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Abstract

Morphological accelerators, such as the MORFAC (MORphological acceleration FACtor) approach [24], are

widely adopted techniques for the acceleration of the bed evolution, which reduces the computational cost

of morphodynamic numerical simulations. In this work we apply a non-uniform acceleration to the one-

dimensional morphodynamic problem described by the de Saint Venant-Exner model by multiplying all the

spatial derivatives by an individual constant (≥ 1) acceleration factor. The final goal is to identify the

best combination of the three accelerating factors for which i) the bed responds linearly to hydrodynamic

changes; ii) a consistent decrease of the computational cost is obtained. The sought combination is obtained

by studying the behaviour of an approximate solution of the three eigenvalues associated with the flux

matrix of the accelerated system. This approach allows to derive a new linear morphodynamic acceleration

technique, the MASSPEED (MASs equations SPEEDup) approach, and the a priori determination of the

highest acceleration allowed for a given simulation. In this new approach both mass conservation equations

(water and sediment) are accelerated by the same factor, differently from the MORFAC approach where only

the sediment mass equation is modified. The analysis shows that the MASSPEED gives a larger validity

range for linear acceleration and requires smaller computational costs than that of the classical MORFAC

approach. The MASSPEED approach is implemented within an example code, using an adaptive approach

that applies the maximum linear acceleration similarly to the Courant–Friedrichs–Lewy stability condition.

Finally, numerical simulations have been performed in order to assess accuracy and efficiency of the new

approach. Results obtained in the long-term propagation of a sediment hump demonstrate the advantages

of the new approach.

Keywords:

SWE - Exner model, Morphological accelerators, MASSPEED approach, MORFAC approach, long term

morphodynamic evolution

1. Introduction

Reducing the computational costs of numerical simulations of the morphological evolution in rivers,

estuaries and coastal areas is a critical issue for engineers and geomorphologists [e.g. 4, 25, 26]. Even
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though simulation tools of physical systems have greatly benefited from the increasing computational power

over the last decades thanks to progress in CPU performances and parallelization technologies, the use of

morphodynamic upscaling techniques is still widely popular and becomes essential when long-term evolutions

must be predicted [e.g. 4, 25, 26]. Classical approaches for morphodynamic acceleration have been developed

primarily for costal and estautuarine applications [6, 13, 24]. Among them, the MORFAC (MORphological

acceleration FACtor) approach [14, 24] has been introduced in the context of coastal applications, with the

purpose of efficiently describing the overall morphodynamic effect of a high number of repeated tides. The

MORFAC approach is now standard in state-of-the-art comercially available numerical morphological codes

[23]. It is daily employed by engineers for solving practical problems in costal and estaurine environments

[25, 4] and increasingly used for the simulation of river morphodynamics [e.g. 9, 20, 21, 22]. The key idea of

the MORFAC approach is to accelerate the morphological evolution increasing the time bottom variations by

a given constant (> 1) factor, thus accelerating the morphodynamic processes. This is effectively obtained

by multiplying the sediment flux in the Exner equation by a constant (> 1) acceleration factor updating the

bed and flow within the same time step. According to Ranasinghe et al. [23] this approach can be adopted

only if the morphological response to the hydrodynamic forcing is linear during one morphological time

step. Therefore, the key issue in the application of such an approach is to find the maximum acceleration

factor (critical MORFAC in the literature) that can be applied in the numerical simulation. One of the first

attempts to assess the accuracy and stability of the MORFAC approach has been carried out by Roelvink

[24], who also performed a comparison among different acceleration techniques. Even though the recent

advancements [15, 23] to develop a theoretical background to detect this value are significant, the critical

MORFAC is still often set by trial-and-error procedures [e.g. 9, 20, 21, 22].

The main goal of this paper is to develop a robust theoretical background for the development of linear

morphodynamic acceleration techniques. This will be obtained by performing a mathematical study to

quantitatively identifying the limit of application for given hydraulic and sediment-transport conditions,

thereby overcoming the limits of a trial and error approach. In this work we focus on the one-dimensional

morphodynamic problem described by the de Saint Venant-Exner (dSVE) system of equations. The proposed

mathematical framework for studying linear morphodynamic accelerations is developed by considering a

non-uniformly accelerated dSVE model, i.e. each of the three governing equations (water and sediment

continuity, and conservation of momentum) is accelerated by constant acceleration factors (> 1), namely Mcw,

Mcs and Mq. The final goal is to identify the most convenient combination of the three accelerating factors,

to be applied within each single time step, for which i) the bed still responds linearly to hydrodynamic

changes; and ii) a consistent decrease of the computational time is obtained. The analysis is carried out

by studying an approximate solution for the eigenvalues of the flux matrix associated with the accelerated

system, taking advantage of the typically small value attained by the ratio between the sediment and

the water discharge. This analysis is an extension of that performed by Lyn [17] for the standard de
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Saint Venant-Exner (non-accelerated) system. Our aims is that, from the standard MORFAC approach

obtained by setting Mcw = Mq = 1, Mcs > 1, to seek the optimal combinations of these. The analysis of

the eigenvalues of the non-uniformly accelerated system of the dSVE allows also derivation of a new linear

morphodynamic acceleration technique, which has been dubbed MASSPEED (MASs equations SPEEDup).

This is obtained by setting Mcw = Mcs > 1, Mq = 1 and is characterized by a larger validity range for linear

acceleration and higher computational speed-up to that of the classical MORFAC approach. Finally, the new

MASSPEED approach is implemented using an adaptive approach, similarly to that used for implementing

the Courant–Friedrichs–Lewy numerical stability condition. It is then applied to the long-term propagation

of a sediment hump with the aim of demonstrating that it is able i) to correctly predict the time evolution

with and without friction terms; ii) to decrease considerably the computational costs.

The paper is structured as follows: §2 briefly reviews the governing equations and their main mathemat-

ical properties. In §3 we present the new general framework for morphodynamic acceleration and in §4 we

derive the MASSPEED approach. In §5 we introduce two numerical strategies to compute the maximum

acceleration factors. In §6 we present numerical results for the long term propagation of a sediment hump

assessing the advantages of the new approach proposed in this paper. Conclusions are drawn in §7.

2. Analysis of the morphodynamic mathematical model

We consider a one-dimensional morphodynamic model, which describes the flow over an erodible bottom.

The bed is assumed to be composed of uniform sediments which are transported by the flow as bedload.

2.1. Governing equations

The governing equations are obtained under shallow water conditions imposing mass conservation for

the fluid and solid phases and momentum conservation. In one-dimension they read

∂h

∂t
+
∂q

∂x
= 0 ,

∂q

∂t
+

∂

∂x

(
1

2
gh2 +

q2

h

)
+ gh

∂z

∂x
= −gh sf ,

∂z

∂t
+ ξ

∂qs
∂x

= 0 ,

(1)

where x is the longitudinal coordinate, t is time, h(x, t) and z(x, t) denote the water depth and the bottom

elevation respectively, q(x, t) and qs(x, t) indicate the liquid and bed-load discharge per unit width, g is the

gravitational acceleration, sf is the friction slope and ξ = 1/(1− p), where p is the porosity of the riverbed

(hereafter we assume p = 0.4).

The governing system (1) is composed by three partial differential equations (PDEs) in five unknowns,

namely h(x, t), q(x, t), z(x, t), sf (x, t) and qs(x, t). Therefore, two extra relations are required to close the
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system. The friction term is provided by a classical closure, namely

sf =
q2

K2
sh

10/3
, (2)

where Ks is the Strickler coefficient. For the sake of simplicity, the bed-load flux is assumed to be a power

function of the velocity [10],

qs = Ag u
m , (3)

where Ag and m are two constant parameters. Hereafter we assume m = 3.

2.2. Eigenvalues and characteristic curves

The system of governing equations (1) (original system) can be cast in quasi-linear form as

∂W

∂t
+ A(W )

∂W

∂x
= S(W ) , (4)

where W is the vector of the conservative variables, A(W ) is the flux matrix and S(W ) is the vector of

the source terms. It follows from Eq. (1) that

W =


h

q

z

 , A(W ) =


0 1 0

c2 − u2 2u c2

ξ ∂qs∂h ξ ∂qs∂q 0

 , S(W ) =


0

−c2sf
0

 , (5)

where u = q/h is the depth averaged velocity and c =
√
gh is the propagation celerity of gravitational waves.

Using Eq. (3), the two terms on the last row of matrix A(W ) can be written as

ψ = ξ
∂qs
∂q

and ξ
∂qs
∂h

= −uψ with ψ = 3 ξ

(
qs
q

)
= 3 ξ

(
Ag g Fr

2
)
, (6)

where ψ is the transport parameter, depending on the ratio between the flux of the sediments and the water

discharge, while Fr = u/c is the Froude number. The parameter ψ is usually small (ψ � 1), at least in the

common range of river and coastal typical sediment transport rates. Given these definitions, the flux matrix

A(W ) can be rewritten as

A(W ) =


0 1 0

u2
(

1

Fr2
− 1

)
2u

u2

Fr2

−uψ ψ 0

 . (7)

The characteristic polynomial and the eigenvalues of (7) are obtained by setting |A− λI| = 0, where I

is the 3×3-identity matrix; the characteristic polynomial reads

λ3 − 2uλ2 + (Fr2 − ψ − 1)
u2

Fr2
λ+

u3

Fr2
ψ = 0 . (8)
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a) b)

Figure 1: Sketch of (linearized) characteristic curves in the phase space. In panel a) the typical situation for subcritical

conditions (u > 0) is given. In panel b) the original system (black thin lines) the uniformly accelerated system (Uacc) (blue

thick lines) and the non-uniformly accelerated system (NUacc) (red dashed lines) are sketched. The definitions of uniformly

and non-uniformly accelerated systems are given in the text.

If a power law formula for the solid transport is used, as that adopted in Eq. (3), the three eigenvalues

λ1, λ2, λ3, the solutions of the cubic polynomial (8), are always real, therefore the governing system is

always hyperbolic [5]. For more general sediment transport formulas, where the non dimensional solid

discharge is expressed as a function of the dimensionless Shields parameter (e.g., Meyer-Peter and Müller

[19]), if the friction term is closed using a Manning approach, the governing system is hyperbolic provided

that Fr < 6 [5]. This latter condition is usually satisfied under natural conditions.

On the (x− t) plane (phase space) the eigenvalues are celerities associated to characteristic curves along

which small disturbances propagate. Herein, the term celerity is applied broadly to mean the velocity of

propagation of a disturbance, either on the water surface or on the bed. For very small disturbances the

characteristic curves can be approximated by straight lines. The situation for a small disturbance generated

at time t = 0 in x0, in case of subcritical flow (Fr < 1) is given in Figure 1a.

2.3. Weak interaction between hydrodynamics and morphodynamics: the decoupled system

Though the three roots of the characteristic polynomial (8) can be determined exactly, the derivation

of an approximate solution, obtained by a perturbative analysis, is useful for interpretation. Typically, the

transport parameter ψ may be estimated as small as O(10−3–10−5) [e.g. 12, 15, 17, 18] therefore it seems

reasonable to expand λ in powers of ψ as follows:

λ = λ(0) + ψ λ(1) + ψ2 λ(2) . (9)

We then substitute (9) into Eq. (8), equate likewise powers of ψ and look for the approximate solution of

the three eigenvalues λi (i = 1, 2, 3). At the leading order O(ψ0), a classical result is found: one of the

eigenvalues (λ3) vanishes and the remaining two reduce to those found in the fixed bed case (λH1,H2), namely
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λH1,H2 ≡ λ(0)1,2
∼= λ1,2 = [(Fr∓ 1) +O(ψ)] c . (10)

At the next order O(ψ) small “morphodynamic” corrections for the two hydrodynamic eigenvalues, λ1,2, are

found and the third eigenvalue, associated with bed level changes, arises. Writing also the second order

term, λ3 reads as

λ3 ≡ λb =

[(
Fr

1− Fr2

)
ψ −

[
Fr
(
Fr2 + 1

)(
1− Fr2

)3
]
ψ2 +O(ψ3)

]
c . (11)

Eq. (11) clearly shows that the present perturbative analysis is valid provided that Fr is small, in fact when

Fr→ 1, λ3 tends to infinity. Moreover, by comparing Eq. (10) with Eq. (11) it is seen that the relative order

of magnitude of the celerities associated with the characteristic curves of the hyperbolic system is rather

different [e.g. 7].

The behavior of such curves is well known: far from the critical state (i.e. Fr � 1) the celerity of a

small amplitude bed wave is considerably smaller than that of small amplitude hydrodynamic waves [18].

Therefore, the bed interacts only weakly with the water surface, thus justifying an approach in which the

equations governing hydrodynamics are solved separately from those governing morphodynamics. It follows

that, from a mathematical point of view, the problem can be described separately by the Saint-Venant

equations for the hydrodynamics and by a simple nonlinear wave equation for morphodynamics,

∂z

∂t
+ λb

∂z

∂x
= 0 . (12)

Taking into account Eq. (10) and Eq. (11), neglecting the friction term and writing the mass and momentum

balance laws for the fluid phase in terms of characteristic variables u1 and u2 [28], the complete system of

governing equations, which approximates system (1) when ψ � 1, can be written in decoupled form as

∂

∂t


u1

u2

z

+ Λ
∂

∂x


u1

u2

z

 = 0 , (13)

where

Λ =


λH1 0 0

0 λH2 0

0 0 λb

 =


(Fr− 1) +O(ψ) 0

0 (Fr + 1) +O(ψ) 0

0 0
Fr

1− Fr2
ψ +O(ψ2)

 c . (14)

According to Eqs. (13), in the phase space (x− t plane), small hydrodynamic perturbations propagate along

the characteristic curves dx
dt = λH1,H2 while small bed perturbations travels along the curve dx

dt = λb. From

Eqs. (13) emerges that, if ψ � 1, z is a characteristic variable of the morphodynamic problem. In Appendix

A a linearized example is proposed to validate the decoupled form of the dSVE system.
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3. A general framework for morphodynamic acceleration

Small hydrodynamic and bed disturbances propagate along the characteristic curves with celerities given

by the eigenvalues of the matrix (7). Therefore, linear acceleration of the propagation of small disturbances

can be obtained by increasing the slope of such characteristic curves. If we consider the system of governing

equations (4) and neglect friction terms (S = 0), acceleration can be obtained by multiplying from the left

the original flux matrix by the acceleration matrix M, namely

∂W

∂t
+ MA∂W

∂x
= 0 , M =


Mcw 0 0

0 Mq 0

0 0 Mcs

 , (15)

in which we consider three scalar acceleration coefficients, Mcw for the water continuity equation, Mq for the

momentum equation, and Mcs for the sediment continuity equation.

In this section two configurations of M are discussed: a simple case of uniform acceleration (Uacc)

of the whole system with Mcw = Mq = Mcs = M > 1, and the case of non-uniform acceleration (NUacc) in

which each equation is accelerated by a specific, and in general different, factor (Mcw ≥ 1, Mq ≥ 1, Mcs ≥ 1).

In particular, for the non-uniformly accelerated system we present an approximate set of eigenvalues and

suitable definitions for the numerical speed-up.

3.1. The trivial case of uniform acceleration (Uacc)

In this section, a uniformly accelerated system is analyzed from a computational point of view. We set

Mcw = Mq = Mcs = M > 1 in(15) and the resulting system of equations reduce to:

∂W

∂t
+ MA∂W

∂x
= 0 . (16)

Making use of the eigenvalues and eigenvectors properties, it is easy to verify that all the three eigenvalues of

A scale linearly with M. In other words, we have the uniformly accelerated eigenvalues λUacci = Mλi. In this

case, hydrodynamic and morphodynamic information are accelerated linearly by the same factor; therefore,

the slopes of the three characteristic curves will be larger and all proportional to M. The corresponding

situation in the phase space is depicted in Fig. 1b, where characteristic curves related to the uniformly

accelerated system are displayed with thick-blue continuous lines.

It is interesting to analyse the consequences of this acceleration when a numerical solution of system

(16) is sought and the adopted scheme must satisfy the Courant-Friedrichs-Lewy (CFL) condition. Here we

recall only that the CFL condition is necessary to obtain that the numerical solution (using a finite volume

or finite difference method) is stable and converge to the exact solution as the grid is refined [28].

If the spatial domain is discretized with a grid having a constant mesh size ∆x, the numerical solution of

the original system (4) is advanced in time by a time step ∆t that must satisfy the following CFL condition:
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∆t ≤ CFL
∆x

max(λi)
. (17)

where: CFL is the Courant–Friedrichs–Lewy number with specific values depending upon the selected time

integration technique; max(λi) is the maximum eigenvalue associated to the flux matrix (7). If we consider

u > 0, max(λi) = λ2, as in Fig. 1a. For the uniformly accelerated system the maximum time step that can

be adopted is

∆tUacc = CFL
∆x

λUacc2

. (18)

Since λUacc2 = Mλ2, Eqs. (17) and (18) imply

∆tUacc = CFL
∆x

Mλ2
⇒ ∆tUacc =

∆t

M
. (19)

This means that, if a uniform acceleration M is imposed, time integration of the accelerated system requires

a time step which is M-times smaller to that of the original system. Moreover, to take into account the

acceleration of the morphological evolution, the time must be scaled in the accelerated framework. In

particular, if we consider a given propagation time tp related to the simulation performed by using the

original system, the corresponding propagation time related to the uniformly accelerated system is tp/M.

Therefore, the propagation time and the time step in the accelerated framework are both scaled by M, so

that the numerical solution at a given output time tp of the original and the uniformly accelerated systems

requires the same number of time steps; consequently no computational gain is obtained by using the Uacc

procedure.

3.2. The case of non-uniform acceleration (NUacc)

Given the conclusion of the previous section, if a computational gain is sought, a non-uniform acceleration

must be considered. The final goal is to find an appropriate combination of the three accelerating factors

(Mcw ≥ 1, Mq ≥ 1, Mcs ≥ 1) with a twofold objective, as follows:

(i) obtaining a linear acceleration for morphodynamics. This can be obtained when the bottom time

evolution can be described by the following accelerated wave equation

∂z

∂t
+ Mcsλb

∂z

∂x
= 0 . (20)

Therefore, we look for the physical and mathematical conditions under which the accelerated system

of governing equations can be written in the decoupled form (13). The linear acceleration allows to

precisely describe the propagation of the bed level in the accelerated phase space, providing a linear

correspondence between the time scales of the non-accelerated and the accelerated morphodynamic

process.
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(ii) increasing the numerical speed-up. This means that, if the morphodynamic process is accelerated by

a constant factor Mcs, the corresponding acceleration of the hydrodynamic process should not reduce

the numerical speed-up. That is, the largest eigenvalue of the system of the governing equations (λ2)

must be accelerated by a factor smaller than the morphodynamic acceleration factor Mcs.

Graphical representation on the phase space of the two conditions i) and ii) is given in Fig. 1b.

3.2.1. Approximate eigenvalues for the NUacc system

We derive an approximate solution of the three eigenvalues of the NUacc system by taking advantage of

the typically small magnitude of ψ and adopting a perturbative analysis similar to that carried out in §2.3.

This solution is used in §4 to find the conditions under which a particular choice of [Mcw, Mq, Mcs] can satisfy

the requirement i).

The characteristic polynomial associated to system (15) is obtained by imposing |MA − λI| = 0; it

reads

λ3 − 2Mquλ
2 + Mq(Fr2Mcw − Mcsψ − Mcw)

u2

Fr2
λ+ McsMcwMq

u3

Fr2
ψ = 0 , (21)

compare this with (8).

Assuming expansion (9) for the solution of equation (21) to O(ψ) we obtain

λNUacc1,2

c
= Mq

[
Fr∓

√
Fr2 +

Mcw

Mq

(
1− Fr2

)]
+ Mcs


√

Mcw

Mq

1− Fr2

Fr2
+ 1 +

(
1− Mcw

Mq

)
√

Mcw

Mq

1− Fr2

Fr2
+ 1 +

(
1− Mcw

Mq

)
+ 1

Fr2

Mcw

Mq

 ψ

2Fr
. (22)

At O(ψ2), the celerity associated with the bed level changes is given by

λNUacc3

c
= Mcs

[(
Fr

1− Fr2

)
ψ −

(
Mcs

Mcw

Fr
(
Fr2 + 1

)(
1− Fr2

)3
)
ψ2

]
. (23)

It is clear that, also for the non-uniformly accelerated system, when Fr → 1, λNUacc3 → ∞. Therefore the

assumptions on the perturbation expansion are no longer valid [17].

3.2.2. Theoretical and computational speed-up

The goal of this section is to derive a general theoretical definition for the speed-up of the non-uniform

acceleration approach. This is the mean which allows us to quantify the computational gain for a given

morphological simulation. We demonstrated that a uniform acceleration applied to both hydrodynamic and

morphological evolutions does not result in any computational speed-up. Quite contrary, we expect to have

a speed-up when the eigenvalue corresponding to the bottom evolution, λNUacc3 , is accelerated by a factor

Mcs compared to the corresponding eigenvalue of the original system λNUacc3 = Mcsλ3 and at the same time

the maximum eigenvalue of the hydrodynamic system, λNUacc2 , results to be accelerated by a factor < Mcs as

9



compared to its homologous in the original system λ2. For the sake of generality, we define the averaged

theoretical speed-up over a simulation time TS as the ratio between the instantaneous morphological RM(τ)

and hydrodynamic RH(τ) acceleration,

Sp =
1

TS

TS∫
0

RM(τ)

RH(τ)
dτ . (24)

If the condition for Eq. (20) is satisfied, i.e. the NUacc system can be written in a decoupled way, the

acceleration terms RM,H(τ) are the ratio between the accelerated and original eigenvalues,

RM(τ) =
λNUacc3 (τ)

λ3(τ)
, RH(τ) =

λNUacc2 (τ)

λ2(τ)
. (25)

It is worth noting that, if the acceleration factors RM,H are set constant over the whole simulation time,

equation (24) simplifies to Sp = RM/RH.

In a similar way we can define the computational speed-up as the ratio between the computational time

(CPU time) of the reference solution and the accelerated one,

SpCPU =
CPU(Ref.Sol.)

CPU(Acc.Sol.)
. (26)

4. Linear morphodynamic acceleration techniques

In this section we consider the classical MORFAC (MF) and the newly proposed MASSPEED (MS) ac-

celeration techniques. For both methods, the conditions under which a linear acceleration is possible are

identified, and the maximum theoretical speed-up is quantified. Moreover, in Appendix A a simple applica-

tion is introduced to explain why the expression of the exact acceleration of λNUacc3 is a necessary condition

to correctly reproduce the riverbed profile with both MORFAC and MASSPEED approaches.

4.1. The classical MORFAC approach

The classical MORFAC approach described in Roelvink [24] is obtained when the acceleration coefficients

are set to Mcs = MF > 1, Mq = Mcw = 1. Substitution of these values into Eqs. (22) and (23) gives

λMF1,2
c

= [Fr∓ 1] +O(MFψ) , (27)

λMF3
c

=

[
Fr

1− Fr2

]
(MFψ)−

[
Fr
(
Fr2 + 1

)(
1− Fr2

)3
]

(MFψ)2 . (28)

The accelerated MORFAC system (15) can be written in the decoupled form (13) if λMF3 � λMF2 . This

condition is satisfied provided that

MF

[
Fr

1− Fr2

]
ψ � [Fr + 1] . (29)
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Figure 2: Range of validity for the linear morphodynamic acceleration for MORFAC (red dashed line) and MASSPEED (blue

dash-dotted line) techniques. In panel a) the curves are obtained by setting Ag = 0.0001, ε = 0.01 in relations (30) and (36)

and using the definition of ψ in (6). In panel b) the displayed curves are obtained by setting the constant ψ = 10−4 in relations

(30) and (36).

For Fr numbers typical of environmental flows, i.e. far enough from unity, the term on the left of the

inequality (29) is of O(MFψ), while the term on the right side is of O(1). Therefore, the resulting range of

validity, for which the decoupled approach holds, is

MFψ = ε (30)

where ε is a small parameter (ε� 1). If we set ε = 0.01, use the definition of ψ(Fr) and set Ag = 0.0001 s2/m

in (6), and plot expression (30), we obtain the red dashed line in Fig. 2a. This curve identifies the maximum

acceleration coefficient MF that preserves a linear morphodynamic acceleration for a given Fr. Therefore the

area below the curve represents the whole range of validity of the decoupled approximation. It allows that

for small Fr number the acceleration coefficient is very large but rapidly decreases with increasing Fr. It is

also worth noting that, for this particular example, the acceleration factor is smaller than unity for Fr & 0.6:

this means that the decoupled approximation holds only with a deceleration (MF < 1) of the system. Hence,

this represents the value beyond which use of the MORFAC approach becomes counterproductive.

It is important to underline that the function ψ(Fr) (thin black line in Fig. 2a) is monotonically increasing

but this strongly depends on the chosen transport closure formula (e.g. 6). For the sake of generality we

present also the validity range when considering a constant value of ψ (equal to 10−4 in Fig. 2b). We, thus,

remark that all the subsequent considerations hold both for ψ(Fr) or ψ = const.

If condition (30) holds, in agreement with Li [15], the MORFAC approach does not accelerate hy-

drodynamics since λMF1,2 ≈ λ1,2 while the bed evolution is linearly accelerated by a factor MF, i.e. λMF3 =

MFλ3 +O(MFψ). The corresponding situation in the phase space is depicted in Fig. 3a.
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a) b)

Figure 3: Representation of linearised characteristic curves in the phase space for: original system (black thin lines); uniformly

accelerated Uacc system (blue thick lines); MORFAC approach (red dashed lines, panel a); MASSPEED approach (red dashed

lines, panel b). According to the results given in Fig. 2 MS is always larger than MF.

Substituting (27) and (28) into definition (24), for a given and constant Fr, the expected computational

speed-up of the MORFAC method is

SpMF =
λMF3
λ3
· λ2
λMF2
≈ MF · 1 = MF . (31)

4.2. The MASSPEED approach

The MASSPEED (MS) approach is derived from Eq. (23): if Mcw = Mcs = MS, the eigenvalue associated

to the bed evolution λMS3 scales linearly, up to O(ψ2), with its analogous in the original system (11), and the

scale factor is MS, thus λMS3 = MSλ3 +O(ψ2). This suggests that, if the sediment continuity equation (Exner

equation) is accelerated by a factor Mcs, an identical acceleration must be imposed on the water continuity

equation. If we set Mcw = Mcs in Eqs. (23) and (22) and consider the higher order terms, the condition of

weak interaction between bed and hydrodynamics, λMS3 � λMS2 , is satisfied provided that

R

[
Fr

1− Fr2

]
ψ �

[
Fr +

√
Fr2 +R (1− Fr2)

]
with R =

Mcw

Mq
=

Mcs

Mq
=

MS

Mq
. (32)

For Fr numbers typical of environmental flows, far enough below unity, the term on the left of the inequality

(32) is of order O(Rψ), while the term on the right side is of order O(R1/2). Therefore, the analysis of

condition (32) implies it to be satisfied if

Rψ2 = ε , with ε� 1 . (33)

This condition can be transformed on a constraint on MS if a given value is assigned to Mq. At this stage, we

found it convenient to set Mq = 1. Then, we introduce the MASSPEED approach, defined by the following

choice for the acceleration coefficients: Mcw = Mcs = MS > 1, Mq = 1. Inserting these values into (22) and (23)
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gives
λMS1,2
c

=

[
Fr∓

√
Fr2 + MS

(
1− Fr2

)]
+O(MSψ) , (34)

λMS3
c

= MS

[(
Fr

1− Fr2

)
ψ −

(
Fr
(
Fr2 + 1

)(
1− Fr2

)3
)
ψ2

]
. (35)

According to relation (33), the condition for the validity of the decoupled approach assumption is satisfied

provided that

MSψ2 = ε , with ε� 1 . (36)

This range is larger than the analogous range (30), valid for the MORFAC approach. The situation is

displayed in Fig. 2, where the blue dash-dotted line is obtained by setting ε = 0.01 in both panels. The

results is that for all the range of Fr, the MASSPEED allows for larger values of the acceleration coefficient

than those given by the MORFAC approach. The areas below these lines represent the range of validity of

the decoupled approximation.

Different from the MORFAC approach, the MASSPEED acceleration modifies also the characteristics

of hydrodynamics, i.e. |λMS1,2| > |λ1,2| (compare Figures 3a and 3b). In particular, according to (24),

RH = λMS2 /λ2 > 1 hence the theoretical speed-up is bounded as follows:

1 < SpMS =
RM

RH
≈ MS

RH
< MS. (37)

This may wrongly suggest that the MORFAC gives a larger speed-up than MASSPEED, while it is true

that the MASSPEED approach allows for much larger values of Mcs which compensates by far the reduction

of the integration time-step due to the acceleration of the hydrodynamic characteristic λMS2 .

Since λMS3 is increased by the rate of RM and λMS2 by the rate RH < RM, there is the risk that small

morphodynamic disturbances may be accelerated so as to travel faster than the fastest hydrodynamic small

disturbances, i.e. λMS3 ≥ λMS2 . Therefore it sounds reasonable to impose a physical limit for the validity of the

MASSPEED approach. The physical limit of such an acceleration is given by the fact that the bed wave

perturbation associated to λMS3 should travel at a slower pace than the perturbation of the water surface

associated to λMS2 . Now, if we consider the approximation of λMS2 , Eq. (34), at the leading order O(ψ0) and

λMS3 , Eq. (35), at O(ψ), and impose λMS2 = λMS3 , we obtain the following limit relation

MSmax = −
(
Fr6 + 2Fr4ψ − 3Fr4 − 2Fr2ψ + 3Fr2 − 1

)
Fr2ψ2

, (38)

which gives the maximum factor MSmax that can be used to avoid this unphysical behaviour. Accelerating the

system by a factor MS < MSmax avoids the loss of the strict hyperbolicity, which occurs when two eigenvalues

coalesce [5, 28]. This particular mathematical condition must be avoided because may give rise to resonance

and loss of solution uniqueness. Theoretical issues regarding resonance are found in the classical papers

[11, 16] and references therein. In Fig. 2 the condition of the physical validity of (38) is plotted as a function
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of the Froude number. It is seen that for ε = 0.01 the range of validity for the decoupled solution is contained

within the limit of physical validity for all Fr values.

Finally, substitution of Eq. (38) in the definition of the maximum speed-up gives

Spmax
MS = MSmax

1 +
1

Fr

1 +

√
1 + MSmax

(
1

Fr2
− 1

) . (39)

If we substitute the definition of ψ and set Ag = 0.0001 in (3), and plot relation (39), we obtain the black

solid curve in Fig. 4. Moreover, the dashed line is obtained by setting the constant ψ = 10−4 in (39). It

is observed that the speed-up is of order 102 for small Froude numbers and decreases rapidly to unity as

Fr→ 1.
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Figure 4: MASSSPEED approach: maximum theoretical speed-up Spmax
MS (Eq. 39) obtained from the approximate solution of

the eigenvalues. The full line is obtained by using the definition of ψ as in Eq. (6) and setting Ag = 0.0001 in the sediment

transport closure (3). The dotted line is obtained by setting ψ = 10−4.

5. Non-linear numerical strategies to compute the maximum acceleration factors

In the previous section the maximum accelerations allowed with MORFAC and MASSPEED approaches

have been introduced thanks to a linear approximation of the system eigenvalues (see §3.2.1). The goal of

this section is to defined a more general criterion for the determination of the maximum acceleration factors
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by considering the fully nonlinear expression of the three eigenvalues as described in Appendix B. Thus, we

propose a further strategy to dynamically recompute the maximum acceleration factors during a numerical

simulation. If not differently specified, we consider an acceleration factor Mcs = 10 and Ag = 0.005 in (3).

5.1. Non-linear estimation of the maximum acceleration factors

First we consider the MORFAC approach. The roots associated with the flux matrix MA in Eq. (15),

can be computed by solving the cubic characteristic polynomial (21) after setting the acceleration factors

equal to Mcw = Mq = 1 and Mcs = MF = 10, in this example. The MORFAC approach successfully establishes a

well defined correspondence between the original and the accelerated model only if morphodynamics evolves

linearly in time. More precisely, under the hypothesis of weak interaction between hydrodynamics and

morphodynamics, the following relation must hold:

RM =
λMF3(Fr, MF, ψ)

λ3(Fr, ψ)
≈ MF, (40)

where λ3 is the smallest eigenvalue (the morphodynamic eigenvalue) of the original system. Hence, the

more RM deviates from the assigned MF , the weaker the assumption of linear acceleration is. We quantify

the maximum acceptable deviation introducing a tolerance band (±Tol), therefore condition (40) can be

rewritten as

RM =
λMF3(Fr, MF, ψ)

λ3(Fr, ψ)
= MF (1± Tol) . (41)

Relation (41) is an implicit expression of MF that depends on the water flow (Fr) and sediment transport

(ψ). Hence, for a user-given tolerance (Tol), the maximum value of MF, which assures that the bed evolves

linearly, is numerically computed from Eq. (41). In Figure 5a, the ratios λMFi(Fr,MF,ψ)
λi(Fr,ψ)

are displayed by using

different style-lines. The ratio λMF3/λ3 (red solid line), tends asymptotically to the assigned MF as Fr → 0.

On the other hand, for increasing values of Fr the ratio rapidly decays below MF = 10. The linear assumption

holds as long as the red curve lays inside the grey-shaded areas, corresponding to the right-hand-side of (41):

the thinner and the darker the gray stripe is the smaller is the tolerance, Tol = 5%, 1%, 0.1% in this case.

In Fig. 5c the maximum acceleration factor MF, computed with (41), is plotted against Fr. The three

different lines are obtained by considering three different small tolerance values, namely Tol = 5%, 1%, 0.1%.

The acceleration coefficient MF shows an inverse exponential dependency on Fr. This is in agreement with

the empirical results obtained by Ranasinghe et al. [23] and Li [15]. It is also seen that the magnitude of

the maximum acceleration factor crucially depends on the user-given tolerance.

Finally, for each value MF, the expected numerical speed-up SpMF (24) is plotted against Fr in Fig. 5e.

As expected, the speed-up is decreasing rapidly for increasing values of Fr. For example, if we consider

Fr = 0.1 and set the tolerance to 1%, the maximum achievable speed-up is about 10 while if we increase the

tolerance up to 5% the corresponding speed-up increases up to about 100.
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Figure 5: Panel a and b: Ratios of nonlinear eigenvalues λMFi(Fr,MF,ψ)
λi(Fr,ψ)

. The grey-shaded areas represents the tolerance band Tol

in Eq. (41). Panels c and d: maximum acceleration factor for given values of tolerance. Panels e and f: maximum expected

speed-up. In the left and right panels the results for the MORFAC and MASSPEED approaches are collected.
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The very same analysis can be extended to the MASSPEED approach, providing Mq = 1 and Mcw = Mcs =

MS in the governing system (15). The maximum MASSPEED factor MS for given Fr, ψ and tolerance Tol is

analogous to (41) and reads

RM =
λMS3(Fr, MS, ψ)

λ3(Fr, ψ)
= MS (1± Tol) . (42)

It is interesting to note that, consistently with the results obtained with approximated solutions in §4, the

range of Fr numbers for which the ratio λMS3/λ3 ' MS (range of linearity), is broader for the MASSPEED

when compared with the MORFAC approach. Comparing Fig. 5a and Fig. 5b, the linear range extends up

to Fr ≈ 0.6 (panel b) for the MORSPEED, while it reduces to Fr ≈ 0.15 for the MORFAC (panel a). Within

the linear range, the MASSPEED approach shows also higher values of the maximum acceleration (Fig. 5c

versus 5d) and larger speed-up (Fig. 5e versus 5f). For example, given a tolerance of 1% and Fr = 0.4, the

maximum MS corresponds to 75 (Fig. 5d) resulting in a speed-up of about 13 (Fig. 5e) while application of

the MORFAC approach does not result in any acceleration.

Finally, concerning the loss of hyperbolicity, we compute the value MSmax by imposing that λMS2 = λMS3

and making use of the fully nonlinear expression of the eigenvalues. MSmax is plotted against the Fr number

in Fig. 5d for a given tolerance of 5% (black dashed line). It is worth noting that the loss of hyperbolicity

occurs outside the domain of linear acceleration, i.e. MSmax > MS(5%).

5.2. Numerical evaluation of the highest acceleration factor: fixed and adaptive appraoch

Here we propose a numerical strategy similar to the well-known Courant-Friedrichs-Lewy stability con-

dition to maximize the computational speed-up. Note that here we refer only to MASSPEED approach,

given that the very same procedure can be implemented for the MORFAC approach.

Let us consider a physical domain of length L discretized with a finite set of points or volumes, regardless

if finite difference or finite volume approaches are used. At a given time, within a single numerical time

step ∆t, local flow (Fri) and sediment transport (ψi) conditions are assigned and therefore the calculation

for each cell i of the nonlinear eigenvalues λMSj,i and λj,i (with j = 1, 2, 3) is possible. Then, for a given

tolerance value Tol (prescribed by the user), application of relation (42) gives the value of the maximum

accelerator factor MSi for each cell i at a given time. Now, two possible approaches are introduced here: fixed

and adaptive. In the fixed approach, the maximum acceleration factor MS is computed at the beginning of

the simulation as MS = min
i

[MSi] and kept constant for all time steps of the simulation, until the final time

is reached. In the adaptive approach the maximum acceleration factor is a function of time, i.e. MSi(τ), and

is computed for each time step according to the local flow and sediment transport conditions. Then, for the

generic time τ , the adaptive MS(τ) = min
i

[MSi(τ)] is computed solving the following equation for each cell i:

λMS3,i
(
Fri(τ), ψi(τ), MSi(τ)

)
λ3,i
(
Fri(τ), ψi(τ)

) = (1± Tol) · MSi(τ) . (43)
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Eq. (43) is valid for any closure for the solid transport and can be solved via a numeric iterative method

(e.g. standard regula falsi (RF) method [29]). Alternatively, to reduce the computational cost due to the

iterative procedure, one can obtain MSi(τ) followed for obtaining the curves in Fig. 3.

6. Evolution of a sediment hump: linear and numerical solutions

We assess and compare the accuracy and efficiency of the MORFAC and the new linear morphodynamic

accelerator MASSPEED by considering the propagation of a sediment hump. In all cases, the solutions

obtained with MORFAC and MASSPEED are compared with that obtained with the original model. First,

we solve a linearized problem for which an analytical solution is available. We use this problem as a proof of

concepts of the theoretical backgound we developed. Second, we solve numerically the long-term evolution

of a sediment hump. The final goal is to assess the advantages of the new MASSPEED approach. Numerical

integration is performed by using a classical one-dimensional finite volume scheme. We adopt a path-

conservative solver of the DOT [8] type where the use of the analytical formulation of the eigenstructure of

the system flux matrix improves the computational efficiency [2, 3].

6.1. Linearized morphodynamic problem: evolution of a small sediment hump

We consider the evolution of a small (infinitesimal) erodible hump due to a nearly uniform water flow

in a straight channel. Under these conditions, the problem can be studied within a linear framework, and

an analytical solution can be easily derived [e.g. 18]. We consider the original nonlinear system (15) (the

friction term is neglected) and perform a linearization by freezing the flux matrix (7), or more specifically

its entries, considering the following uniform reference state, WL = [hL, qL, zL]
T . The resulting linearized

system is
∂W

∂t
+ MAL

∂W

∂x
= 0 , (44)

with

AL =


0 1 0

c2L − u2L 2uL c2L

−uL ψL ψL 0

 M =


Mcw 0 0

0 1 0

0 0 Mcs

 . (45)

The original system is obtained when Mcw = Mcs = 1, the MORFAC system for Mcw = 1, Mcs = MF and the

MASSPEED for Mcw = Mcs = MS. Subscript L refers to the reference state and uL = qL/hL and cL =
√
g hL

are the reference flow velocity and celerity, respectively. ψL = ψ|WL
= 3 g ξ Ag Fr

2
L is the reference sediment

transport parameter where FrL = uL/cL is the reference Froude number and q0 = qL =
√
h3L g Fr

2
L. The

initial conditions of the problem are given by W0 = [h0, q0, z0]T with z0(x) = zmax exp(−x2), zmax = 1.0−5

m and h0(x) = hL − z0(x). We also assume ψL = 0.01 and hL = 1 m to which correspond FrL = 0.33. The

solution of system (44) can be obtained analytically by using characteristic variables [28] as done by Lyn
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Figure 6: Linearized solution of the propagation of a sediment hump [18] using the linearized MORFAC and MASSPEED

approaches: a) comparison between the characteristic lines (the time is properly scaled for the MORFAC and MASSPEED

approaches); b) difference between the water depth and the unperturbed water depth; c) difference between the flow discharge

and the unperturbed flow discharge; d) bottom elevation. The analytical solution of the linear original system is used as

reference.

and Altinakar [18]. More details on how the linear analytical solution is obtained are given in Appendix A.

The final time for which the solution is sought is tEND = 50 s for the original system. Since the infinitesimal

amplitude of the hump, linear conditions hold and therefore the time scales of the accelerated and original

system are linked by a linear relation, i.e. the corresponding final time of the simulation for the MORFAC

and MASSPEED approaches yields tEND,s = tEND/MF and tEND,s = tEND/MS, respectively. Setting a tolerance

Tol = 1.36%, the resulting (rounded) maximum acceleration factors, calculated from Eqs. (41) and (42),

are MF = 2 and MS = 900. The analytical solutions are displayed in Fig. 6. In Fig. 6a the characteristic

lines in the phase space x − t′ are given, where t′ stands for t the time in the original system, t/MF and

t/MS, the times in the MORFAC and MASSPEED systems. Deviations of the water depth, discharge and

bed elevation, to their unperturbed initial values hL, qL and zL are given in Fig. 6b, Fig. 6c and Fig. 6d,

respectively.

It is seen in the phase space plots, the three eigenvalues with the propagation of bed information,

λ3 ≡ λMF3 ≡ λMS3 , overlap each other (Fig. 6a). As a consequence the celerity of the infinitesimal bed form
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Figure 7: Long term evolution of a bottom hump: initial water surface elevation (blue) and bed elevation (red) profiles.

0 2 4 6 8 10 12
x [km]

0

0.5

1

1.5

2

z
[m

]

(a)

0 10 20 30 40 50 60 70 80 90 100
t [days]

0.04

0.08

0.12

0.16

0.2

0.24

m
a
x
(F
r
)

(b)

Figure 8: Reference solution for the long term evolution of a bottom hump: a) bottom profiles every two days, in thick line

day number 100; b) time evolution of the maximum Fr measured within the numerical domain.

is well predicted by both the MORFAC and MASSPEED approaches (see also Fig. A.13 in Appendix A).

It is also seen that the amplitude of water depth (Fig. 6b) and bed elevation (Fig. 6c) are also accurately

predicted. A marked difference is found for the water discharge (Fig. 6c) for which the MORFAC approach

introduces a larger deviation to that of MASSPEED.

6.2. Long term evolution of a bottom hump: frictionless case

This test case consists of the simulation of the long term evolution of an erodible bottom hump immersed

into a quasi-steady, frictionless flow; it is similar to the test proposed by Ranasinghe et al. [23]. The initial

bed profile is given by

z(x, 0) = zmax exp

[
− (x− µ)2

σ2

]
, (46)

where zmax = 2 m, µ = 600 m and σ = 150 m. The initial uniform water discharge is q(x, 0) = q0 = 2 m3/(s

m) while the initial water depth corresponds to the steady state water profile for the given discharge and
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Table 1: Long term evolution of the bottom hump: acceleration parameters (MF, MS and Tol), number of computational time

steps, CPU time, numerical (26) and theoretical (24) speed-up, normalized error Ez and final position of the hump crest.

# Method Acc. Factors Time steps CPU [s] SpCPU Sp Ez x(crest) [m]

0 Ref. Sol. 2 050 300 6803 - - - 10125

1

MORFAC

MF5.0% = 7.1 291 600 926 7.3 7.1 1.53e-1 10005

2 MF1.0% = 2.2 940 400 3014 2.3 2.2 2.98e-2 10095

3 MF0.1% = 1.1 1 848 700 6013 1.1 1.1 2.81e-3 10125

4

MASSPEED

MS5.0% = 13 049 16 801 57 119 103 1.19e-2 10125

5 MS1.0% = 2 985 34 802 114 60 50 4.17e-3 10125

6 MS0.1% = 304 109 101 353 19 16 1.06e-3 10125

7

A-MASSPEED

MS5.0% 2 236 9 782 836 3.81e-1 10485

8 MS1.0% 4 700 16 413 404 9.36e-2 10215

9 MS0.1% 14 234 48 141 132 1.19e-2 10125

10 MS0.01% 44 443 150 45 42 1.61e-3 10125

initial bed topography. A constant discharge q0 is imposed at the upstream boundary while a constant water

depth h0 = 4 m is imposed at the downstream boundary. Fig. 7 shows the initial flow and bed configuration.

Transmissive downstream boundary conditions are imposed for the bed and Ag is set to 0.005 s2/m in the

sediment transport formula (3). The numerical domain (x ∈ [0; 12000] m) is discretized with 400 cells of

constant width (30 m). Finally, t the morphodynamic output time is set equal to 100 days.

Fig. 8a shows the bottom evolution in time, with a temporal breakdown of 2 days, obtained with the

original, non-accelerated model. In the first simulated days, the amplitude of the hump decreases rapidly

and after about 20 days the bottom assumes a flatter and stable profile. The decrease of the hump amplitude

is associated to a corresponding decrease of the maximum Froude number on the computational domain

(Fig. 8b).

For this test we performed 10 different runs summarized in Tab. 1. The approach used is specified

in column 2, while the acceleration factors and the tollerance used to compute them is specified in the

column. Runs 1 to 3 implement the MORFAC approach (Mcw = Mq = 1, and Mcs = MF), with tolerance

Tol equal to 5%, 1% and 0.1% respectively. Runs 4 to 6 implement the MASSPEED approach (Mq = 1,

and Mcw = Mcs = MS), with the same tolerances as the previous set. The constant factors MF and MS are

computed by using (41) and (42), respectively and considering the highest Froude number of the simulation.

In this test the maximum Froude number corresponds to the initial maximum value Fr ≈ 0.23, as shown
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in Fig. 8b. Finally, runs 7 to 10 implement the adaptive version A-MASSPEED, tested with tolerances

Tol = 5; 1; 0.1; 0.01 [%].

The accuracy of the accelerated solutions with respect to the reference solution is evaluated qualitatively

in terms of the final position of the hump crest and, quantitatively, via the normalized root square error Ez,

defined as

Ez =

√∑
(z − zref)2√∑

z2ref
, (47)

where z and zref are the bottom profiles at the end of the simulation for the given accelerated model

(MORFAC or MASSPEED) and the original system. The computational costs and accuracy of the 10 runs

are also specified in Tab. 1, while some examples of final bottom profiles are depicted in Fig. 10.

As a first robustness assessment, it is worth noting that the accuracy (Ez and crest position) increases

when reducing the tolerance Tol for all the acceleration strategies. Table 1 highlights also the significant

differences of computational speed-up between the tested approaches: i.e. MORFAC and A-MASSPEED

have speed-up differences of roughly one order or magnitude. Moreover, it is important to underline that

the theoretical speed-up Sp is always fairly close to the measured SpCPU (see §3.2.2). Hence the theoretical

formulation can be adopted as a good a priori estimation of the effective simulation speed-up.

To better focus on the differences between the investigated strategies, let us discuss Fig. 9, where the

numerical speed-up SpCPU of the 10 accelerated runs are plotted against the normalized errors Ez. It is worth

noting that the plot is in log-log scale. Beside the evident increase of the computational speed-up offered by

the new proposed approaches with respect to MORFAC, Fig. 9 sheds the light on the accuracy differences of

the three methods for a given Tol. In particular, it appears that for the same given Tol, i) MASSPEED is

more accurate than MORFAC and ii) the adaptive A-MASSPEED is less accurate than both fixed methods.

To justify issue i), please note that for the MORFAC and MASSPEED methods we fix the acceleration

factors MF and MS (values in Tab. 1) for the entire run based on the maximum expected Froude number and

the given tolerance. If the Froude number decreases during the simulation, as in the given test, the error on

the linearity assumption (41) also decreses, being a function of Fr (Fig. 5a and b). Nevertheless, the error

reduction is faster for the MASSPEED approach, i.e. the ratio of the bottom eigenvalue (red solid line) in

Fig. 5b tends to the constant factor MS faster than the corresponding ratio in Fig. 5a. Given this difference

in the error reduction rate, the accumulated final error of the MASSPEED method is reduced with respect

to MORFAC.

Issue ii) well underlines the main difference between the fixed approach (MORFAC and MASSPEED)

and the adaptive one (A-MASSPEED). This accuracy gap is evident also in Fig. 10, where final bottom

profiles are plotted for some selected runs. For given Tol = 1%, MORFAC and MASSPEED profiles are

very close to the reference solution, while the A-MASSPEED solution shows an offset of the crest position.

As previously discussed, the effective error on the linearity Eq. (41) decreases during the simulation time
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Figure 9: Numerical speed-up SpCPU against normalized errors Ez for the 10 accelerated runs. Marker labels highlight the

user-defined tolerances resumed in Table 1.

when using the fixed approaches. On the other hand, with A-MASSPEED, the adaptive acceleration factor

MS is not bonded by Frmax, but instead recomputed at each time step. This means that the error on the

linearity assumption (41) is dynamically forced to be constant and equal to the user-defined Tol. Such

different behavior of the error, decreasing with the fixed strategy but constant with the adaptive one, results

in the final greater error of the latter.

Even if, for a given user-defined Tol, the adaptive strategy is less accurate, it it important to highlight

that it globally outperforms both the fixed methods: as a matter of fact, for any accuracy (error Ez),

A-MASSPEED provides the highest numerical speed-up (Fig. 9). Moreover, this method has a further

benefit related to the robustness. In fact with the fixed approach, we need to known a priori the maximum

Froude number occurring during the simulation. For very simple applications, as in the test presented here,

this prediction is straightforward but in case of more complex hydro-morphological configurations this might

not be possible. A "wrong" initial setting of the constant acceleration factors may lead to a final numerical

solution that did not satisfy the linearity conditions, hence to a non-linear acceleration of the morphological

evolution. In the worst case, a wrong constant factor leads to the loss of hyperbolicity of the accelerated

system, hence to a completely failing numerical solution. On the contrary, such troubles are inherently

handled by the adaptive strategy, where the acceleration factors are dynamically recomputed to keep the

acceleration within the linearity threshold.
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Figure 10: Bottom hump profiles after a 100 days evolution: comparison between reference solution (thick black), MORFAC

(run 2), MASSPEED (run 5) and A-MASSPEED (runs 8,9) models.

6.3. Long term evolution of a bottom hump: bottom friction case

The main goal of this test is to verify that the friction term does not alter the main features of the

accelerated models. To account also for the bottom friction term into the accelerated framework, system

(15) can be rewritten as
∂W

∂t
+ MA(W )

∂W

∂x
= MS(W ), (48)

where S(W ) is the vector of the source terms defined in (5) and M is the acceleration matrix. It is

important to note that MS(W ) = [0,−Mq c
2sf , 0]T and Mq = 1 in both MORFAC and MASSPEED

approaches. Therefore, the accelerations of the models do not influence the expression of the friction source

term.

From a numerical point of view, the source term is treated by using a classical splitting procedure (e.g.

[27]). Without loss of generality, we present the results only for the adaptive A-MASSPEED approach,

assuming Tol = 0.001.

The test is a modification of that given in the previous section (same boundary conditions), where we

add a constant slope s0 = 0.1‰ to the initial bed profile, thus,

z(x, 0) = −s0x+ zmax exp

[
− (x− µ)2

σ2

]
. (49)

Assuming a water discharge q0 = 2 m3/(s m) and constant Strickler roughness Ks = 19.8 m1/3s−1, the

resulting normal flow depth is h0 = 4 m. Fig. 11a shows the initial water surface and bottom elevation

profiles. The simulated time is 50 days.
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Figure 11: Treatment of the friction source term: (a) initial condition of the Hump test with not negligible friction; (b) results

of a 50 days long morphodynamic simulation of the hump evolution.

Fig. 11b shows the comparison between the bottom profile at the end of the simulation, obtained using

the A-MASSPEED approach, and the corresponding reference solution. It is seen that the solutions are in

good agreement. Moreover, the error Ez computed by using relation (47), is equal to 1.3e-2, i.e., of the same

order of magnitude of the errors obtained by neglecting the friction term (see Tab. 1). Analogous results,

here omitted for the sake of brevity, can be obtained by using the MORFAC approach.

7. Conclusions and future trends

In this paper we carried out a mathematical study to identify the conditions under which bed evolution,

governed by the one-dimensional dSVE equations, can be linearly accelerated. This was achieved by intro-

ducing the concept of non-uniform acceleration, consisting by multiplying the spatial derivatives of each of

the three governing equations by a constant acceleration factor. Then, from the study of a simplified linear

solution of the eigenvalues of the non-uniformly accelerated system we

1. show that the classical MORFAC acceleration results from the acceleration of the mere sediment

continuity equation;

2. obtain MASSPEED, a new linear morphodynamic acceleration technique, in which both mass conti-

nuity equations for water and sediment are accelerated by the same quantity;

3. set the basis for the derivation of a criterion for the a priori determination of the highest acceleration

factor. It turned out that the MASSPEED can be successfully applied on a wider range of flow and

sediment transport conditions as compared with the classical MORFAC approach;

Building on the knowledge obtained from the linear analysis, we derived a practical and implementable

criterion for the determination of the maximum acceleration factor for both techniques. The accuracy of
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the numerical solution can be determined by the user through the choice of a small tolerance value. This

quantifies the extension of the range of validity under which the bed level can be linearly accelerated. The

new criterion was implemented within an existing code following an adaptive concept in a similar manner as

the CFL stability condition. Thanks to this adaptive procedure, the maximum accelerating factor is chosen

at each time step according to the actual flow and sediment transport conditions. The numerical solution of

the long term evolution of a sediment hump demonstrated that the application of the MASSPEED approach

results in larger speed-up and considerable reduction of the computational time. It is also worth remarking

the most important limitations of the proposed approach. The results presented are based on a few, strategic

model simulations of the simple case of the one-dimensional propagation of a sediment hump under almost

constant flow conditions. Therefore, they must be cautiously used when non-uniform morphology and time

varying nonlinear forcing which may include tides, flood waves, etc. comes to modelling. It is likely that, in

these cases, the maximum acceleration factor must be considerably decreased. In particular, we found that

the higher the Fr is, the smaller will be the acceleration; furthermore, it is likely that the more unsteady

the flow is, the smaller will be the possible acceleration. Bearing in mind these limitations, the theoretical

background presented in this provides a robust basis for further exploring new morphological accelerators and

extending the limit of applicability of the MASSPEED approach. Moreover, following a similar approach,

the application of the MASSPEED approach can be extended to future trends, including: unsteady flow

conditions, 2D (planar) morphological models, suspended transport and the de Saint Venant-Exner-Hirano

model for non-uniform sediment deposition.
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Appendix A. Analytical study of the the bottom evolution

For Fr � 1 and ψ � 1, the governing system (1) is well approximated by the decoupled form (13).

From a mathematical point of view, Eq. (13) implies that the decoupling is possible when the conservative

variable z coincides with one of the three characteristic variables of the morphodynamic problem. A worthy

example to better understand this feature is the linearised problem proposed in [18] and considered in §6.1.
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To verify the validity of the decoupled formulation, the contribution of each eigenvalue (and the corre-

sponding eigenvector) to the bed evolution is analysed, both in terms of bed forms celerity and amplitude.

The prototype problem [18] is governed by the linearized original system of Eqs. (44)-(45) (here repro-

duced for readability),

∂W

∂t
+ AL

∂W

∂x
= 0 with: AL = A(WL) =


0 1 0

c2L − u2L 2uL c2L

−uL ψL ψL 0

 , (A.1)

where subscript L refers to the unperturbed state used to linearise the problem. Therefore, given the vector

of unperturbed conservative variables WL = [hL, qL, zL]
T , uL = qL/hL is the flow velocity; cL =

√
g hL is the

unperturbed celerity; while ψL is the uniform sediment transport as defined in (6).

The initial condition of the problem is given by

W0(x) =


hL

qL

z0

 , (A.2)

where: z0(x) = zmax exp(−x2) with zmax = 1.0−5 m, hL = 1 m, qL =
√
h3L g Fr

2
L, FrL = 0.7 and ψL = 0.01.

Finally, a propagation time tp = 15 s is assumed.

The linearized system (A.1) can be analytically solved by adopting the characteristic method [28] and

using the analytical eigenvalues and eigenvectors of Appendix B (with Mcw = Mq = Mcs = 1). Thus, the

conservative variables W (x) can be projected on the characteristic space multiplying them by the inverse

of the matrix of the right eigenvectors of AL,

U(x) = LLW (x) , (A.3)

with U(x) the vector of the characteristic variables and LL = R−1L the inverse of the matrix of the right

eigenvectors computed for the unperturbed state. Therefore, the initial conditions in terms of characteristic

variables are U0(x) = LLW0(x).

Each characteristic variable U (j) satisfy a linear advection equation with a celerity given by the corre-

sponding constant eigenvalue, λLj , of AL, i.e.,

∂U (j)

∂t
+ λLj

∂U (j)

∂x
= 0 for j = 1, 2, 3 . (A.4)

The corresponding solution in terms of U , for a given x and t is

U (j)(x, t) = U
(j)
0 (x− λLj t) for j = 1, 2, 3 . (A.5)

The evolved conservative variables W (x, t) can be found by multiplying U(x, t) by the matrix of the right

eigenvectors RL,

W (x, t) = RLU(x, t). (A.6)
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Focusing the attention on the bottom evolution, and indicating with r
(3)
j the third component of the j-th

eigenvector of AL, the third equation of the system (A.6) can be written as

z(x, t) =

3∑
j=1

r
(3)
j U (j)(x, t) =

3∑
j=1

ζj(x, t) , (A.7)

where ζj(x, t) = r
(3)
j U (j)(x, t) represents the contribution of each component of the characteristic variables

to the bottom evolution.

Numbering the eigenvalues as defined in §2.3 and computing the eigenvectors as in Eq. (B.6), Fig. A.12a

shows the comparison of the three terms ζj(x, t). The figure shows that the only meaningful contributio to

the bed evolution is given by ζ3(x, t) = r
(3)
3 U (3)(x, t) that implies ζ3(x, t) ≈ z(x, t). Furthermore, because

the time evolution of U (3)(x, t) is governed by the linear advection equation (A.5), the bed form migration

celerity is λL3 = λb, as stated by Eq. (12).

Appling again the characteristic method [28] to the linearized MORFAC and MASSPEED systems (see,

(45) of §6.1), accelerated dSVE problems can be solved. According to (A.5) and (A.7), the bottom evolution

is properly accelerated if the characteristic variable ζ3 ≈ z is not altered by the acceleration, while the

corresponding eigenvalues λL3 increase proportionally to the acceleration itself. For example, if accelerations

of MF and MS are applied, the bed evolution is well represented if, at the scaled propagation times tMFp = tp/MF

and tMSp = tp/MS, the accelerated bottom elevations can be expressed as

ζMF3 (x, tMFp ) ≈ ζMS3 (x, tMSp ) ≈ ζ3(x, tp) ≈ z(x, tp), (A.8)

with the accelerated eigenvalues
λMF3
MF
≈ λMS3

MS
≈ λL3 . (A.9)

For this linearised example with MF = MS = 5 and tMFp = tMSp = 3 s, Eq. (A.8) is verified, as shown in

Fig. A.12b (MORFAC system) and Fig. A.12c (MASSPEED system). Indeed, according to Eq. (A.3) and

(A.7), the evolved bottom function is related to both r
(3)
3 and l

(3)
3 , so that any acceleration strategy must

not alter these two quantities. The component r(3)3 of the three linear systems, from Eqs. (6) and (B.6) can

be written as

r
(3)
3 = ψ

Mcs

Mcw

(
1− u Mcw

λ3

)
, (A.10)

which becomes

r
(3)
3 |OS = ψ

(
1− u

λL3

)
, for the original system, (A.11)

r
(3)
3 |MF = ψ MF

(
1− u

λMF3

)
, for the MORFAC system, (A.12)

r
(3)
3 |MS = ψ

(
1− u MS

λMS3

)
, for the MASSPEED system. (A.13)
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Figure A.12: The contributions of the three characteristic variables ζj to the bottom topography (FrL = 0.7; ψL = 0.01). a)

solution of the linearized original system at tp; b) ζMFj solution of the linearized MORFAC system with MF = 5 at tp/MF; c) ζMSj
solution of the linearized MASSPEED system with MS = 5 at tp/MS.
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For the MASSPEED approach, looking at Eqs. (A.11) and (A.13), it is trivial to see that, if condition

(A.9) is verified and then r
(3)
3 |MS ≈ r

(3)
3 |OS , the acceleration technique does not alter the aplitude of the

bed form. Conversely, for the MORFAC approach, looking at Eqs. (A.11) and (A.12), condition (A.9) is

necessary but not sufficient to have r
(3)
3 |MF ≈ r

(3)
3 |OS . Due to the lack of acceleration of the hydrodynamic

continuity equation, MORFAC approximate r
(3)
3 well only if MF ≈ 1.

We can conclude that an exact linear scaling of the third eigenvalue is crucial to reproduce the propagation

time of a bottom hump well, but also to preserve the correct profile of the riverbed. As discussed in §4, the

MASSPEED extends the range of linear scaling of λMS3 /MS with respect to λMF3 /MF of the MORFAC approach.

This general result is confirmed also by Fig. A.13: it shows, for 0 < FrL < 0.95, the comparison between

the third eigenvalue and the corresponding component of R and L. According to Fig. A.13a, assuming as

reference the original system, the MASSPEED gives a better approximation of the third eigenvalue, specially

for Fr > 0.6 (for a more extended analysis of the effects of the parameter changes on the λ3 eigenvalue, see

§5). As a consequence, with respect to the classical MORFAC approach, the MASSPEED leads also to a

much better approximation of r(3)3 (Fig. A.13b) and l
(3)
3 (Fig. A.13c). Thus, the improvement obtained by

using the MASSPEED approach with respect to the MORFAC approach is clear.

Appendix B. Analytical eigenvalues and eigenvectors of the general governing system

The analysis presented in this work is based on the eigenvalues and eigenvectors of different governing

systems, e.g. the original system, Eq. (4), or the accelerated system, Eq. (15). Therefore, the analytical

closed expressions of the eigenvalues and eigenvectors are useful.

In this appendix we give the explicit formulations of such eigenvalues and eigenvectors for the following

very general system:
∂W

∂t
+ MA∂W

∂x
= 0 , (B.1)

where

W =


h

q

z

 , A(W ) =


0 1 0

c2 − u2 2u c2

ξ ∂qs∂h ξ ∂qs∂q 0

 , M =


Mcw 0 0

0 Mq 0

0 0 Mcs

 . (B.2)

The characteristic polynomial of the system is obtained by evaluating|MA(W )− λI| = 0, i.e..

λ3 − 2 Mq uλ
2 + Mq

(
Mcw Fr2 − Mq − Mcs ξ

∂qs
∂q

)
u2

Fr2
λ− McsMcwMq

u2

Fr2
ξ
∂qs
∂h

= 0 , (B.3)

and the analytical solutions of the characteristic polynomial (B.3) can be computed by using the Cardano
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formulas [1] leading to
λ1
c

=
2

3
Mq Fr−

2

3

√
k2 cos

(
φ

3
− π

3

)
,

λ2
c

=
2

3
Mq Fr +

2

3

√
k2 cos

(
φ

3

)
,

λ3
c

=
2

3
Mq Fr−

2

3

√
k2 cos

(
φ

3
+
π

3

)
,

(B.4)

where:

φ = arccos

(
k1√
4 k2

3

)
,

k1 = 2 M2q Fr

(
8 Mq Fr

2 + 9 Mcs ξ
∂qs
∂q

+ 9 Mcw
(
1− Fr2

))
+ 27 Mcw Mq Mcs ξ

∂qs
∂h

,

k2 = 4 M2q Fr
2 + 3 Mq Mcs ξ

∂qs
∂q

+ 3 Mcw Mq
(
1− Fr2

)
.

(B.5)

Given the eigenvalue λi, the associated right eigenvector ri can be computed by solving the linear system

MA ri = λi ri. Therefore, the matrix R of the right eigenvectors can be expressed as a function of the

eigenvalues, the result being

R = [r1, r2, r3] , with: ri =

[
1,

λi
Mcw

, ξ
Mcs

Mcw

(
Mcw

λi

∂qs
∂h

+
∂qs
∂q

)]T
. (B.6)

For a given sediment transport formula that allows evaluating the qs derivatives, eigenvalues and eigen-

vectors can be computed by substituting in Eqs. (B.4), (B.5) and (B.6), respectively: (Mcw = Mq = Mcs = 1)

for the original system; (Mcw = Mq = 1, Mcs = MF) for the MORFAC system; and (Mq = 1, Mcw = Mcs = MS)

for the MASSPEED system.
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