
EBioMedicine 59 (2020) 102943

Contents lists available at ScienceDirect

EBioMedicine

journal homepage: www.elsevier.com/locate/ebiom
Review
Cancer metabolism and mitochondria: Finding novel mechanisms to fight
tumours
Sonia Missiroli1, Mariasole Perrone1, Ilaria Genovese, Paolo Pinton, Carlotta Giorgi*
Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
A R T I C L E I N F O

Article History:
Received 3 June 2020
Revised 22 July 2020
Accepted 22 July 2020
Available online xxx
Abbreviations: 2-DG, 2-deoxyglucose; 18F-FDG, 2-[
a-KG, alpha-ketoglutarate; a-KGDH, alpha-ketogluta
advanced glycation products; AML, acute myeloid leu
protein kinase; ASS1, argininosuccinate synthase 1; A
BAP1, BRCA1-associated protein 1; Ca2+, calcium ion; C
hydroxyglutarate; DCA, dichloroacetate; EGFR, epider
EMT, epithelial-to-mesenchymal transition; ER, endopla
transport chain; FAD, flavin adenine dinucleotide; FH, fu
minase; HIF-1, hypoxia-inducible factor-1; HSP90, heat
trate dehydrogenase; IP3R3, inositol 1,4,5-trisphosph
domain-containing demethylases; KEAP1, kelch-like EC
lactate dehydrogenase A; LOF, loss-of-function; MAMs, m
branes; MCU, mitochondrial calcium uniporter; MCUR1
1; MEF2, myocyte enhancer factor 2; MICU1, mitochon
mitochondrial permeability transition pore; MPT, mitoc
tion; mROS, mitochondrial ROS; mtDNA, mitochondrial
get of rapamycin; NADPH, nicotinamide adenine din
nuclear factor kappa-light-chain-enhancer of activated
(erythroid-derived 2) factor 2; NSAIDs, nonsteroidal a
oxygen consumption rate; OXPHOS, oxidative phospho
PDC, pyruvate dehydrogenase complex; PDH, pyruvate
vate dehydrogenase kinase; PDT, photodynamic thera
PET, positron emission tomography; PI3K, phosphatidy
myelocytic leukaemia protein; PTEN, phosphatase and te
tein tyrosine kinase 2 beta; ROS, reactive oxyg
dehydrogenase; TCA, tricarboxylic acid; TFBM2, mitocho
TRAP-1, TNF receptor associated protein; VK3, vitamin K
* Correspondence to: Carlotta Giorgi, Department of M

Ferrara, Italy.
E-mail address: grgclt@unife.it (C. Giorgi).

1 Both the authors contributed equally to this work

https://doi.org/10.1016/j.ebiom.2020.102943
2352-3964/© 2020 The Authors. Published by Elsevier B.
A B S T R A C T

Mitochondria are dynamic organelles that have essential metabolic activity and are regarded as signal-
ling hubs with biosynthetic, bioenergetics and signalling functions that orchestrate key biological path-
ways. However, mitochondria can influence all processes linked to oncogenesis, starting from
malignant transformation to metastatic dissemination. In this review, we describe how alterations in
the mitochondrial metabolic status contribute to the acquisition of typical malignant traits, discussing
the most recent discoveries and the many unanswered questions. We also highlight that expanding
our understanding of mitochondrial regulation and function mechanisms in the context of cancer cell
metabolism could be an important task in biomedical research, thus offering the possibility of targeting
mitochondria for the treatment of cancer.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

Cancer is a multifaceted disease in which several alterations occur
at the genomic, epigenomic, transcriptomic, proteomic and/or meta-
bolic levels.

In 1924, Otto Warburg first described that cancer cells exhibit an
altered metabolism, metabolizing glucose anaerobically, even in the
presence of oxygen, with an associated increase in lactate production,
for survival and growth [1]. Today, altered metabolism is considered
a main hallmark of tumorigenesis, as it can regulate important pro-
cesses that are associated with proliferation, migration and invasion.
Metabolic profile remodelling is fundamental for the survival of
tumour cells in a hostile environment with limited nutrients, low
oxygen levels and immune surveillance and for supporting acceler-
ated cell proliferation and enhancing other biological functions of
tumour cells. Despite that the Warburg effect provides the rationale
for a major clinical modality used for detecting cancer cells, positron
emission tomography (PET), which uses 2-[18F]fluoro-2-deoxy-d-glu-
cose (18F-FDG) as a tracer, a single metabolic programme is clearly
not sufficient to completely define the altered metabolism in
tumours. Tumour cells require not only energy to sustain their repli-
cation but also neosynthesized macromolecules to improve their fit-
ness and maintain the redox balance. It has been hypothesized that
tumours not only exhibit glucose-dependent metabolism but also
take advantage of alternative oxidizable substrates, such as gluta-
mine, serine and fatty acids (which act as anaplerotic sources for tri-
carboxylic acid (TCA) cycle intermediates). Furthermore, there is
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increasing evidence that cells in the tumour microenvironment can
affect cancer cell behaviour, providing energy substrates and thus
contributing to the metabolic demand of cancer cells [2]. Consistent
with this view, functional mitochondria are essential for tumour
growth [3, 4] mostly due to their biosynthetic role rather than their
proenergetic features [5]. To fulfil the metabolic demand of cancer
cells, mitochondria act at multiple levels by i) altering the production
of ATP and NADPH (bioenergetics), ii) converting the diverse
nutrients available into fundamental building blocks required for cell
growth (biosynthesis) and iii) continuously communicating with the
rest of the cell by receiving anterograde signals and transmitting ret-
rograde signals [6]. Therefore, beyond their energetic role, mitochon-
dria provide cancer cells with a platform that controls the production
and release of reactive oxygen species (ROS), oncoproteins and onco-
metabolites, modulates calcium (Ca2+) homeostasis and autophagic
processes; executes cell death; and influences metabolism via both
cancer cell-intrinsic and cancer cell-extrinsic mechanisms [7] (Fig. 1).
From this perspective, we herein want to highlight recent develop-
ments targeting the features of altered mitochondria in cancer cells
subjected to a range of current or future treatments.
2. Mitochondria-dependent regulation of malignant energetic
status

Mitochondria can influence malignant transformation and tumour
progression, increasing the plasticity of cancer cells and governing
several mechanisms to address tough environmental conditions.

2.1. Regulation of mitochondrial ROS in cancer metabolism

Mitochondria are the major source of intracellular ROS, as approx-
imately 1�2% of molecular oxygen (O2) used in oxidative phosphory-
lation (OXPHOS) can be converted to anion superoxide (O2

�).
Additionally, other mitochondrial enzymes, such as pyruvate dehy-
drogenase (PDH), a-ketoglutarate-dehydrogenase (a-KGDH), acyl-
CoA dehydrogenase and glycerol-3-phosphate dehydrogenase, are
involved in ROS generation [8]. In normal cells, the levels of mito-
chondrial ROS (mROS) are carefully regulated and play a role in sev-
eral cellular processes, including differentiation, autophagy, and
metabolic adaption [8, 9]. Oncogene activation, tumour suppressor
Fig. 1. Overview of the central role of mitochondria in cell metabolism. Mitochondria,
powerhouses of the cell, are regarded as signalling organelles that receive signals from
the cytosol and coordinate responses to determinate the cell’s fate (see text for further
details). "Created with BioRender.com."
loss, cancer-inducing mutations in TCA cycle enzymes and hypoxia
lead to the production of abnormal mROS levels that, as retrograde
signals, sustain cancer cells [10]. mROS influence all steps of oncogen-
esis from tumour initiation to proliferation and metastasis by induc-
ing the accumulation of nuclear or mitochondrial DNA (mtDNA)
mutations and by directly affecting multiple biological processes,
such as cell proliferation, apoptosis resistance and metabolic reprog-
ramming [8]. Furthermore, mROS can activate different potentially
oncogenic signalling pathways, such as the epidermal growth factor
receptor (EGFR) signalling pathway [11] or the Akt/NF-kB mitochon-
drial transcription factor B2 (TFBM2)-dependent signalling pathway
[12], known to be correlated with cancer proliferation. mROS can
trigger different signal transduction cascades associated with meta-
static dissemination [13, 14] including protein tyrosine kinase 2 beta
(PTK2B) and Src signalling [15, 16]. Conversely, several studies dem-
onstrated that oxidative stress limits metastatic dissemination in
melanoma and lung cancer [17�19].

Tumour cells express high levels of antioxidant proteins to pre-
vent ROS accumulation and possibly drive cancer cells toward a pro-
liferative state, avoiding ROS-driven mitochondrial permeability
transition (MPT)-regulated cell death (Fig. 2). A good and well-
defined balance between mROS generation and ROS scavenging
allows cancer cells to remain in the tumorigenic range of ROS levels.
In this respect, nuclear factor (erythroid-derived 2) factor 2 (Nrf2) is a
transcriptional factor known to be the master regulator of genes that
mitigate oxidative stress by binding to antioxidant response elements
in gene promoters. mROS exposure induces the prompt activation of
Nrf2 through degradation of its allosteric inhibitor, kelch-like ECH-
associated protein 1 (KEAP1). Although Nrf2 was originally deemed a
tumour suppressor, recent findings have revealed its protumoral
function that not only confers oxidative stress resistance but also
controls ROS production via NADPH oxidase [20] and directly acti-
vates cancer-associated metabolic pathways [21�23]. Therefore, con-
stitutive stabilization and activation of Nrf2 have been associated
with poor prognosis in several types of cancer [24].

Hypoxia-mediated mROS generation results in hypoxia-inducible
factor-1 (HIF-1) activation, which in turn leads to a metabolic shift
from OXPHOS to glycolysis by increasing the expression of glycolytic
enzymes to facilitate tumorigenesis and metastasis [25]. However,
the association between HIF-1 and mROS appears quite complex, as
mROS overproduction stimulates HIF-1, but glycolytic programme
activation alleviates oxidative stress in a compensatory manner. Con-
sistent with this view, in several types of cancer, HIF-1 decreases
mROS production, promotes tumour growth [26] and facilitates the
survival of metastatic cells [27�29].

Altogether, these considerations indicate that the functional role of
mROS may vary depending on the type and stage of cancer but prefer-
entially suggest that mROS activate different signalling pathways
towards protumoral metabolic reprogramming. Thus, targeting mROS
and antioxidant systems could be beneficial as anticancer therapy.

2.2. Deregulation of mitochondrial metabolism generates tumour-
related proteins and oncometabolites used for cancer progression

Mitochondrial alterations are characterized by the accumulation
of metabolites due to dysfunctional catabolic and anabolic processes.
These can be signatures of certain pathological stages that are also
involved in signalling and disease phenotype establishment [30].
Deregulated mitochondrial metabolism can originate from not only
somatic mtDNA mutations but also defects in nuclear-encoded mito-
chondrial enzymes. Specifically, the mitochondrial enzymes whose
mutations are considered protumorigenic in many cancer types are
either part of the OXPHOS or TCA cycle machinery but are also
involved in other biosynthesis pathways.

Located in the inner mitochondrial membrane, succinate dehy-
drogenase (SDH), also known as respiratory complex II, is involved in



Fig. 2. Crosstalk between redox homeostasis and metabolism in cancer cells. Finely tuned reactive oxygen species (ROS) generation and scavenging are two aspects fundamental to
cancer cells. Cancer cells are characterized by high levels of ROS that can impact tumour initiation, proliferation, survival and metastasis. To compensate for the higher rate of mito-
chondrial ROS (mROS) production, tumour cells express high levels of antioxidants to avoid ROS-driven mitochondrial permeability transition (MPT)-regulated cell death. Nrf2:
nuclear respiratory factor 2, HIF-1: hypoxia-inducible factor-1. "Created with BioRender.com."
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the conversion of succinate into fumarate. In the cancer setting, SDH
is generally hit by a loss-of-function (LOF) mutation that leads to the
accumulation of succinate, primarily in the mitochondria and then
leaks into the cytoplasm. In contrast, recent findings have highlighted
the overexpression of this enzyme in prostate cancer (PC) patients;
indeed the oxidation of succinate into fumarate can sustain impaired
mitochondrial metabolism through OXPHOS rewiring, supporting the
TCA cycle and promoting ATP production [31]. However, the mecha-
nism underlying this process remains elusive. LOF mutation in this
enzyme has been associated with gastrointestinal stromal tumors,
pheochromocytoma, paraganglioma, neuroblastoma, breast cancer,
renal carcinoma and thyroid tumours [32]. The excess succinate in
turn inhibits prolyl hydroxylase (PHD), an oxygen-dependent hydrox-
ylase able to regulate HIF-1 expression depending on oxygen homeo-
stasis, consequentially resulting in the stabilization and activation of
HIF-1a under normoxic conditions [33]. Thus, defects in this enzyme
create a pro-oncogenic pseudohypoxic state. The accumulation of suc-
cinate has also been linked to changes in the epigenetic regulation of
gene expression through the inhibition of a-ketoglutarate (a-KG)-
dependent histone and DNA demethylases [34, 35], thus mastering
gene expression rewiring to promote cancer cell proliferation.

Fumarate hydratase (FH) is an enzyme of the TCA cycle and con-
verts fumarate to malate; it is nuclear-encoded and localized at mito-
chondrial matrix. The FH LOF mutation lowers the respiratory rate due
to loss of TCA cycle function and increases lactate production, thus
supporting the glycolytic metabolic switch. FH has been found to be
mutated mainly in hereditary leiomyomatosis renal cell carcinoma
[32]. Similar to SDH, the oncogenic activity of FH relies mainly on the
accumulation of fumarate, which, like succinate, induces the stabiliza-
tion of HIF-1a through the inhibition of PHD [36], inhibits a-KG-
dependent histone and DNA methylation, and regulates epigenetic
modifications [35]. Fumarate can also bind covalently to cysteine resi-
dues of proteins in a reaction called succination, modulating their
function. It has been reported that succination occurs preferentially on
proteins involved in redox signalling; indeed, KEAP1 is succinated,
thus abrogating Nrf2 inhibition and promoting proliferative gene
expression [37, 38]. Moreover, PHD is not the only target of fumarate
accumulation, as recent research demonstrates that in FH�/� models,
the accumulation of fumarate correlates with the inhibition of miR200
and the consequential activation of epithelial-to-mesenchymal transi-
tion (EMT)-related genes [39]. Thus, both oncometabolites can com-
petitively inhibit a-KG�dependent dioxygenases as JmjC domain-
containing demethylases (KDMs), changing the DNA methylation state
of histones and CpG islands near gene promoters and favouring the
transcription of proliferative genes through the PHD-HIF1 axis [40] .

SDH and FH could be considered tumour suppressors since the
accumulation of fumarate and succinate promotes cell proliferation,
generally pointing to the same cell targets. Nevertheless, these



Fig. 3. Mitochondrial enzyme mutations and cancer metabolism. Mutations in enzymes of the TCA cycle or other metabolic pathways as well as components of the electron trans-
port chain alter the metabolome in response to altered mitochondrial metabolism. Mutations in SDH can lead to two different outcomes. The loss of SDH causes succinate accumula-
tion that inhibits PHD, stabilizes HIF1, and inhibits a-KG-dependent histone and DNA demethylases, leading to the activation of proliferative pathways. On the other hand, SDH
overexpression can sustain mitochondrial cancer metabolism due to the conversion of succinate into fumarate, which sustains the TCA cycle. Mutations in fumarate hydratase,
which increase fumarate concentrations, lead to the inhibition of PHD and histone demethylases, promoting proliferation. Fumarate is also involved in a cysteine post-transcrip-
tional modification, called succination. Isocitrate dehydrogenase (IDH) mutations in cancer help the generation of a neomorphic enzyme that converts isocitrate into 2-hydroxyglu-
tarate (2-HG), a metabolite that exerts its oncogenic effect on PHD and epigenetic regulation. Epigenetic silencing of the urea cycle enzyme argininosuccinate synthase 1 (ASS1)
leads to the accumulation of aspartate, which elicits tumorigenesis. SDH: succinate dehydrogenase, PHD: prolyl hydroxylase, HIF-1: hypoxia-inducible factor-1, IDH: isocitrate
dehydrogenase, D-2-HG: D-2-hydroxyglutarate, ASS1: argininosuccinate synthase. "Created with BioRender.com."
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oncometabolites are mutated and exert specific functions in different
cancer types, for example protein succination by fumarate or SDH-
mediated OXPHOS rewiring in PC patients [36] (Fig. 3).

Other enzymes in the TCA cycle also display mutations that support
tumour proliferation and survival. Of the three isoforms of isocitrate
dehydrogenase (IDH) present in mammals, IDH1, IDH2, and IDH3, the
first two are homodimeric NADP+-dependent enzymes, while IDH3 is a
heterodimeric NAD+-dependent enzyme. If defects in SDH and FH are
characterized by LOF mutations, IDH1 and IDH2 exhibit mono-allelic
gain-of-function mutations that result in neomorphic enzyme activity,
where a-KG is converted to its R-enantiomer, D-2-hydroxyglutarate
(D-2-HG), instead of L-2-hydroxyglutarate [41]. D-2-HG accumulation
has been linked to colon cancer, gliomas, acute myeloid leukemia
(AML) and osteosarcoma [32] and to DNA hypermethylation and broad
epigenetic alterations associated with proliferative pathway activation.
In addition, D-2-HG inhibits the enzymatic activity of complex V and
alters gene expression in tumour cells [42]. Similar to fumarate and
succinate, D-2-HG also has an effect on PHD, a-KG-dependent dioxyge-
nases, and histone demethylases [32], mastering the downregulation of
genes involved in the suppression of metastasis and promoting EMT
and invasiveness [43]. However, the effect of 2-HG on HIF-1 and PHD is
controversial. Some studies demonstrate that 2-HG inhibits HIF-1
through the activation of PHD, while others state that 2-HG functions
oppositely. This might be linked to a tumour-dependent or cell-depen-
dent role of IDHs and needs further investigations [32].

In addition to mitochondrial oncometabolites, increasing evidence
supports alteration in cytosolic enzymes, which are strictly intertwined
with mitochondrial metabolism, that supply anabolic substrates for
mitochondrial metabolism. One example is the argininosuccinate syn-
thase (ASS1).

ASS1 participates in the urea cycle, and its defects promote a
decrease in argininosuccinate production, leading to the accumula-
tion of aspartate and the subsequent increase in cancer cell prolifera-
tion [44]. Amino acids sustain cell growth and provide for the
massive consumption of glucose.

Given the latest evidence, it is possible to hypothesize that mito-
chondria, through these signalling molecules named oncometabo-
lites, can modulate the metabolic flux either within itself or in the
cytoplasm through the direct regulation of gene expression or other
metabolic pathways. This signalling function of mitochondria is
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strictly related to the modulation of cancer cell metabolism, which
supports many cancer-related functions, such as cell proliferation,
migration and resistance to death. Thus, the characterization of these
tumour-related proteins and their products, the oncometabolites,
could represent an intriguing option for novel cancer therapy.

2.3. Mitochondrial calcium: a critical hub for cancer cell metabolism?

Mitochondrial Ca2+ signalling is intimately linked to cell growth
and metabolism and constitutes a prosurvival mechanism by activat-
ing multiple components of the TCA cycle (IDH, a�KGDH and PDH)
and thus feeding electron transport chain (ETC) and ATP production
[45, 46]. This signalling pathway also represents fundamental
machinery capable of initiating apoptosis through the opening of the
mitochondrial permeability transition pore (mPTP) and the release of
cytochrome c, thus representing a key program for cell fate decisions
[47, 48].

Mitochondria are strictly connected to endoplasmic reticulum
(ER, the main intracellular Ca2+ store) through specialized domains
called mitochondria-associated membranes (MAMs) (as reviewed in
[49, 50]). Several tumour suppressors, such as promyelocytic leukae-
mia protein (PML), phosphatase and tensin homologue (PTEN), p53
and BRCA1-associated protein 1 (BAP1), and oncogenes, such as AKT
and members of BCL-2 family, which reside at MAMs, are able to
modulate the ER-mitochondria Ca2+ connection and thus critically
regulate cell death [51�55] after exposure to some cancer therapeu-
tics that act, at least in part, by evoking ER Ca2+ discharge [56, 57].
Fig. 4. Crosstalk between Ca2+ homeostasis and metabolism in cancer cells. Mitochondrial C
vation or tumour suppressor loss modulates ER-mitochondrial Ca2+ transfer to allow escape
(MCU) complex is composed of the pore-forming subunit MCU (the channel that allows Ca2
located at the inner mitochondrial membrane (IMM); the mitochondrial calcium uptake (MIC
ulate the opening/closing of the complex. The MCU complex can exert both pro- and antineo
for further details). IMM: inner mitochondrial membrane, MICU: mitochondrial calcium upta
tase and tensin homologue, BAP1: BRCA1-associated protein 1, PML: promyelocytic leukae
reticulum ATPase, mPTP: mitochondrial permeability transition pore, ER: endoplasmic reticu
These observations support the general idea that reducing ER-mito-
chondria Ca2+transfer could help tumorigenic cells avoid apoptosis
and resist chemotherapy in specific types or stages of cancer (Fig. 4).

In this respect, reduced mitochondrial Ca2+ uptake is still able to
activate the TCA cycle, smoothing the production of reducing equiva-
lents that feed into the ETC and maintaining enough ATP for cellular
needs [58].

However, the few studies that have directly assessed the intrinsic
role of mitochondrial Ca2+ in the regulation of the cancer cell ener-
getic status have depicted a complex scenario that mainly involves
aberrant expression or function of the mitochondrial calcium uni-
porter (MCU) complex [59] (Fig. 4). Although the reduction in mito-
chondrial Ca2+ accumulation protects cancer cells from death
induced by some Ca2+-dependent chemotherapeutic agents [60, 61],
the MCU-dependent mitochondrial Ca2+elevation has been associated
with invasion, metastasis and poor prognosis which occur by stimu-
lating TCA cycle activity and increasing the NADH/NAD+ ratio [14,
62]. Consistent with this view, AMPK-mediated MCU activation per-
mits a rapid mitochondrial Ca2+ transient that boosts mitochondrial
respiration during mitosis and promotes cell cycle progression [63].
Moreover, downregulation of mitochondrial calcium uptake 1
(MICU1), known to negatively regulate MCU and function as a gate-
keeper of mitochondrial Ca2+ uptake, has been correlated with poor
prognosis in breast and hepatocellular carcinomas [14, 64] and AKT-
mediated MICU1 instability correlates with high Ca2+ levels, aberrant
mROS production and tumour progression [65]. Overall, these obser-
vations suggest that MCU complex activation permits Ca2+entry and
a2+can play a dual role in regulating the energetic status of cancer cells. Oncogene acti-
from apoptosis and resistance to chemotherapy. The mitochondrial calcium uniporter
+ accumulation into the mitochondrial matrix) and its regulators, EMRE and MCUb, all
U) family members (MICU1�3) are located in the intermembrane space (IMS) and reg-
plastic effects, leading to an altered energetic metabolic status in cancer cells (see text
ke, IMS: intermembrane space, OMM: outer mitochondrial membrane, PTEN: phospha-
mia protein; IP3Rs: inositol 1,4,5-trisphosphate receptors, SERCA: sarco-endoplasmic
lum, MAMs: mitochondria-associated membranes. "Created with BioRender.com."
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sustains the energetic status of cancer cells needed for their prolifera-
tion. However, cancerous cells can take advantage of inhibition
induced by MICU1 overexpression rather than activation of mito-
chondrial Ca2+ accumulation, mainly driving glycolysis for ATP pro-
duction [66]. The correlation between low MCU complex activity and
the switch to glycolytic metabolism is also evident in MCU�/� mice
that display a low oxygen consumption rate (OCR) and a high PDH
phosphorylation level, which correlate with an increased serum lac-
tate level [67]. Nonetheless, mitochondria respond to deprivation of
TCA cycle metabolites by increasing MICU1 levels, which in turn
alters mitochondrial Ca2+ and protects the cells from Ca2+overload
and death [68].

Taken together, these findings reveal that alterations in the orga-
nization and activity of the MCU complex could represent critical sce-
narios contributing to the remodelling of the metabolic profile and to
the aggressiveness of certain types of cancer (as elegantly reviewed
in [58]).

A recent factor that deserves attention is the tumour suppressor
BAP1, which has been shown to increase the amount of Ca2+ released
from the ER into the cytosol and mitochondria, promoting apoptosis
[54] and increasing aerobic glycolysis [69]. Although the exact mech-
anisms responsible for the distinctive metabolic signature of BAP1
mutations have not yet been identified, deregulation of intracellular
Ca2+ signalling could be a good candidate.

The correlation between mitochondrial matrix Ca2+ entry and bio-
energetics is also essential for regulation of the autophagic process, a
key event that characterizes different malignancies and their resis-
tance to anticancer therapies. Reduction in the mitochondrial Ca2+ con-
centration by genetic depletion of MCU or mitochondrial Ca2+

regulator 1 (MCUR1), a positive MCU cofactor that resides inside the
matrix, results in low ATP levels and activation of autophagy as an
alternative mode to counteract the bioenergetic crisis [70]. Accord-
ingly, by maintaining correct ER-mitochondria Ca2+ transfer, the
tumour suppressors PML and p53 are critical for the repression of
autophagy and thus for blunt cancer development [71, 72]. Cancer cells
in which PML or p53 was downregulated displayed low ATP produc-
tion, AMPK-dependent activation of autophagy, and enhanced resis-
tance to metabolic stress [71, 72]. Indeed, autophagy is also critical to
sustain mitochondrial metabolism and promote tumour growth in
KRAS-driven lung cancer [73, 74] and BRAF-driven malignancies [75].
Table 1
Summary of drugs discussed in the review and their mechanism of action.

Mitochondria function Drug Mechanism of action

Bioenergetic Metformin Inhibition complex I
2-DG and 2-FDG competitor for binding hexoki
CPI-613 pdh and kgdh inhibitor
BAY 87�2243 Inhibition complex I
IACS-010,759 Inhibition complex I
MitoTam Inhibition complex I
MitoVES Inhibition complex I and II
Lonidamine Inhibition complex II
Enasidenib and Ivosidenib mutant IDH inhibitors
DCA PDKs inhibitor
Gossypol LDHA inhibitor, NADH compe
diclofenac and lumiracoxib anti-glycolitic activity
VLX600 ETC inhibitor
gamitrinib inhibition HSP90 and TRAP-1
venetoclax andWEHI-539 reducing bioenergetic

Signalling chloroquine inhibition autophagy
Tioconazole blocking autophagy targeting
Verteporfin blocking autophagosome form
Vitamin K3 increasing generation of ROS
PDT mitochondrial Ca2+ transfer m
Mipsagargin (G-202) mitochondrial Ca2+ transfer m
mitoxantrone and pixantrone MCU complex inhibition

Biosynthesis GLS inhibitors reducing glutamine catabolism
Conversely, it has been proposed that cancer cells require basal
mitochondrial Ca2+ uptake for survival, and pharmacological inhibi-
tion of ER-mitochondria Ca2+transfer diminishes OXPHOS, thereby
inducing autophagy; however, this mechanism is insufficient to over-
come the energetic derangements [76]. Thus, lowering mitochondrial
Ca2+ levels might be conceived as a non-conventional strategy to
selectively eradicate cancer cells.

Taken together, these recent findings define the complex correla-
tion between ER-mitochondria Ca2+ fluxes and autophagy, suggesting
new molecular targets for the theorization of Ca2+-based anticancer
treatments.

3. Mitochondria as promising targets for cancer therapy

The rearrangement of different pathways in cancer cells inevitably
exposes some vulnerabilities that may be used in therapeutic strate-
gies. Nevertheless, tumour heterogeneity and the presence of com-
pensatory pathways limit the progress of such therapeutic
approaches. To date, numerous drugs have been proposed to attack
different functions of the mitochondrial metabolism (bioenergetics,
signalling and biosynthesis) for the treatment of cancer (Table 1).

Considering bioenergetics, metformin is able to inhibit complex I
of the ETC in mitochondria [77], which suppresses ATP production,
disturbs the NAD+/NADH ratio and diminishes oxygen consumption
[78, 79]. This induces AMPK activation due to the reduced TCA activ-
ity and the consequential strong energetic stress as well as inhibits
the mTOR pathway and induces autophagy [78, 79]. Cancer cells com-
pensate for these effects by various mechanisms, including increasing
glucose uptake and glycolysis and switching to glutamine utilization.
For this reason, a combination of the glycolytic inhibitor 2-deoxyglu-
cose (2-DG) with metformin was proposed for treating cancer. This
synergistic combination can significantly reduce the amount of ATP
stored and the activation of the proliferative signalling pathway,
decreasing the side effects of high-dose treatment with a single drug
[80, 81]. In fact, 2-DG has limited therapeutic power in different kinds
of cancer, but it can have a synergistic antitumour effect when com-
bined with chemo- or radiotherapy. Specifically, 2-DG, which is a glu-
cose analogue, competes with glucose to bind hexokinase, increases
oxidative stress, induces autophagy [82] and increases apoptosis,
thus reducing cancer cell growth [83]. However, its limited
Type of tumour tested Phase References

Breast, prostate, melanoma, ovary, lung clinical trials [77�79])
nase lung, prostate, ovary, breast clinical trials [82�84])

haematological cancers, pancreas clinical trials [94�97])
lung, prostate clinical trials [85]
AML, CLL clinical trials [86]
breast clinical trials [87]
breast preclinical [88]
lung clinical trials [89]
AML clinical trials [100]
lung, liver clinical trials [102]

titor breast, brain, prostate clinical trials [81]
melanoma preclinical [90]
colon clinical trials [92]

activity lung, prostate preclinical [93]
breast preclinical [91]
hepatocarcinoma clinical trials [105]

ATG4B colon preclinical [106]
ation pancreas clinical trials [107]

ovary clinical trials [110]
odulation lung, liver clinical trials [56]
odulation glioblastoma, liver clinical trials [111]

B-cell non-Hodgkin’s lymphoma clinical trials [112]
breast, Burkitt lymphoma clinical trials [115, 116]
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anticancer efficacy could be due to increased autophagy, which contin-
ues to sustain cancer cells. Hence, it is necessary to simultaneously tar-
get multiple mitochondrial pathways. Recently, it was demonstrated
that 2-fluoro-deoxyglucose (2-FDG) is a more potent glycolytic inhibi-
tor than 2-DG. However, emerging evidence indicates that the cytotox-
icity of these two analogues depends on tumour cell growth conditions
(anaerobic or aerobic) [84]. Interestingly, other new complex I inhibi-
tors, BAY 87�2243, IACS-010759 and mitochondrially targeted tamox-
ifen (MitoTam), have been demonstrated to induce cancer cell death
and to reduce cell proliferation [85�87]. Another drug modified to be
targeted to mitochondria is vitamin E succinate (MitoVES), which
inhibits complex I and, even more drastically, complex II [88], promot-
ing ROS generation and apoptosis of breast cancer cells [89]. Concern-
ing complex II inhibitors, lonidamine (LND; 1-(2,4-dichlorobenzyl)�
1H-indazole-3-carboxylic acid) alters the TCA cycle and glutamine
metabolism in melanoma cell lines and has been used in combination
with other chemotherapeutic agents to improve efficacy and overall
response to cancer therapy [90]. Recently, Brummer et al. demon-
strated that two nonsteroidal anti-inflammatory drugs (NSAIDs), diclo-
fenac and lumiracoxib, are able to sensitize human melanoma cells to
the RAF inhibitor vemurafenib by increasing its antiglycolytic effect
and preventing metabolic reprogramming toward OXPHOS [91]. A
similar study showed how the BcL2 and BcL-XL inhibitors venetoclax
and WEHI-539 combined with 2DG reduced the cellular bioenergetics
and abolished the clonogenic potential of breast cancer cells [92].
Another compound, VLX600, is an ETC inhibitor capable of impairing
mitochondrial bioenergetics and reducing tumour growth [93], espe-
cially in low-glucose conditions. In addition to the direct activity of
ETC inhibitors, several studies have demonstrated how reduced mito-
chondrial protein translation and stability could impact the mitochon-
drial bioenergetic capacity. In fact, Chae and colleagues demonstrated
that gamitrinib, engineered to accumulate in mitochondria, inhibited
HSP90 and TRAP-1 ATPase activity (chaperones responsible for ETC
protein stability), diminishing tumour cell growth [94]. Among the
numerous inhibitors of enzymes involved in mitochondrial metabo-
lism, CPI-613, a novel lipoic acid analogue, targets mitochondrial
metabolism in tumour cells. CPI-613 inhibits mitochondrial respiration
through PDH and a-KGDH inactivation, resulting in PDH hyperphos-
phorylation and AMPK activation [95, 96]. Promising results have been
obtained in a phase I study in patients with advanced haematological
malignancies [97] treated with CPI-613 alone and together with a high
dose of the chemotherapeutic drugs cytarabine and mitoxantrone
[98]. Moreover, CPI-613 in combination with chemotherapy [99] or
with chloroquine (CQ) [100] was able to reduce tumour progression.
Once again, these interesting data highlight the importance of target-
ing different pathways simultaneously.

Various mutant IDH inhibitors have been tested in clinical trials to
antagonize D-2HG, but only two of these, enasidenib (AG-221) and
ivosidenib (AG-120), have been approved for use in treating refrac-
tory AML [101]. Furthermore, phase I studies have focused on the
safety and tolerance of other mutant IDH inhibitors in different types
of cancer, such as glioma, cholangiocarcinoma, and chondrosarcoma.
In parallel, other strategies targeting two key enzymes in glucose
metabolism, the pyruvate dehydrogenase complex (PDC) and pyru-
vate dehydrogenase kinase (PDK), which are usually altered in carci-
nogenesis, are being explored [102]. Dichloroacetate (DCA), a PDK
inhibitor and thus a PDC activator, has been demonstrated to reduce
cancer cell proliferation. However, its clinical application is limited
by its nonspecific activity, low potency and high required doses
[103]. As such, DCA derivates have been developed to target the
pyruvate-binding pocket and improve the DCA toxicity profile.
Another potential antitumour target is lactate dehydrogenase A
(LDHA), which converts pyruvate to lactate and is overexpressed in
several types of cancer [104]. Different inhibitors have been devel-
oped based on different mechanisms of action, but only gossypol, a
natural phenol that competes with NADH, has been tested in clinical
trials [105]. However, its application is limited due to its interaction
with other cellular components involved in different biological activi-
ties, resulting in nonspecific toxicity.

Since mitochondria are a fundamental hub for cellular communi-
cation and signal transduction, targeting this function could clearly
be another promising anticancer strategy. In support of the idea that
autophagy plays an active role in drug resistance, substantial evi-
dence suggests that autophagy inhibitors improve chemotherapy
efficacy. For instance, CQ has a synergistic effect when combined
with sorafenib in treating hepatocellular carcinoma [106]. Addition-
ally, tioconazole, which suppresses autophagy by targeting ATG4B,
enhances the efficacy of doxorubicin in colorectal cancer patients
[107]. Verteporfin blocks autophagosome formation and sensitizes
pancreatic ductal adenocarcinoma to gemcitabine [108].

Several lines of evidence suggest that PI3K/Akt/mTOR-mediated
autophagy could be a promising target to enhance the chemosensitiv-
ity of tumour cells and avoid drug resistance [109]. Although many
inhibitors have been developed and are currently in clinical trials, they
have not displayed exciting results in patients because of their effects
on mitochondrial reprogramming in cell bioenergetics and trafficking
[110]. In line with this focus, although they undoubtedly affect multi-
ple aspects of oncogenesis, PI3K inhibitors are not discussed herein.

Mitochondrial ROS signalling is also considered a valuable target
since the imbalance between ROS production and ROS detoxification
constitutes the pivotal molecular route contributing to aberrant pro-
liferation and tumour cell survival in several types of cancer. Vitamin
K3 (VK3) has the potential to be developed as an antitumour agent
since it induces apoptosis by increasing the generation of ROS in
ovarian cancer cells [111]. However, many cancer cells benefit from
mROS generation through its effects on redox signalling; thus, refined
strategies that allow for the specific modulation of mROS must be
conceived. Today, several therapeutic approaches are used to modu-
late mitochondrial Ca2+ transfer by acting on ER Ca2+ release [58].
Among these, photodynamic therapy (PDT) and Mipsagargin (G-202)
inducing apoptosis by favouring ER Ca2+ depletion and mitochondrial
Ca2+ overload [56, 112]. More recently, new MCU complex inhibitors
have been developed, such as mitoxantrone, pixantrone,
DS16570511 and ruthenium complex Ru265 [113�115]. However,
their biological activities are not exclusively relay on MCU inhibition
and further studies may elucidate the role of mitochondrial Ca2+ and
the MCU complex in tumour progression.

As mentioned previously, glutamine is the major carbon source
that sustains the TCA cycle and its intermediates. Thus, targeting glu-
tamine catabolism could be an effective strategy to limit cancer cell
energy. The GLS inhibitors compound 968 and bis-2-(5-phenylaceta-
mido-1,2,4-thiadiazol-2-yl)ethyl sulfide retard cancer progression in
addition to reducing glutamine catabolism [116, 117].

Taken together, these considerations reveal the controversial and
multifaceted role of mitochondria in cancer cell metabolism due to
the variety of therapeutic targets and the ability of cells to adapt and
compensate.

4. Outstanding questions

Substantial evidence has been accumulated regarding how meta-
bolic activities support cancer biology and how altered mitochondrial
function is fundamental for tumour progression. Modifications in the
mitochondrial metabolic status influence multiple intracellular path-
ways and contribute to the acquisition of typical malignant traits. The
accumulation of oncometabolites deriving from mutated mitochon-
drial enzymes sustains cancer cells proliferation, so it is reasonable to
wonder if mitochondria, through oncometabolites, are able to modu-
late the metabolic flux.

As already mentioned, SDH plays a dual role in cancer cell mitochon-
drial metabolism. On the one hand, SDH loss of function generates succi-
nate accumulation, which supports cancer cell proliferation; on the other



8 S. Missiroli et al. / EBioMedicine 59 (2020) 102943
hand, SDH overexpression in PC patient-derived cells rewires their
OXPHOS in favor of succinate oxidation. What can bemore advantageous
for cancer cells? A rewired OXPHOS or the overproduction of succinate?

Therapeutic approaches currently used target just one mitochon-
drial pathway and are not always efficacious; thus, could targeting
more than one mitochondrial function, avoiding compensatory
mechanisms, be the right strategy for effective anticancer therapy?
For example, GGTi-2418 stabilizes inositol 1,4,5-trisphosphate recep-
tor 3 (IP3R3), increases Ca2+ signalling and sensitizes tumours to
PDT [57]. To date, there is no proof that GGTi-2418 has a direct
effect on cancer cell metabolism, but its use in combination with
other therapies that target different mitochondrial pathways could
be a promising approach for the treatment of several types of can-
cer. Importantly, defining how mitochondrial Ca2+ signalling could
influence the metabolic changes that characterize tumorigenesis
may constitute promising candidates for the development of new
anticancer drugs.

5. Conclusions

A complete understanding of the pathways allowing tumours to
take advantage of altered mitochondrial function to increase their
growth rate and invasiveness will be crucial to build an integrated
model of the hallmark metabolic features of cancer and to establish
effective therapeutic strategies.

Further investigations are required to shed light on all the factors
that influence the metabolic profile of cancer cells. Nevertheless,
understanding the mechanisms of mitochondrial regulation and
function in the metabolism of cancer cells could be used to better
define treatment strategies.
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PubMed and references from relevant articles using the search terms
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