponding to metallic Sn, 
Sn{ll) oxide (SnO) and/or Sn{ll)-S, and Sn{IV) oxide (SnO2 ) with a 
possible Sn-SOx contribution, in good accordance with literature 
data [33-37]. Here the distinction between Sn(ll) and Sn{IV) peaks 
has been performed assuming a FWHM value of 1.3 eV and 1.5 eV, 
respectively. These findings indicate the formation of a thinner 
PropS-SH coating on pure Sn compared to pure Cu substrate and 
suggest that the Sn oxidized species can have a considerable cat
alytic effect in the oxidation of thiol group inducing the formation 
of significant amounts of poorly soluble SOx compounds. 

3.2.4. CuBSn and quinary bronze (Cu2Sn3Zn1Pb1Sb) 

When a PropS-SH film is applied by fast dip coating on bare 
bronze samples, the XPS survey spectra of Fig. 4d-e are recorded, 
showing similar features to those observed in Cu and Sn spectra 
(Fig. 4b-c). ln particular, intense peaks belonging to PropS-SH are 
observed, but among the alloying elements of the substrates only 
Cu signal is clearly visible. 

ln Cu8Sn (Fig. 4d), the Sn 3d512 level shows a very low and
poorly resolved signal, with a main contribution at BE=486.4 eV, 
attributed to Sn(IV) oxide and only a small peak at BE= 484.8 eV 
linked to metallic Sn, as reported in the literature [33]. ln quinary 
bronze (Fig. 4e), ail alloying elements except copper (Sn 3d, Zn 2p, 
Sb 3d, Pb 4f) exhibit undetectable or low intensity XPS peaks. ln 
particular, Fig. 6b shows the Sn 3d core levels on this substrate 
which indicate the presence of both metallic and oxidised Sn(IV) 
species, at 484.7 eV and 486.7 eV respectively [17]. Pb 4f712 level
centred at BE= 138.6 eV and Zn 2p312 level centred at BE= 1022.1 eV
(core Ievels not shown) are linked to oxygen-containing species 
[18,38]. As some of these elements are in significant concentration 
in bronzes (e.g. tin in Cu8Sn), in general their absence or negligi-

ble detection by XPS indicates that PropS-SH produces relatively 
abundant continuous coatings on bronze substrates. 

Regarding the characteristic PropS-SH elements, Fig. 5 evi
dences that the chemical environments for C 1s,01 s, Si 2p and S 2p 
detected on both bare bronzes are corresponding to those on pure 
Cu substrate. This suggests that the minor alloying elements do not 
affect the coating-bronze bonds: the coating correctly adheres onto 
the substrates, with a similar binding mechanism, which is essen
tially due to the formation of metal-thiolate bonds, involving Cu 
and Sn atoms, the latter being at a relatively minor extent. 

Also on coated bronzes, the oxidation of the thiol group in the 
coating occurs in conjunction with oxidation of the silane aliphatic 
chain, as already observed for pure Cu and Sn. The peculiar influence 
of copper and bronze alloying elements on this degradation process 
is likely responsible of its occurrence on these substrates. 

3.2.5. Quinary bronze vs. patinated quinary bronze 

Fig. 4f shows the XPS survey of thick coated patinated bronze 
surface. In contrast to the thin bare quinary bronze (Fig. 4e), the 
characteristic elements of the coating (C ls, 0 ls, Si 2p and S 2p) 
are more clearly detected, while the characteristic peaks of the sub
strate, like Cu 2p, Zn 2p, Sn 3d and Pb 4f, are less intense. As far as 
Sn 3d core Ievels in the presence of these substrates (Fig. 6b and c), 
it is clear that, while both metallic and oxidised Sn(IV) species are 
detected on bare quinary bronze at 484.7 eV and 486.7 eV, respec
tively, on patinated bronze reasonably only Sn{IV) species related 
to Sn-ri ch corrosion products are observed [ 17]. 

On coated patinated quinary bronze, some environmental ele
ments linked to the corrosion process in acid rain solution are also 
recorded on the XPS survey, such as N 1 s and Ca 2p centred at 400 eV 
and 347 eV, respectively (Fig. 4f). The increase of -SOx contribu
tions for S 2p is also linked to the formation of sulfates among the 
corrosion products. Ali the characteristic elements of the coating 
show peaks similar in position and concentration to those obtained 
on coated quinary bare bronze. However, 0 1 s peak is broader and 
shows, in addition, a contribution at higher BE ( ~534 eV), indicat-
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ing a remarkable presence of oxide and/or hydroxide compounds 
Iinked to copper and related to corrosion products on the top sur
face (Fig. Sb). 

3.2.6. Uncoated bare quinary bronze (BQ) 

XPS survey of the uncoated bare quinary bronze (BQ) is reported 
in Fig. 4g. As expected, the spectrum shows the characteristics con
tributions of the alloying elements ( Pb 4f, Sn 3d and Cu 2p ), except 
for Zn that was not detected. ln particular, Fig. 6d shows the Sn core 
Ievel spectrum recorded on uncoated quinary bronze just after pol
ishing and before coating application, highlighting the presence of 
a predominant peak at 485.7 eV connected to Sn(II) oxide and a 
minor peak compatible with Sn(O). Dip coating in aerated silane 
hydroalcoholic solution is likely responsible of further oxidation of 
the pre-existing Sn(II) oxide film into the oxidised Sn(IV) species, 
detected under the PropS-SH coating, as shown by Fig. 6a. 

3.2. 7. Auger 

Cu 2p core level and Auger spectra (Cu LMM) are reported 
in Fig. 7a and b respectively, for coated pure Cu, bare bronzes 
(Cu8Sn and quinary bronze), patinated quinary bronze substrate 
and uncoated bare quinary bronze. A very similar chemical environ
ment for Cu core levels is found for the coated sampi es. ln particular, 
Cu 2p core Ievels show the typical features of the oxidation state 
of copper (1) with just a very small shake-up satellite peak, more 
developed for quinary bronze after accelerated ageing by Drop
ping test. The Cu 2p312 peak is centred at 933.1 eV (BE), while the 
Auger Cu L3M4,5M4,s signal at 915.6 eV (KE), with modified Auger 
parameter ( u'), is measured at around 1848.7 eV. These values well 
correspond to Cu()) species, such as a mix of cuprous oxide and 
Cu(I)-S bonds [39]. For patinated quinary bronze coated by PropS
SH, copper contribution is low and the Cu 2p core Ievel, as well 
as the Auger signal, is noisy and not well resolved. Conversely, the 



Table 3 

XPS atomic quantification on the top surface of PropS-SH coated substrates (at%). Each concentration value has been normalised to Si atomic content (/Si at%). 

C 0 Si s Cu Zn Sn Pb 

CC, C-H, C-Si c-o,c-s C=O,O=C-0 C-Si-0, Si-0---Si Si02 S-Metal, C-S Sulfate Cu(O)-Cu(I) Cu(!) Oxide Metal Sn(IV) Sn(II) Oxide 

BQ 
at% 42.2 5.2 7.4 30.9 9.4 0.1 0.3 4.8 

ZrN 

at% 47.3 22.9 16.3 13.5 

Normalised (/Si at%) 2.9 1.4 1.0 0.8 

Cu 

at% 43.0 3.4 3.1 25.4 13.2 5.5 0.5 5.9 

Normalised (/Si at%) 3.3 0.3 0.2 1.9 1.0 0.4 0.04 0.4 

Sn 

at% 25.8 3.3 4.9 36.1 4.1 2.5 1.9 5.3 8.9 7.2 

Normalised (/Si at%) 6.3 0.8 1.2 8.8 1.0 0.6 0.5 1.3 2.2 1.8 

Cu8Sn 

at% 38.5 3.2 4.7 25.6 8.6 6.4 0.5 12.4 0.1 0.1 

Normalised (/Si at%) 4.5 0.4 0.5 2.9 1.0 0.7 0.06 1.4 0.01 0.01 

Q 
at% 38.9 3.8 4.8 25.7 8.0 6.7 0.3 11.8 0.1 0.1 0.3 

Normalised (/Si at%) 4.9 0.5 0.6 3.2 1.0 0.8 0.04 1.5 0.01 0.01 0.04 

Q_PAT 

at% 40.5/7.6/4.7 7.5 4.7 24.4 7.9 2.0 5.8 1.1 1.6 1.0 0.2 0.1 

Normalised (/Si at%) 4.1 0.8 0.5 2.5 1.0 0.6 0.1 0.2 0.1 0.02 0.01 



uncoated bare quinary bronze shows a Cu environment slightly dif
ferent. ln particular, Cu 2p core level shows the features of a mix of 
Cu(0) and Cu(!) species, with the Cu 2p312 peak centred at 932.5 eV
(BE). The Auger Cu L3M4,5M4,5 signal at 918.0 eV{l<E), with modified 
Auger parameter ( a') measured at around 1850.5 eV, are character
istic of Cu(0) species, as reported in [40,41 ]. This confirms the fact 
that coating application is likely responsible of further oxidation of 
the pre-existing Cu(0) in Cu{I) species. 

3.2.8. XPS atomic quantification on the top surface of PropS-SH 

coated substrates 

From the analysis of the XPS core levels, it is possible to evaluate 
the atomic concentration of the different elements on the coated 
surfaces. These values, together with their concentrations normal
ized with respect Si relative amount, are reported in Table 3. 

On ail samples, high C concentrations are detected but, due to 
surface C contamination, no meaningful trend among the sampi es is 
evident. 0 level always shows comparable atomic concentrations in 
ail sampi es, except for PropS-SH a pp lied on pure Sn, in which O con
centration is higher ( 1.5 times higher than in the reference sample ), 
due to abundant formation of tin oxides and sulphates. ln general, 
the coated ZrN substrate shows the lowest O atomic concentra
tion, because the coating is rather thick and the coating/material 
interface (where oxide accumulation may occur) cannot be investi
gated. On this reference substrate, the concentrations of the coating 
elements (C ls, 0 ls, S 2p) normalized to silicon are in very good 
agreement with the theoretical atomic ratios (O/Si = 1.5, C/Si = 3.0 
and S/Si = 1.0). This suggests that the coating reticulation is almost 
complete and no significant silane oxidation occurs. 

On coated metallic substrates, Si concentrations decrease by 
passing from pure Cu to either bare or patinated bronze, to pure Sn, 
indicating a decreasing coating build-up, as the tin content of the 
substrate increases. Also total S atomic concentration decreases by 
passing from Cu and Cu-based alloys to Sn, but without a monotonie 
trend. Oxidation of the thiol group up to sulphate ion occurs at var
ious extents on ail bare metals and the low total S/Si ratios detected 
on Cu and bronze substrates, in comparison to the expected value 
of 1 (based on silane stoichiometry), suggest partial sulphate disso
lution during dip coating. Only on Sn substrate, the ratio (total S)/Si 
ratio is close to 1 (0.6 + 0.5 ), due to significant amount of insoluble 
sulphate species detected, likely linked to the formation of insolu
ble compounds with Sn{IV), as suggested by Sn core level spectrum. 
The concentration of S involved in S-Metal and C-S bonds, normal
ized to that of si li con, is particularly low in the case of Cu substrate, 
indicating that thiol oxidation in PropS-SH is more evident on pure 
copper than on bronze or pure Sn. 

Regarding the characteristic elements of the metallic substrates, 
Cu 2p signal is about double on coated bare bronze substrates in 
comparison to pure Cu, so confirming the lower average PropS-SH 
thickness on the former substrate types than on pure Cu. On pati
nated quinary bronze, where decuprification occurs due to selective 
corrosion, the lowest copper concentration is detected. On this 
substrate, the relatively high sum of the alloying element content 
(> 1.3 at%) is a consequence of the decrease in Cu at%, but may be 
also connected to the non-uniform distribution of PropS-SH, which 
does not avoid the emergence of the rough surface patina. 

4. Conclusions

The following conclusions could be drawn from these results: 

• XPS technique allowed the collection of detailed information
about the interaction of the organosilane coating ( PropS-SH) with
bronze including the role of the main alloying elements in artistic
alloys (Sn, Zn and Pb).

• PropS-SH coatings tightly follow the morphology of the substrate
on which they are applied. ln particular, EDS and HR-SRPES maps
on bare quinary bronze evidence that these coatings sink into
shrinkage cavities, filling them up and forming a homogenous and
continuous thin layer ( <500 nm). On patinated quinary bronze,
the coating penetrates into the porosities apparently insulating
the bronze substrate.

• 1 h dip coating applied to the ZrN substrate produces rather thick
coatings, which allow the characterisation of the coating itself
by XPS. Atomic quantification data related to the coating and
normalized to Si signal are in good accordance with theoretical
values, indicating that coating reticulation is almost complete and
no silane oxidation occurs.

• More uniform and likely thicker silane layers form by passing
from pure Sn to bronze to pure Cu. ln ail cases, the contribution
of Cu- and (where present) Sn-thiolate bonds to silane adhesion
has been recognized.

• An appreciable tendency of PropS-SH coating to oxidation is
detected, with formation of sulfate and carboxylate groups. The
extent of this phenomenon depends on the substrate nature: it is
more evident on pure copper than on bronze or pure Sn. lt does
not occur on ZrN. lt likely takes place during the dip coating step
and appears to be favoured by the presence of multiple-valence
cations.
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