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Abstract: The release of circulating tumor cells (CTCs) into vasculature is an early event in the
metastatic process. The analysis of CTCs in patients has recently received widespread attention
because of its clinical implications, particularly for precision medicine. Accumulated evidence
documents a large heterogeneity in CTCs across patients. Currently, the most accepted view is that
tumor cells with an intermediate phenotype between epithelial and mesenchymal have the highest
plasticity. Indeed, the existence of a meta-stable or partial epithelial–mesenchymal transition (EMT)
cell state, with both epithelial and mesenchymal features, can be easily reconciled with the concept of
a highly plastic stem-like state. A close connection between EMT and cancer stem cells (CSC) traits,
with enhanced metastatic competence and drug resistance, has also been described. Accordingly, a
subset of CTCs consisting of CSC, present a stemness profile, are able to survive chemotherapy, and
generate metastases after xenotransplantation in immunodeficient mice. In the present review, we
discuss the current evidence connecting CTCs, EMT, and stemness. An improved understanding
of the CTC/EMT/CSC connections may uncover novel therapeutic targets, irrespective of the
tumor type, since most cancers seem to harbor a pool of CSCs, and disclose important mechanisms
underlying tumorigenicity.
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1. Introduction

Despite recent medical advances, metastasis, tumor relapse, a lack of effective therapies, and drug
resistance remain the major causes of death for tumor patients [1–5]. Research on circulating tumor
cells (CTCs), which have been detected in the majority of epithelial cancers [6,7], is a dynamic field of
translational and basic research, with more than 270 clinical trials having evaluated CTC enumeration
as a biomarker [8]. Further, several studies on CTCs aimed to understand critical pathways that
mediate cancer dissemination, and may not be apparent in primary or metastatic tumors.

Cancer metastasis occurs when tumor cells dissociate from a primary tumor and migrate to
distant organs through the peripheral vasculature [1,9–12]. Cancer cells within the primary tumor lose
cell-cell adhesion and acquire features of invasiveness and motility due to epithelial-to-mesenchymal
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transition (EMT), leading to their intravasation and survival in blood or lymph vessels, and finally
their extravasation at distant sites; here they are subjected to mesenchymal-to-epithelial transition
(MET), and proliferate to establish metastatic lesions [12–14]. Whether the release of CTCs into the
circulation is a predetermined biological process still remains a debatable matter. Cancer cells can
enter circulation long before a tumor is diagnosed; the majority of cells die and only a minor fraction
contains viable metastatic precursors that infiltrate organs and survive as disseminated seeds for
eventual relapse [1,15]. Therefore, metastatic colonization might be a highly inefficient process, but
once it is established, current treatments generally fail to provide persistent responses [12].

Tumors are thought to arise from mutant normal stem cells in their native niches, or from the
progeny of cells that retain their tumor-initiating capacity [16,17]. Once at distant sites, these cells
survive and proliferate through interactions with specialized niches [18]. Data from a number of
studies demonstrate that CTCs with stemness properties exist and represent the most aggressive tumor
cells in circulation [19,20].

In this review, we will discuss current concepts and will address questions relative to the
heterogeneity of CTCs and the presence of cancer stem cells circulating in the bloodstream (See
Table 1).

2. Heterogeneity of CTCs

CTCs are very rare cancer cells released from a primary tumor. A lot of evidence documents
that CTCs represent a heterogeneous pool of tumor cells [8], with highly variable, but generally short,
survival times; nevertheless, the pool of these cells in the bloodstream can be continuously replenished
by the release of replicating tumor cells in metastatic foci, and thus relates to cancer dormancy [21,22].
To date, relatively little is known regarding the number of CTCs in cancers, their molecular and
biological heterogeneity, and their functionalities [9]. Although heterogeneity in CTCs has not yet
been fully defined, a fraction of these cells are thought to be viable metastatic precursors capable of
initiating a clonal metastatic lesion [9]. A subset of CTCs is represented by inactive non-cycling cells,
termed dormant cancer cells [23], which act as latent tumor-initiating seeds and eventually reawaken,
and might not respond to chemotherapeutics used in clinics [8,12]. By uncovering phenotypes of CTCs,
CTC heterogeneity would be dissected in relation to metastatic competence [19,24].

Recently, clusters of CTCs, consisting of 2–50 cells, have been detected in the vasculature of
patients with cancers of different origins, which arise from oligoclonal tumor cell groupings, including
breast, prostate, pancreatic, glioblastoma, head and neck cancers [24–33]. Cells within micro-clusters
might be protected either from anoikis, associated with the loss of cell-cell adhesion and attachment to
the basement membrane, or shear stresses in the circulation [25–27]. Both the structural deformability
of aggregated cells and the presence of vascular shunts may allow CTC-clusters to circulate, while
inducing a rapid clearance within distal tissues [25]. Although rare, CTC-clusters present a dramatically
enhanced metastatic potential, as confirmed in mouse models, and by the adverse prognosis in
patients with high numbers of CTC-clusters [12,30,34]. Additionally, neutrophils directly interact
with CTCs, defining CTC–neutrophil clusters, and support cell cycle progression in circulation.
This interaction in turn leads to more efficient metastasis generation and represents key vulnerabilities
of the metastatic process for drug targeting in breast cancer [35]. Mesenchymal transcripts were found
to be expressed in tumor cells from CTC-clusters in a human breast tumor, conferring both migratory
and stem-like properties [32]. A recent study has suggested that the coexpression of EpCAM, CD44,
CD47, and MET in CTCs identifies a subset of cells with increased metastatic capacity [36]. Novel
mediators of metastasis have been identified by comparing clusters of tumor cells, captured by using a
negCTC-iChip, with single CTCs from breast cancer patients: single cell-resolution RNA sequencing
demonstrated the significantly divergent expression of only a few genes, including plakoglobin [25].
Plakoglobin functions as an intercellular tether that confers added metastatic potential to tumor cells
in the circulation. Knockdown of plakoglobin inhibits CTC-cluster generation and lung metastases,
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while both abundance of CTC-clusters and high plakoglobin levels denote adverse outcome in breast
cancer patients [25], pointing to CTC-clusters as critical mediators of cancer metastasis.

2.1. Partial Mesenchymal Transition in CTCs

Recent data support the hypothesis that CTC profile changes occur during tumor cell
dissemination, in order to enter into the vasculature, survive in circulation, extravasate, and generate
secondary tumors [19,37–39]. Thus, in response to signaling proteins released by stromal cells,
tumor cells undergo reversible phenotypic change, described as epithelial-to-mesenchymal transition
(EMT) [12,39–43]. EMT is also required in tissue repair; consistently, the metastatic process is
at least in part similar to tissue regeneration [14,40,44]. EMT results in a reduced expression of
epithelial markers, and an increased plasticity and capacity for migration and invasion, as well as a
resistance to anoikis and apoptosis, and senescence, which are hallmarks required for CTC survival
and dissemination [14,29].

Studies of the effects of EMT in CTCs have suggested that mesenchymal transformation may
facilitate the initial steps of the metastatic cascade, but may reduce their competence to initiate
overt metastases [19,45,46]. Disseminated cancer cells may at least partially revert to an epithelial
phenotype to promote adhesion and proliferation in distal sites, through mesenchymal–epithelial
transition [2,44,47,48]. Cancer-associated EMT may therefore not represent a complete interconversion
of phenotypes, or an irreversible commitment to a mesenchymal state. Indeed, the existence of a
metastable or partial EMT phenotype, with both epithelial and mesenchymal features, adapts to the
concept of a highly plastic stem-like state, reversible and responsive to the microenvironment [19].

Several groups investigated this phenotype in breast cancer [8,37,49]. At least one of a selected
pool of EMT markers (Twist 1, Akt2, or PI3Kalpha) were observed both in CTC-positive and
CTC-negative cancer patients. Overexpression of EMT-initiating transcription factors (TF), including
Twist, Snail1, Slug, Zeb1, and FoxC2, was detected in CTCs, even if in a minority of patients [39].
The EMT markers fibronectin and/or vimentin were expressed more frequently in cytokeratins
(CK)-negative than in CK-positive samples [50,51]. Of note, patients receiving neoadjuvant therapy
were more likely to present a higher expression of EMT markers, predicting worse prognosis more
accurately than epithelial markers in patients with CK-negative CTCs [39]; thus, CTCs, subjected to
EMT, might be invasive cells resistant to neo-adjuvant therapy.

2.2. Epithelial–Mesenchymal Transition and Stemness

Several lines of evidence have coherently confirmed the notion that the metastatic potential of
a tumor is due to a low number of a minor subpopulation of cancer cells (~1%)—termed cancer
stem cells (CSCs)—in primary tumor tissue, that exhibit two defining abilities, to self-renew and to
efficiently regenerate the phenotypic heterogeneity of a parental tumor, and which are responsible
for initiating overt metastases [14,49,52–58]. Studies of neoplastic tissues have provided evidence
of stem-like cells within tumors [53,54,59,60], of breast (CD44+CD24−/low) [61,62], pancreatic
(CD44+CD24+ESA+) [63], brain (CD133+) [60], head and neck (CD44+) [64], and colon (CD133+
and CD44+ESAhigh) [59] cancer. CSCs have been implicated in both initiating primary tumors and in
the seeding and establishment of metastases [53,65,66]. Recent studies have pointed to a crucial link
between EMT and the acquisition of stem cell properties [14,67]. In addition to conferring migratory
and invasive potential, the induction of EMT in immortalized and transformed human mammary
epithelial cells significantly enhanced their self-renewal, tumor-initiating capabilities, and led to the
expression of stem-cell markers, associated with breast CSCs [14], suggesting that passage through
EMT is an alternative and/or additional step in tumorigenesis. Indeed, the induction of EMT has
been associated with expression of the CD44+CD24−/low antigenic profile, which, in breast tumors,
defines a subgroup of enriched cancer cells with stem-like properties, as well as mesenchymal traits
and cancer stem cell properties, including self-renewal capabilities and resistance to therapies [14,53].
These cells can self-renew in vitro to generate both CD44highCD24low cells and CD44lowCD24high
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cells, providing further evidence of stemness properties [53]. Aberrations in signaling networks and
transcription factors implicated in EMT have been documented in breast cancer progression [40,43,68],
and numerous conserved genes in the signature of resident stem cells are considered EMT-associated
genes [69]. Consistently, the gene expression profile of CD44+CD24−/low breast cancer cells more
closely resembles that of CD44+CD24−/low cells from normal breast tissue [70]. This undifferentiated
phenotype of CSCs is evident in basal-like breast tumors [71], which exhibit EMT features accounting
for their clinical seriousness [72]. Further, the gene expression signatures of stem cells from normal
tissues and of the highly aggressive metaplastic and claudin-low histological breast tumor subtypes
share strong similarities with gene expression profiles of cells upon the induction of EMT and cancer
stem cells [14,42,69,73].

Both in vitro and in vivo experiments have suggested that long-term maintenance of the
EMT/stem cell state depends on continuous EMT-inducing signals [14]. EMT is orchestrated
by integrated networks of signal pathways and EMT-related TFs, including TGFβ, NOTCH, and
Wnt [40,43,74]. Exposure of tumor cells to both cytokines TGFβ and TNFα induced EMT and generated
cells with a stable breast cancer stem cell phenotype, enriched in CD24−low/CD44+ cells, with a
shift to the claudin low molecular subtype [14,40,74]. Targeting proteins required for induction of
the claudin-low subtype could be a therapeutic strategy for improving the survival of breast tumor
patients, regardless of the primary subtype. TGFβ represents a paradigm of duality in cancer [75].
Of note, the initial tumor suppression effect due to TGFβ is coupled to EMT; however, although the
bulk of tumor cells die, EMT-permissive cells can survive from the TGFβ-imposed bottleneck [75].
Moreover, tumorigenicity linked to EMT is a trait that must be selected during carcinoma progression.
In accordance, EMT is not always connected with effective metastatic dissemination [74–76].

Several TFs and miRNAs have been implicated in linking EMT to the acquisition of stem cell
properties. EMT-inducing TFs have been confirmed to confer malignant traits in neoplastic cells [14,77],
and the acquisition of stem cell properties of self-renewing and tumor-initiating, thus generating
highly aggressive tumors with an EMT phenotype and stem cell features, and providing evidence for
the emergence of cells with combined EMT/CSC phenotypes [14,43,67]. The discovery of miRNAs has
added an additional level of complexity in EMT, metastasis, and stemness [78,79]. Downmodulation
of the miR-200 family has been extensively documented to occur during EMT [80], and has been
described both in invasive pancreatic tumors, inducing the generation of migrating CSCs [78], and in
normal and breast cancer stem cells, reinforcing the links between normal stem cells and CSCs [78–80].
Additionally, expression levels of let-7, which is poorly expressed in mesenchymal tumors and targets
HMGA2, encoding a DNA-binding protein implicated in mesenchymal cell differentiation, are reduced
in breast CSCs, but increased during differentiation [81].

2.3. Putative Stem Cell-Like Phenotype in CTCs

EMT enables the detachment of tumor cells from a primary site, but it can also be induced
after CTCs enter the vasculature [82]. Only recently, different subsets of CTCs have been identified
as mesenchymal [37,83]. However, exclusively mesenchymal CTCs seem to be unable to establish
metastases [19,46]. The current hypothesis is that tumor cells with an intermediate phenotype between
epithelial and mesenchymal present the highest plasticity to adapt to secondary sites, and constitute
cancer stem cells [84]. Consistently, CTCs expressing EPCAM, CD44, CD47, and MET, once injected in
immunodeficient mice, generated metastases with an EPCAMlow/METhigh/CD47high/CD44high
phenotype, thus containing functional metastasis-initiating cells [36]. Therefore, the detection of such
CTCs is of the utmost importance [85].

The use of EpCAM in current CTC detection methods, thus effectively pre-selecting for epithelial
CTCs, is a matter of debate, and high expression has been confirmed in CSC from breast, colorectal,
and pancreatic tumors [57]. The metastatic potential of EpCAM-positive CTCs has been extensively
confirmed in xenograft models [36,86,87], providing the proof of principle that CTCs captured by the
CellSearch system are capable of initiating metastasis, at least in murine models. On the contrary, the
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CellSearch method did not recognize aggressive breast cancer cells [8], and it suffered from a relatively
low sensitivity: only a fraction of patients with metastatic cancer scored positive for any CTCs, with a
median yield of approximately 1 CTC per milliliter and typically low purity [88].

Although the role of EMT in CTCs is still controversial, EMT signatures have been observed
in at least a subset of tumor cells with stemness properties [12,20,39,89–91]. However, studies in
cancer models suggest that EMT could be dispensable for establishing metastasis, despite the fact
that it contributes to the aggressiveness by increasing chemoresistance [12,76,92]. Some investigators
reported that CSCs markers were enriched in CTCs with mesenchymal features and had prognostic
relevance, in breast tumors at different stages (stage I–III) [93,94]. These CSC phenotypes need to be
further evaluated, also in patients with early stage cancer, and prospectively related to the occurrence
of overt metastases. Furthermore, CSCs might develop after the initial diagnosis of a tumor, so serial
postoperative blood monitoring might be required to identify CSCs [19].

A selection of the more aggressive cells generates clinical evidence of metastasis [58]. Coherently,
a significant genetic heterogeneity in early disseminated tumor cells (DTC) in early breast cancer
contrasts with homogeneity in tumor cells from metastases [95]. Subsets of CTCs/DTCs demonstrate
a stem cell-like phenotype, which confer stemness and pleiotropic roles in cell adhesion, migration,
and homing [96,97]. Only a small subset of CTCs, which migrate into vasculature, termed circulating
cancer stem cells (CCSCs), with putative stem cell progenitor phenotypes, present high invasiveness
and effectively generate metastasis [29,98–100]. Blood-monitoring studies in tumor patients have
shown that some CTCs can survive chemotherapy, as postulated for cancer stem cells [19]. CCSCs have
been identified in several types of cancer, including metastatic breast cancer [21], lung carcinoma [101],
hepatocellular carcinoma [102], colorectal cancer [103], and gastric cancer [104]. Specific biomarkers
associated with stemness detected in CTCs include BMI1 for lung CCSCs [101], CD90+CXCR4+ for
hepatocellular CCSCs [105], and CD44 variant exon 9 (CD44v9) for colorectal CCSCs [103].

Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in CTCs
of metastatic breast cancer [49]. Recently, in a breast tumor, a stem cell-like population, defined
by the presence of CD44 and absence of CD24, has been identified [53], which might disseminate
into the circulation and escape therapy [106], and presents an expression profile associated with
metastatic relapse [66]. It has been reported that the modulation of HER2 signaling can increase the
cancer stem cell pool and might be required for its maintenance; in fact, a strong link between HER2-
like-tumors and stem cells has been observed [107]. Preliminary data identified a breast cancer stem
cell-like phenotype in CTCs, with increased resistance to chemotherapy and decreased proliferation
in circulation [93]. ALDH1, a marker of normal and neoplastic breast stem cells [49,65], has been
confirmed to be overexpressed in 70% of CTCs, and associated with therapy failure [49]. At least
one or more of the EMT markers Twist, Akt2, and PI3Kalpha, and ALDH1 were detectable in a
great proportion of CTCs, thus identifying the highly tumorigenic subset of EMT-associated breast
CSCs [49]. This subset of CTCs is indicative of therapy-resistance and inferior prognosis in metastatic
tumor patients, with clinical relevance [49]. Of note, ALDH1 and EMT markers were measured even
before the detection of CTCs in circulation, as assessed through the positivity in RT-PCR to at least
one of the transcripts HER2, MUC1, and EpCAM [49]. Consistently, the stem cell-like phenotypes
CD44+CD24−/low and ALDH1highCD24−/low have been identified in 35.2% and 17.7% of CTCs,
respectively [58], and the subset of CD44+CD24−/low CTCs among ALDH1-highly positive CTCs
present an even higher tumorigenic potential [65]. Finally, although ALDH1-positive cells represented
only 5% of cells in tumors expressing ALDH1, ALDH1 staining positivity was associated with a high
histological grade and poor clinical outcome [65].

According to the cancer stem cell model, tumor progression and drug resistance should depend on
putative cancer stem cells [108], and their presence should correlate with a worse outcome [65], despite
data being discordant [61,71,109]. Effective elimination of these cells during medical intervention is
difficult, due to their self-renewal potency and resistance to chemotherapeutics. Indeed, patients with
ALDH1-positive CTCs more frequently did not respond to chemotherapy [49]. Recently, in 86% of
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metastatic breast cancer patients, CTCs have been demonstrated to express one or more multidrug
resistance-related proteins (MRP), and patients with MRP-positive CTCs had a significantly shorter
time to progression [110]. Further studies are required to correlate the presence of CD44+CD24− or
ALDH1highCD24−/low CTCs with clinical course and disease progression.

CSCs of different metastatic sites might have different phenotypes. In HCC, stem-like CTCs
were considered as seeds of metastasis and recurrence [87]. A significant positive correlation was
measured between CD133+ CTCs and serum levels of Annexin A3 (ANXA3), which is highly accurate
in diagnosing early-stage HCC, and in monitoring the therapeutic response [111]. Prognosis was
worse for ANXA3-positive patients with detectable CCSCs, suggesting that serum ANXA3 could
stimulate and maintain the stem cell-like traits of CD133+ CTCs to promote tumor recurrence and
metastasis [111]. In breast tumor patients, both CK+CD44+CD24−/low CTCs [58], or CTCs expressing
CD44, MET, and CD47, might represent CSCs [36]. Moreover, CTCs from patients with metastatic
breast cancer, competent in generating brain metastases, were EPCAM− and expressed HER2, EGFR,
NOTCH1, and HPSE [112].

EpCAM-negative CTCs may efficiently avoid organ arrest due to the presence of stem cell and
quiescence properties [21]. The molecular switch to differentiate quiescence in malignant CTCs
depends on interactions with the tumor microenvironment. Previous studies have established that
the loss of the urokinase plasminogen activator receptor (uPAR) and integrin β1 (intβ1) reduces
proliferative signals, with a shift from an invasive or metastatic to a dormant tumor state [19,113].
In order to identify CTC subsets with properties related to breast cancer dormancy, CTC subgroups
were selected for EpCAM and CD45 negativity and positivity for the CD44+CD24− stem cell signature,
and the combinatorial expression of uPAR and int β1 [21]. A high expression of embryonic stem-cell
genes was confirmed in the uPAR+intβ1+ CTC subset, compared to uPAR−intβ1− CTCs [21].
Accordingly, in vitro assays confirmed the metastatic competency of uPARintβ1 CTCs, consistent
with previous notions [21]. The characterization of the uPARintβ1 CTC subset can be useful to
decipher cellular and molecular mechanisms of organ-homing CTCs and cancer dormancy.
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Table 1. List of the most relevant mesenchymal and stemness markers for CTCs detection.

Marker Mesenchymal (M)/Stem-Cell
(SC) Marker Functions and Clinical Relevance Reference Year

Breast Cancer

Twist1, Akt2, PI3Kalpha,
ALDH1

M (Twist1, Akt2, PI3Kalpha), SC
(ALDH1)

Higher expression rates of EMT markers and ALDH1 (62% and 44% of patients, respectively) in metastatic patient
non-responders to therapies, compared to responder patients. [49] 2009

CD44, CD24, ALDH1 SC
Presence, in metastatic patients, of CTCs with stem-like/tumorigenic phenotype CD44+CD24−/low (35.2% of
CTCs identified), and a less commonly observed population of ALDH1highCD24−/low (17.7% of CTCs analyzed
in seven patients), thus identifying a subset of CTCs with putative stem cell progenitor phenotypes.

[58] 2010

CCNE2, DKFZp762E1312,
EMP2, MAL2, PPIC and
SLC6A8

M 81% of advanced breast cancer patients with recurrence and 29% of breast cancer patients at initial diagnosis
positive for at least one gene. [114] 2010

ALDH1, vimentin, fibronectin SC (ALDH1), M (vimentin,
fibronectin)

Assessment of molecular profile of CTCs according to expression of ERa, HER2/neu, ALDH1, vimentin, and
fibronectin. Detection of ALDH1+ CTCs in 28/61; vimentin+ CTCs in 17/61; and fibronectin+ CTCs in 11/61 of
patients. Expression of ALDH1 on CTCs significantly correlated to stage of disease (p = 0.01) and to expression of
vimentin and fibronectin (p = 0.001 for both).

[115] 2011

Twist, vimentin M

Vimentin- and Twist-expressing CK(+) CTCs identified in 77% and 73%, respectively, of early and in 100% of
metastatic breast cancer patients. Higher incidence of CK+vimentin+ and CK+Twist+ cells in patients with
metastatic disease compared to early stage breast cancer. Significant correlation (p = 0.005) between the number of
CTCs expressing Twist and vimentin within the same setting, with a reduction in an adjuvant chemotherapy setting
in metastatic tumors.

[38] 2011

Fibronectin, vimentin M More accurate prediction of worse prognosis in metastatic patients due to the presence of mesenchymal markers,
than expression of cytokeratins alone. [50] 2011

MRP, ALDH1 SC (ALDH1)

Shorter progression-free survival (PFS) in metastatic patients with a ‘drug resistance’ CTCs profile and expressing
MRPs. Statistically significant correlation between the number of MRPs expressed in CTCs and ALDH1. The
number of MRPs expressed on ALDH1+ CTC is predictive of poor response to treatment and significantly
associated with shorter PFS. ALDH1/MRP-expressing CTCs have a greater tendency to intrinsic drug resistance.

[110] 2011

Vimentin, N-cadherin,
O-cadherin, CD133

M (Vimentin, N-cadherin,
O-cadherin), SC (CD133) More than 75% of CTCs in metastatic breast cancer co-express CK, vimentin, and N-cadherin. [116] 2011

CD44 SC

Clinical relevance of CTC (CD45-EpCAM+ cells) and CTSC (CD45-EpCAM+CD44+CD24− cells). Statistical
differences between CTC < 50 and CTC ≥ 50 groups among TNM stages, histology stages, and ER and PR status (p
< 0.05). Statistical differences between CTSC negative and positive groups within TNM stages and regional lymph
node metastasis (RLNM) status (p < 0.05).

[117] 2012

Twist, Snail1, Slug, Zeb1, FoxC2 M Higher expression levels of EMT-inducing TF in patients receiving neoadjuvant therapy with respect to patients
who received no neoadjuvant therapy (p = 0.003). [39] 2012

Nanog, Oct3/4, Sox2, Nestin,
and CD34 SC Linear relationship between gene expression of stemness markers and tumor stage (I-IV), as well as specific

expression patterns by stage. [118] 2012

CD44, CD47, MET SC (CD44), M (CD47, MET)
Functional circulating tumor-initiating cells, with increased metastatic capacity. Correlation of
EPCAMlowMEThighCD47highCD44high CTCs number and lower overall survival and increased number of
metastases.

[36] 2013
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Table 1. Cont.

Marker Mesenchymal (M)/Stem-Cell
(SC) Marker Functions and Clinical Relevance Reference Year

Fibronectin 1(FN1), cadherin 2
(CDH2), serpin peptidase
inhibitor, clade E (SERPINE1)

M Association of mesenchymal CTCs with disease progression: in an index patient, reversible shifts between
mesenchymal and epithelial phenotypes accompanied each cycle of response to therapy and tumor progression. [37] 2013

HER2, EGFR, NOTCH1, HPSE
Identification of a potential signature of brain metastases in CTCs comprising brain metastases selected markers
HER2+EGFR+HPSE+NOTCH1+. CTC lines expressing this signature were highly invasive and competent in
generating brain and lung metastases when xenografted in nude mice.

[112] 2013

Plakoglobin M Intercellular tether that confers added metastatic potential. High levels in breast cancer patients denoting adverse
outcomes, while selective knockdown inhibiting lung metastases in mouse model. [25] 2014

UPAR, intβ1 SC

Identification of DAPI−CD45−EpCAMnegativeCD24−CD44+uPARintβ1 CTC subsets with properties related to
dormancy. Embryonic stem-cell gene expression profiling revealed high expression in uPAR+intβ1+ CTC subset,
and in vitro assays confirmed the metastatic competency of uPARintβ1 CTCs. uPARintβ1 CTC subset may
prospectively identify patients at high risk of brain metastases.

[21] 2015

IGFR1, UPA, VEGFA, VEGFR1 M Genes expressed exclusively in CTC-enriched samples, identified by profiling a panel of 55 breast cancer-associated
genes. [89] 2016

ALDH1, Twist1 SC (ALDH1), M (Twist1)

Prognostic relevance in metastatic patients of single CSC+/partial-EMT+ CTCs (co-expressing cytokeratin, ALDH1,
and nuclear Twist1). Evidence of CSC+/partial-EMT+ CTCs in 27.7% of patients at baseline, and correlation to lung
metastases and decreased PFS. Detection of CSC+/partial-EMT+ CTCs as an independent factor predicting for
increased risk of relapse. Additional association with reduced OS and increased risk of death in HER-2 negative
patients. Significant increase in incidence of CSC+/partial-EMT+ CTCs due to chemotherapy confirmed in
HER2-negative patients and in non-responders at the end of treatment.

[119] 2019

Ovarian, Cervical, Endometrial Cancers

CCNE2, DKFZp762E1312,
EMP2, MAL2, PPIC and
SLC6A8

M In the cervical, endometrial, and ovarian cancer groups, percentage of positive patients of 44%, 64%, and 19%,
respectively. [114] 2010

Vimentin M In ovarian cancers, greater percentage of tumor cells with very low EpCAM expression and high vimentin
expression. EpCAM expression significantly lower in the vimentin high group (p = 0.0036). [120] 2010

PPIC M

Identification of a panel of 11 novel gene markers including PPIC for detection of CTCs with clinical impact in
epithelial ovarian cancer (EOC) patients, both before primary therapy and during follow-up. Correlation of CTCs
over-expressing PPIC, with an incomplete epithelial phenotype and a more aggressive potential, and resistant to
chemotherapy, with an adverse outcome (DFS and OS), independently of clinicopathological parameters.

[121] 2013

ETV5, NOTCH1, Snai1, TGFB1,
Zeb1, Zeb2, ALDH1, CD44

M (ETV5, NOTCH1, Snai1,
TGFB1, Zeb1, Zeb2), SC
(ALDH1, CD44)

Remarkable plasticity phenotype in high-risk endometrial cancer CTCs defined by expression of the EMT markers
ETV5, NOTCH1, SnaiI1, TGFB1, Zeb1, and Zeb2, further recapitulated through up-regulation of ETV5 in an EC cell
line, and demonstrating an advantage in promoting metastasis in an in vivo mouse model. Expression of ALDH
and CD44 in CTCs, pointing to an association with stemness.

[122] 2014

CD44, ALDH1A1, Nanog, Oct4,
N-cadherin, Vimentin, Snai2,
CD117, CD146

SC (CD44, ALDH1A1, Nanog,
Oct4), M (N-cadherin, Vimentin,
Snai2, CD117, CD146)

Heterogeneous expression of stem cell- and EMT-associated transcripts in ovarian cancer CTCs. Co-expression of
epithelial, mesenchymal, and stem cell transcripts on the same CTC was observed. [123] 2016
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Table 1. Cont.

Marker Mesenchymal (M)/Stem-Cell
(SC) Marker Functions and Clinical Relevance Reference Year

Lung Cancers

Vimentin M Greater percentage of tumor cells with very low EpCAM expression and high vimentin expression. EpCAM
expression significantly lower in the vimentin high group (p = 0.012). [120] 2010

Vimentin M
In non-small-cell lung carcinoma (NSCLC), correlation of the presence of CTCs detected by both CellSearch and
ISET (vimentin-positive cells with cytological criteria of malignancy) with shorter DFS. Complementary methods
for detection of CTCs in preoperative surgery.

[124] 2011

Vimentin M Detection of isolated or clusters of dual CTCs strongly co-expressing vimentin and keratin in all metastatic NSCLC
patients analyzed, confirming the existence of hybrid CTCs with an epithelial/mesenchymal phenotype. [125] 2011

Vimentin M Expression of vimentin in the majority of cells within circulating tumor microemboli and only in some CTCs; no
homogeneous EMT transition in tumor cells within the circulation, both in small cell lung cancer and NSCLC. [90] 2011

Vimentin, N-cadherin M
Detection of ALK rearrangement in CTCs of patients with ALK-positive NSCLC, enabling both diagnostic testing
and monitoring of crizotinib treatment. CTCs with a unique ALK rearrangement and mesenchymal phenotype may
arise from clonal selection of ALK-positive tumor cells which acquired metastatic potential.

[126] 2013

CD133 SC In advanced metastatic tumors, identification of CD133+ cells, a marker of stem-like behavior in highly tumorigenic
cells, in subsets of CTCs isolated using centrifugal forces. [127] 2013

BMI1, Twist1, CD133,
ALDH1A1

M (BMI1, Twist1), SC (CD133,
ALDH1A1)

Overexpression in CTCs of ALDH1A1 (10/10 of patients), CD133 (3/10 of patients), BMI1 (7/10 of patients), and
Twist1 (3/10 of patients), thus confirming the presence of CSCs in NSCLC, complying with the recent
demonstration of tumor initiation capabilities in lung CTCs.

[101] 2016

Hepatocellular Carcinoma

CD90, CD44 SC
Presence of CD45-CD90+ CTCs in 91.6% of patients, generating tumor nodules in immunodeficient mice. The
CD90+CD44+ cells demonstrated a more aggressive phenotype than the CD90+CD44- counterpart and generated
lung metastatic lesions in mice. CD44 blockade prevented local and metastatic tumor nodules by CD90+ cells.

[128] 2008

ICAM-1 SC
Expressed on a minor cell population in HCC CTCs (0.3%), acting as a marker of HCC stem cells. ICAM-1 inhibitors
slow tumor formation and metastasis in mice. Increased numbers of CD45-ICAM-1+ CTCs in patients with HCC
correlated with worse clinical outcomes.

[129] 2013

N-cadherin, Vimentin M

Identification of different individual cell type profiles in CTCs, with distinct clinical implications. The presence of
mesenchymal cells correlated to survival, while an increase in epithelial cells was associated with a worse treatment
outcome. The shift from mesenchymal to epithelial cell profiles was significantly correlated with shortened TTP in
both N-cadherin and vimentin to cytokeratins ratios, respectively.

[130] 2013

Twist, Vimentin, E-cadherin M

Detection of Twist and vimentin in CTCs from 84.8% and 80.4% of patients, respectively. Significant correlation of
co-expression of both in CTCs (in 69.6% of patients) with portal vein tumor thrombus, TNM classification, and
tumor size, as promising biomarkers for evaluating metastasis and prognosis. Significant association of E-cadherin,
vimentin, and Twist levels in HCC tumors with CTCs.

[131] 2013

CD90, CXCR4 SC Generation of tumors after serial adoptive transplantations of CD90+CXCR4+ HCC cells into NOD/SCID mice, and
more frequent detection of released CTCs. [105] 2015
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Table 1. Cont.

Marker Mesenchymal (M)/Stem-Cell
(SC) Marker Functions and Clinical Relevance Reference Year

CD133 SC
Detectable CD133+ CTC positively correlated with serum ANXA3 level (r = 0.601, p < 0.001), which is associated
with a higher risk of recurrence and shorter overall survival: ANXA3 could stimulate and maintain the stem
cell-like traits of CD133+ CTCs to promote tumor recurrence and metastasis.

[111] 2018

Colorectal Cancer

ALDH1, CD44, CD133 SC

Analysis of prognostic value of drug resistance and stemness markers in CTCs from metastatic patients treated with
oxaliplatin- and 5-fluoruracil-based regimens. No correlation between the expression of CD44 or CD133 in CTCs
and patient outcome; statistically significantly shorter PFS in patients with CTCs positive for ALDH1, survivin, and
MRP5, for selection of patients resistant to chemotherapy.

[132] 2010

Plastin3 (PLS3) M PLS3-positive CTC independently associated with prognosis in metastatic tumors, particularly in patients with
Dukes B and Dukes C CRC. [83] 2013

CD44 variant exon 9 (CD44v9) SC Positive expression of CD44v9 in CTCs in 40% of patients. CD44v9 in CTCs as a factor predicting recurrence,
prognosis, and treatment efficacy, both in patients with stage III and stage IV disease. [103] 2015

CD133, CD54, CD44 SC

Higher survival in patients who underwent resection of the primary tumor and surgical treatment for liver
metastasis (p < 0.001). Worse survival in patients with high expression of CD133+CD54+ (p < 0.001), CD133−CD54+
(p = 0.004), and CD133+CD44+CD54+ (p = 0.003) CTCs subsets. Prognostic value, especially in survival of CRC
patients who did not undergo surgical treatment for metastasis. Carcinoembryonic antigen levels, treatment
strategy and CD133+CD44+CD54+ CTCs as independent prognostic factors.

[133] 2017

Pancreatic Adenocarcinoma

Vimentin M Vimentin-positive CTCs identified in patients who did not have detectable CTCs by CellSearch, isolated by using
the ISET (isolation by size of epithelial tumor cells) filtration device. [134] 2012

ALDH1A2, IGFBP5 M (IGFBP5), SC (ALDH1A2)
Presence in CTCs of low-proliferative signatures, enrichment of the stem-cell-associated gene ALDH1A2,
biphenotypic expression of epithelial and mesenchymal markers, IGFBP5, a gene transcript enriched at the
epithelial-stromal interface, and high expression of stromal-derived extracellular matrix proteins.

[135] 2014

Prostate Cancer

ALDH SC
Elevated clonogenicity and migratory behavior of ALDH-high cells. Competence in generation of distant metastasis
and enhanced tumor progression of ALDH-high in preclinical models. Expression of several ALDH isoforms in
clinical specimens of primary tumors with matched bone metastases.

[136] 2010

Vimentin M Identification of vimentin positive CTCs with BRCA losses, correlated with advanced tumor, invasiveness and
recurrence, and shortened DFS. [51] 2010

Vimentin, N-cadherin,
O-cadherin, CD133

M (Vimentin, N-cadherin,
O-cadherin), SC (CD133)

In metastatic castration-resistant prostate cancer (CRPC), the majority (>80%) of CTCs co-express epithelial proteins
(EpCAM, cytokeratins, E-cadherin), with mesenchymal proteins (vimentin, N-cadherin, O-cadherin), and the stem
cell marker CD133.

[116] 2011

IGF1, IGF2, EGFR, FOXP3,
TGFB3 M

Commonly observed in CTCs in metastatic tumors, despite heterogeneous expression patterns of individual CTCs.
An additional subset of EMT-related genes (PTPRN2, ALDH1, ESR2, and WNT5A) were expressed in CTCs of
metastatic CRPC, but less frequently in castration-sensitive cancer.

[137] 2013
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Table 1. Cont.

Marker Mesenchymal (M)/Stem-Cell
(SC) Marker Functions and Clinical Relevance Reference Year

Gastric Cancer

CD44 SC
Prognostic significance of CD44-positive CTCs. Patients with higher CD44-positive CTCs were more likely to
develop metastasis and recurrence than patients with CD44-negative CTCs. The presence of CD44-positive CTCs
and TNM stage were independent predictors of recurrence.

[104] 2014

Melanoma

MLANA, ABCB5, TGFβ2,
PAX3d, MCAM M

Detection of CTCs at all stages and after surgical resection of tumor. Significant prognostic value of expression of
ABCB5 and MLANA in inferring disease recurrence. Correlation of MCAM expression with poor patient outcome
after therapeutic nonsurgical treatment.

[138] 2013
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3. Clinical Relevance of Heterogeneity in CTCs

The liquid biopsy of CTC has received great attention, due to obvious clinical implications
for personalized medicine [8,15,19]. Clinical applications of CTC detection have been extensively
described in recent reviews [7,15]. Strong evidence for CTCs as prognostic markers of metastatic
relapse and progression has been documented [29,139–146]. The clinical utility of CTCs enumeration
for treatment decisions is currently being evaluated in interventional studies [147]. CTC detection has
been proven to predict prognosis also in early-stage tumor patients, without clinical signs of overt
metastases [8,9,15,19,58,148]. Detection of CTC at the time of diagnosis or after surgery for a primary
tumor can identify patients at risk of recurrent or metastatic disease [149,150]. Moreover, the patterns
of drug susceptibility and responses to therapeutic regimens in individual patients, as tumors acquire
new mutations over time, could be noninvasively monitored through the characterization of CTCs, as
confirmed in a recent proof-of-concept study of drug sensitivity testing in ER–positive breast cancer
CTCs [28]. Most agents administered to prevent relapse are designed to target growing cancer cells
rather than quiescent DTCs that predominate in metastatic latency [12]. Research on these cells should
help in designing novel therapeutic molecules for targeting and monitoring minimal residual disease,
and to assess response to therapy [12].

Unfortunately, the detection of CTCs is hampered by their still uncertain biology. Profiling
of CTCs in serial liquid biopsies holds great potential to significantly improve cancer therapy by:
(i) determining patient prognosis, (ii) monitoring tumor recurrence and therapeutic responses, (iii)
identifying new therapeutic targets in order to prevent metastasis, (iv) elucidating drug resistance
mechanisms, and (v) improving current understanding of tumor progression and metastasis.

At present, insufficient data on the clinical relevance of stem-like CTCs is still present in the
literature, mainly due to technical hurdles in detecting the very rare stem-like tumor cells among
CTCs. Nonetheless, as novel non epithelial profiles of CTCs have started to emerge, in this manuscript
we underline their relevance to patient management. It is possible that, as for the mesenchymal
CTCs, stem-like CTCs will also be proven to bear clinical implications, as suggested from the reported
early studies.

The development of single cell analysis technologies has demonstrated a great heterogeneity in
the genetic make-up of CTCs, compared to primary tumor and metastatic cells [19,151–154]. Exclusive
genetic mutations of CTCs have been identified, while additional mutations in CTCs were also detected
in both subclones of primary tumor and metastatic tissues, as assessed in diverse tumors [155,156].
Discordances have been reported in the expression of cancer-specific antigens between CTCs and
primary tumors [153,157]. CTCs represent an effective alternative to invasive tumor biopsies, thus
constituting the actual targets of adjuvant therapies, and point out the emergence of resistant clones
and patterns of early disease recurrence and therapy responses [12]. CTCs in women initially
diagnosed with advanced ER-positive/HER2-negative breast cancer acquired an HER2-positive
subpopulation after multiple courses of therapy for recurrent metastatic tumors [154,158]. Although
they have comparable tumor-initiating potential and cell plasticity and expression profiles of ALDH1,
these coexisting discrete chemotherapy-sensitive HER2+NOTCH1− and NOTCH inhibitor-sensitive
HER2−NOTCH1+ CTCs interconvert, thus a dual treatment may be required for an effective
response [153]. Also, markers relevant to the breast cancer brain-metastasis-selected CTC profile
have been reported [112], and the uPARintβ1 CTC subset may prospectively identify patients at
high risk [21]. In breast cancer, the oncogene PIK3CA is closely associated with the reactivation of
multipotency [159], and a complete response is more difficult in HER2-positive tumors mutated in
PIK3CA after neoadjuvant anthracycline taxane-based chemotherapy plus anti-HER2 treatment, even
with a dual anti-HER2 treatment [160]. A multimarker panel based on single CTC analysis, which
defines resistant tumor cells in ovarian cancer by detecting epithelial, EMT, and stemness-associated
transcripts, has recently been designed [123], confirming that the number of CTCs is negatively
correlated with patient overall survival. In metastatic castration-resistant prostate cancer (CRPC)
patients, a set of EMT-related genes (PTPRN2, ALDH1, ESR2, and WNT5A) were upregulated in
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CTCs [137]; upon targeted therapy two distinct CTC subgroups were induced, which differ in both AR
genotype and genomic CNV profiles [161]. Thus, serial analyses of CTCs represent a reliable test for
the molecular evolution of tumors and may be relevant upon effective targeted cancer therapy that
induces drug resistance.

As for EMT in CTCs, the presence of mesenchymal markers can accurately predict clinical
outcomes and a poor prognosis [110,162,163]. In HCC metastasis, Twist and vimentin expression can
be applied as diagnostic and prognostic biomarkers; of note, the expression levels of Twist, vimentin,
and E-cadherin were closely associated with the positivity rates of CTCs in peripheral blood, which
indicated that EMT promotes the dissemination of primary HCC cells [131]. In breast cancer patients,
several differentially expressed genes, involved in EMT, were identified in CTC, including UPA,
IGFR1, VEGFR1, and CD44, and their expression was correlated with tumor grade and metastasis [89].
Activation of the urokinase plasminogen system, which has been associated with poor prognosis [164],
and IGFR1 both contribute to recurrence via the inhibition of anoikis [165,166]. VEGFR1, a positive
regulator of angiogenesis, participates in tumor progression through the induction of EMT [167].
Expression of CD44 has been detected in breast primary tumors [168] and significantly increased in
CTC-enriched samples, in accordance with a previous report [58]. In pancreatic tumor expression of
both epithelial and mesenchymal markers, LGFBP5 and ALDH1 have been detected in CTCs [169].

The clinical relevance of mutation analysis of CTCs in assessing prognosis, stratifying patients,
defining precise therapies, and monitoring therapeutic efficacy has been confirmed [170]. In breast
cancer, the analysis of single CTC with a diagnostic intention identified preexisting cells resistant
to ERBB2-targeted therapies [171]. In colorectal cancer, several mutations that induce resistance to
anti-EGFR therapy have been reported; CTC monitoring has revealed that the emergence of KRAS
mutant clones is a secondary mechanism of drug resistance [172,173]. The acquired S492R EGFR
mutation prevents cetuximab binding, and confers resistance [174]. In non–small-cell lung cancer
(NSCLC), the diagnosing of EML4-ALK rearrangement, a potent oncogenic driver [175,176], is a
critical issue for identifying patients with advanced tumors that eventually respond to crizotinib [177].
A recent study provides the first proof-of-concept that CTCs can be used for highly sensitive and
specific diagnostic testing of ALK rearrangement [126]. A unique pattern of ALK rearrangement has
been consistently identified in CTCs, despite inter-tumoral heterogeneity [126]. Additionally, results
support a role for ALK in generating mesenchymal CTCs [40,43], suggesting that CTCs with a unique
ALK rearrangement and a mesenchymal phenotype may result from the clonal selection of tumor cells
that have acquired the potential to metastasize, such as cancer stem cells [126].

As mentioned above, recent advances in the identification of stem-like signatures in primary
tumors and CTC may help to improve the accuracy of diagnosis and predict therapeutic
responses and overall survival of patients. Molecular profiling of CSCs has revealed their major
implications for clinics [136,178–181]. Consistently, the phenotypic features of CTCs, including
CCSCs, have been analyzed to assess tumor stage, risk of cancer progression and metastases,
and disease relapse, and their potential in predicting the overall outcome of patients with locally
advanced and metastatic breast, prostate, ovarian, pancreatic, lung, and colorectal cancers has
been confirmed [116,120,121,134,162,182,183]. Several biomarkers of stemness have been assayed
in CTCs (CD133, CD44, ALDH, and ABC multidrug transporters) [116,120,182,183]. In breast cancer,
the expression of Nanog, Oct3/4, Sox-2, nestin, and CD34 on CTCs is directly related to disease
progression [118]. Recently, a very small cohort of metastatic breast cancer patients was evaluated after
palliative chemo-, antibody—or hormonal therapy; most patients received anthracyclines and taxanes
in an adjuvant or metastatic setting before the study’s start, and all patients with HER2+ tumors but
one received trastuzumab in the metastatic setting. In this cohort, the expression in CTCs of at least
one EMT marker and ALDH1 was detected in 62% and 44%, respectively, of patient non responders to
therapy, suggesting their potential use as predictive biomarkers [49]. The hypothesis of plasticity and
stemness properties in CSCs has been addressed in endometrial carcinomas (EC) [184], in association
with a micro-RNA signature of EMT of down-modulation of the miR-200 family [185]. The presence
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of endometrial CTC, profiled for stem-cell markers ALDH and CD44, was related to recurrent
disease [122]. CTCs detected in patients with advanced lung cancer include cells co-expressing
cytokeratin and CD133 [127]. In a cohort of patients with primary and metastatic melanoma, the
melanoma antigen melan-A and the stem cell–like marker ABCB5 were expressed in CTCs in 45% and
49% of patients with recurrence after treatment initiation, respectively [138].

A major clinical relevance of CTC early detection is the identification of high-risk subjects that
need additional systemic therapies after primary tumor surgery, to prevent metastasis. Currently, the
selection of patients is based on the statistical risk of recurrences. Evidence for the presence of CSC
in high-risk EC has been reported, and a molecular CTC-phenotype has been identified, associated
with plasticity and stemness features [122]. Previously, a six-gene panel has been assessed in CTCs in
EC [114], with a potential in terms of diagnosis/prognosis and follow-up, and identification of new
therapeutic strategies to limit metastatic dissemination [186]. Several genes related to plasticity were
significantly expressed in CTC (ETV5, NOTCH1, Snai1, TGFB1, Zeb1, Zeb2) [122]. Of note, ETV5
up-modulation promoted metastasis in in vivo models and recapitulated the plasticity phenotype of
high-risk patients [187]. The sequential assessment of CTC levels during treatment could provide
information at early stages about therapeutic efficacy.

Moreover, CSCs, generated through EMT, present intrinsic resistance to conventional
chemotherapies [41,188–191]. Current chemotherapies target the rapidly proliferating cells of the
tumor bulk, with expansion of the CSC pool and/or selection of resistant and highly metastatic
competent CSCs. Accordingly, in breast tumors, residual cancer cells exhibited expression profiles of
cells with combined tumor-initiating and mesenchymal/claudin-low features [190]. Gene signatures
of the EMT/CSC phenotype may disclose novel molecular targets for the therapeutic resistance of
breast cancers [43,49,52]. In a seminal study, salinomycin, a potassium ionophore, has been identified
with selective toxicity against CSCs generated by EMT, reducing the CD44highCD24−/low fraction
and the ability of pretreated CSCs to initiate tumors and lung metastases in immunocompromised
mice [192]. Further, metformin selectively killed breast CSCs in vitro and in vivo, effectively reducing
tumors and preventing relapse in mouse models [193]. Overall, cells with the EMT/CSC phenotype
may uncover new therapeutic targets for tumors, irrespective of their subtype.

4. Advancement in Methodologies for the Inclusive Detection of Stem-Like CTCs

The rarity of CTCs in blood specimens (as few as one cell per 109 haematologic cells)
requires highly specialized technologies for detection and capture, but their low sensitivity has
limited the clinical utility of CTC-based diagnostics. A lot of reviews have recapitulated and
pointed out a conceptual framework of CTC assays, discussing limits of technologies, in light
of the recent data (see Table 2 for a list of the most relevant technologies for CTC detection and
characterization) [6–8,19,88,194–197]. Epithelial markers, expressed on epithelial tumors but absent
on leukocytes, have been frequently used [198–200]. While clinical studies using the CellSearch
device have confirmed the prognostic potential of CTC enumeration [201], only a fraction of patients
with metastatic cancer score positive for CTCs [7,88,202]. Although first defined as nucleated cells
expressing EpCAM, and/or cytokeratin, and lacking the leukocyte antigen CD45, new data suggest
even greater heterogeneity in CTCs [203–205]. Considering the phenotypic heterogeneity and plasticity
of CTCs, CTCs with no/low levels of EpCAM and a more mesenchymal phenotype, such as CSCs,
might be missed by EpCAM-based capturing techniques [43,77,88,206–208].

To effectively capture all diverse CTCs, additional alternative phenotypes need to be detected,
and an automated and high-precision device integrating CTC capturing and sequencing is
needed [88,195,209–216]. Due to recent advances in the field of microfluidic bioengineering,
novel methods have been introduced to improve the accuracy and sensitivity of CTC isolation,
with efficient purification of viable CTCs from unprocessed whole blood, in both epithelial and
non-epithelial cancers [26,37,195,197,210–212,217]. Once CTCs have been sorted in solution, clinically
standardized analyses can be applied, as well as single-cell RNA profiling. To avoid the loss of
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CTCs, normal haematopoietic cells have been depleted by targeting CD45 [218]. However, not all
CD45– cells are tumor cells, and a CK+/CD45+ cell phenotype has been reported in metastatic cancer
patients [197,201,215,216]. Examples of technologies used to isolate CTCs through both enrichment
and depletion include MACS, a size-dictated immunocapture chip, and the CTC-iChip [88,157,219].
The CTC-chip enables a high yield of capture and purity, although it is technically difficult and not yet
standardized for high throughput applications [26,195,196]. The MagSweeper has been used for the
genetic profiling of single-cell CTCs, including transcriptional profiling, the detection of mutations,
whole exome sequencing, and analyses of stem cells in several cancers [157].

High-throughput microscopy and imaging flow cytometry IFC can be combined with cutting-edge
CTC isolation technology. One such approach currently under investigation relies on the concept of an
inertial microfluidic device, and staining of CTCs with anti-CD45, anti-cytokeratin, anti-E-cadherin,
and anti-vimentin [220]. Once clinically validated, this technology, adapted for EMT and stem cell
markers, would provide a technological solution for implementation in clinical diagnostics.

A novel enhanced CTC enrichment strategy was established, which captures heterogeneous
EpCAM-depleted CTC subsets by targeting cell surface proteins (CD44, CD47, c-Met, reported to
be expressed in CTCs with metastasis-initiating properties [36], Trop2, CD49f, CK8, ADAM8, TEM8,
CD146) [36,203,221–225], as well as extracellular matrix components (laminin, collagen I, HA) [206].
In 20 out of 29 EpCAM-depleted fractions from metastatic breast cancer patients, additional EpCAMneg
CTCs were identified applying Trop2, CD49f, c-Met, CK8, and/or HA magnetic enrichment. Of note,
EpCAMneg cells captured by a CD44 antibody were confirmed to have a malignant nature [206].
Further characterization of identified EpCAMpos/neg and dual-positive subsets will assess CTCs
tumor origin. To prove the clinical relevance, a study identifying EpCAMlow/neg CTCs with specific
genomic profiles should be designed.

A selective and sensitive detection method for the isolation of both CTCs and CCSCs is
required for advancement in precision medicine [29,88,208,214]. Fluorescence-activated cell sorting
has been used for CCSC isolation by comparing a CSC marker (CD133 or CD44) with leucocyte
CD45 [53,65,208,226,227]. Overall, only a limited success in CCSC detection has been reported by
using immune-affinity-based methods with multiple fluorescent probes [214,228]. To address this,
a novel nanoparticle-mediated Raman imaging method has been described for the detection and
analysis of heterogeneous CTC subtypes, with a high isolation efficiency, which profiles CCSCs
in accordance with surface marker expression [214]. The selective detection and accurate analysis
of tumorigenic properties of CCSCs and CTCs were demonstrated [214]. Five different RANs, as
multifunctional probes designed for the detection, isolation, and further analysis of circulating cells
through Raman imaging, were designed that identify different CTC subtypes and CCSC’s stemness, by
targeting CD133. Transplanted CCSCs could proliferate (CD133+ and CD44+CD24−/low), as well as
differentiate, into subtype-specific breast cancer cells in metastatic cancer modeling, including HER2
positive and basal-B [214]. By detecting CCSC, cancer metastasis and relapse would be predicted, and
the heterogeneous tumorigenicity of CTCs interrogated, to facilitate the study of chemotherapy effects.

Stem-cell-like CTCs have also been detected through PCR-based approaches. In CRC patients,
the detection of CTCs positive for CEA/CK19/CK20/CD133 expression represented a significant
prognostic factor for poorer DFS and OS in Dukes stage C patients, and in stage B patients with
unfavorable pathological features [229]. In addition, CEA/CK/CD133+ CTC could be a marker of
treatment-resistant stem cells [20]. In a recent study, which aimed to identify stem cell markers for
CTSC detection, the differential expression of several stem cell markers was observed between CRC
patients’ tumor and matched normal tissue, including OLFM4 and LGR5 [230]. Furthermore, plastin 3
(PLS3) is expressed in EMT-induced CTC in CRC, thus identifying tumor cells with a down-modulated
expression of epithelial markers; the detection of such cells was an independent prognostic factor
for progression-free (PFS) and overall (OS) survival, also in the Dukes B subset [83]. These findings
suggest that OLFM4, LGR5, and PLS3 may be useful for the detection of CTSCs [194].
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The presence of CTCs at different stages of prostate cancer has been assessed, using the
ProstateCancerDetect kit and the AdnaTest EMT-2/StemCell designed panel [231]. Positive results
were mainly seen in patients with metastatic disease; EMT-like gene expression was exclusively
detected in metastatic tumors, while ALDH1 was even increased in localized tumors [231]. Thus,
in advanced prostate cancer, CTCs mainly express transcripts associated with progression and
metastatic disease. Even so, the test’s prognostic and predictive implications remain to be determined.
The expression of several markers has been analyzed by immunocytochemistry in CTCs from patients
with CRPC. Most of the CTCs co-expressed CD133 with epithelial and mesenchymal markers [116].
A quantitative PCR method has also been used to detect EMT (Twist1 and vimentin) and stem cell
genes (ABCG2, CD133, PSCA) in peripheral blood from patients with metastatic prostate cancer;
expression of stem cell-related genes indicates poor prognosis, whereas EMT-related expression does
not [221]. Recently, we described a method based on a qRT-PCR assay for the identification of novel
CTC markers, irrespective of currently used markers and without pre-selection or enrichment, by
using patient-derived xenografts (PDXs) models; the genes identified using this method in PDX are
now also being tested for the study of CTC heterogeneity in human patients [232].
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Table 2. List of the current most relevant technologies for CTC detection and characterization for clinical use.

Assay/Technology Manufacturer Technology/Process Description Reference

Immunoaffinity-Based Methods

AdnaTest Select and Detect kits AdnaGen, Langenhagen, Germany

For enrichment and molecular characterization of CTCs, ensuring high specificity and sensitivity of isolation and
detection, by processing multiple samples in parallel. Each kit is designed as a specific immunomagnetic cell-selection
system (dependent on the tumor, e.g., MUC1-, EpCAM-Ab-coupled microbeads in breast tumor) for enriching CTC
and analysis by RT-PCR of tumor-associated gene expression (positive for at least one of the following markers: MUC1,
HER2, EpCAM in breast cancer).

[49,123,233]

CellSearch™ Veridex

Automated immunomagnetic enrichment and staining system for quantification of CTCs in whole blood samples.
CTCs are enriched using ferrofluids coupled to anti-EpCAM antibodies, defined as 4′,6-diamidino-2-phenylindole
(DAPI)+ cells, and identified by cytokeratin staining using fluorescent anti-CK antibodies, as well as counterstaining
with anti-CD45 antibodies. CTC can be enumerated and visualized. Currently, the only diagnostic test cleared by
the FDA.

[8,198]

Dynabeads® CD45 Invitrogen, Carlsbad
Superparamagnetic beads covalently coupled to anti-human CD45 antibody for efficient isolation or depletion of
CD45+ leucocytes directly from whole blood, buffy coat, or mononuclear cells (MNC) suspensions. It can also be used
to enrich epithelial tumor cells.

[234]

CELLection™ Epithelial Enrich
Dynabeads® Invitrogen, Carlsbad

Superparamagnetic beads covalently coated with a monoclonal anti-EPCAM antibody. The beads will bind to the
tumor cells after a short incubation. The bead-bound cells are separated on a magnet and subsequently released from
the beads. Up to 5-log enrichment of human epithelial tumor cells, directly from whole blood, bone marrow, or PBMC,
will be obtained, suitable for any downstream application.

[235,236]

autoMACS/MACS (Magnetic
Activated Cell Sorting System)

Mitenyi Biotec, Bergisch Gladbach,
Germany

Utilizes an immunomagnetic column to capture cells with diverse antigens (EpCAM, pan-CK, HER2/neu, or CD45),
which are retained within the column, and then eluted. Positive selection can be performed by direct or indirect
magnetic labeling. Viable cells are available for subsequent analysis following enrichment.

[237,238]

MagSweeper
Stephanie Jeffrey and Ronald W.
Davis, Stanford University,
Stanford, CA

Automated immunomagnetic device that efficiently capture live CTCs (approximately 0–10 CTCs per 7.5cc tube) from
blood, with 100% purity and 60% capture efficiency, while removing contaminating blood cells, and for several
downstream analyses. Isolated cells can be extracted individually based on their physical characteristics to deplete any
cells nonspecifically bound to beads.

[156,239]

Laser scanning cytometry Maintrac® Simfo, TZB, Bayreuth, Germany

After erythrocyte lysis, the total cell population is analyzed for the presence of circulating epithelial tumor cells, and
colored with propidium iodide to differentiate between living and dead cells. Using a fluorescence microscope, the
EpCAM-positive cells are automatically identified and counted. A follow-up of serial values allows an assessment of
disease activity. Traceable single cell detection within one million cells.

[240,241]

RARE (RosetteSep-Applied Imaging
Rare Event) StemCell Technologies, Vancouver

CTC-negative depletion by targeting CD45 for removal of haematopoietic cells, thus crosslinking cells to multiple red
blood cells and generating immunorosettes. Due to higher density of these clusters, they can effectively be separated
from CTCs, which are easily collected at the interface between plasma and density gradient medium.

[242]

RoboSep/EasySep™ StemCell Technologies, Vancouver
Column-free immunomagnetic system for isolation of cells for downstream applications. Cells of interest are targeted
with antibody complexes and immunomagnetic particles for negative or positive selection and captured. Unlabeled
cells are poured off. It is adaptable to custom CTC antibody surface antigens.

Functional Assays

EPISPOT (EPithelial ImmunoSPOT)
Catherine Alix-Panabieres and Klaus
Pantel, Montpellier, France & UKE,
Hamburg, Germany

After depletion of CD45 positive cells, by using Rosette plus Ficoll, viable epithelial secreting-cells are identified, at an
individual cell level, on a membrane coated with antibodies which detect and measure proteins released from viable
CTCs of diverse tumor origins (CK19, MUC1, Cath-D (breast); CK19 (colon); PSA (prostate); TG (thyroid)) by
secondary antibodies labelled with fluorochromes. Immunospots are the protein fingerprint left only by viable CTCs.

[243,244]
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Table 2. Cont.

Assay/Technology Manufacturer Technology/Process Description Reference

Vita-AssayTM or Collagen Adhesion
Matrix (CAM) technology

Vitatex Inc., Stony Brook, NY

Separation technology is based on preferential adhesion of rare cells in blood of tissue origin to Cell Adhesion Matrix
(CAM). CAM enriches viable CTCs in blood, one-million-fold, and identifies invasive CTCs (iCTCs), which express the
stem cell marker CD44 and the invasiveness marker seprase, with their capability of ingesting CAM. Once washed,
attached cells can be either directly analyzed using microscopy or released from scaffolds for characterization using
multi-parameter flow cytometry.

[245,246]

Dielectrophoresis

ApoStreamTM System ApoCell, Houston, TX

It leverages differences in the dielectric properties (polarizability) to isolate cells, using dielectrophoresis (DEP)
field-flow fractionation (DFFF). Cancer cells are selectively collected while normal blood cells are carried away by the
eluant in a separate port. To use this methodology, an initial enrichment step is required. Recovery rate is over 70%
with the viability higher than 97%; the purity obtained is low, and can be improved with additional enrichment stages.

[247,248]

Density Gradient Centrifugation

Ficoll-Paque PLUS GE Healthcare Life Sciences Sterile aqueous medium for density gradient centrifugation optimized for purification of mononuclear cells from
human peripheral blood, using a simple and rapid centrifugation technique. [249]

Lymphoprep™ StemCell Technologies, Vancouver
Density gradient medium recommended for the isolation of mononuclear cells from peripheral blood by exploiting
differences in cell density. Granulocytes and erythrocytes have a higher density than mononuclear cells and therefore
sediment through the Lymphoprep™ layer during centrifugation.

OncoQuick Greiner Bio-One, Germany,
North Carolina

Liquid separation medium designed to enrich CTC based on their density from up to 30 mL of whole blood. Cells are
separated and pass through the barrier, depending on their differentdensities during centrifugation. CTCs, together
with lymphocytes, remain above the porous barrier, making them easily accessible for subsequent collection and
further processing.

[250,251]

Microfiltration

ScreenCelltechnology (ScreenCell®) ScreenCell Company, Paris

Non-invasive filter-based technology for isolating and sorting circulating rare cells from whole blood, based on
cells-size, with a high recovery rate. By providing access to fixed or live CTC and CTC-clusters, it allows phenotypical,
genotypical, and functional characterization of cells, with different types of device, depending on the downstream
analysis to be performed.

[252,253]

Microfluidics

ClearCell® FX1 System Biolidics, Singapore

Fully automated and entirely label-free IVD medical device, which relies on a novel patented microfluidic biochip to
separate and enrich CTCs from small quantities of whole, unprocessed blood. Intact and viable CTCs are collected in a
liquid suspension, can be stained directly on the CTChip for identification or retrieved for further analysis with routine
laboratory workflows.

[254,255]

CTC Membrane Microfilter Richard Cote, Ram Datar, University
of Miami, FL

Microdevice for detection and characterization of CTC, based on a stepwise photolithography process that produces
filter with controlled-size pores, designed to exploit cell size differences between tumor cells and normal blood cells.
Combined with quantum dot-based immunofluorescence detection for CTC characterization.

[256,257]

CTC-Chip
Mehmet Toner and Daniel Haber,
Massachusetts General Hospital
(MGH) and Harvard Medical School

Microfluidic system that capture large numbers of viable CTCs in a single step from whole blood without
pre-processing steps, with high sensitivity, purity, and yield. The first microfluidic device or chip is an array consisting
of 78,000 microposts coated with EpCAM antibodies. CTCs, once attached, are visualized and confirmed as CTCs
through staining with antibodies. For CTC enumeration, the entire device is imaged using a semi-automated imaging
system, while on-chip lysis allowed for DNA and RNA extraction and subsequent molecular analysis.

[7,195,196]
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Table 2. Cont.

Assay/Technology Manufacturer Technology/Process Description Reference

Micropost CTC-Chip
Mehmet Toner and Daniel Haber,
Massachusetts General Hospital
(MGH) and Harvard Medical School

The technology provided improved yield and purity of captured CTCs isolated. To develop a robust and automated
platform capable of high-throughput complex analysis of rare cells, image processing algorithms and scoring criteria
were developed to quantify the number of captured CTCs. The digital imaging system with integration of the complete
CTC-Chip footprint provided multiplane scanning capacity, a 75% reduction in scanning time, and increased
image quality.

[26]

Herringbone CTC-Chip
Mehmet Toner and Daniel Haber,
Massachusetts General Hospital
(MGH) and Harvard Medical School

This high-throughput microfluidic mixing device constitutes an enhanced platform for CTC isolation where
microvortices significantly increase the number of interactions between target CTCs and the antibody-coated chip
surface. Cell capture efficiency of the herringbone CTC-Chip is greater, and cells recovered have higher purity
compared to micropost CTC-Chip. CTCs can be imaged using clinical histopathological stains, in addition to
immunofluorescence-conjugated antibodies.

[7,197]

CTC-iChip
Mehmet Toner and Daniel Haber,
Massachusetts General Hospital
(MGH) and Harvard Medical School

Integrated and automated microfluidic CTC capture platform, designed with two depletion modes of immunomagnetic
sorting to isolate CTCs: a positive one (EpCAM+ cells) and a negative one (CD45+ and CD14+ cells). Nucleated cells
(white blood cells and CTCs) are separated, through hydrodynamic size-based sorting, and retained and aligned
within the microfluidic channel using inertial focusing; magnetically-labeled cells are separated. Large volumes of
whole blood (8 mL per hour), with high throughput (10 million cells per second), are processed at high efficiency. This
approach enables cytopathological and molecular characterization of both epithelial and non-epithelial cancers.

[88,219,258,
259]

BioFlux Fluxion Biosciences, South San
Francisco, CA

It utilizes the Well Plate Microfluidic™ technology to embed micron-scale fluidic channels on the bottom of a standard
well plate, with a uniform and laminar flow profile, ensuring reliability and reproducibility of each experiment.
Physiologically-relevant data from cell-based assays are obtained, and data are acquired in brightfield, phase,
fluorescence, and confocal high-resolution microscopy.

[260]

Fluidigm Dynamic Arrays for
Single-Cell Gene Expression Analysis

Fluidigm Corporation, South San
Francisco, CA

Single-cell gene expression technique that, when used with the BioMark™ Real-Time PCR System, allows
high-throughput studies on individual cells and is suited to determine single-gene cell expression levels in CTCs. [261,262]

Parsortix™ cell separation system ANGLE, Guildford, United Kingdom
Patented step separation microfluidic technology to capture cells based on size and deformability, from 100 µL to 30
mL blood sample, as whole blood flows through steps within the cassette. It requires no sample pre-processing.
Examine cells under a microscope in the cassette, or reverse the flow to harvest cells in a test tube for further analysis.

[33,35,263,264]

Dielectrophoresis

DEPArray™ System Menarini Silicon Biosystems, Bologna

Cell microarray instrument for identification and recovery of individual rare cells. The DEPArray™ cartridge leverages
DEPArray™ technology to control the manipulation and collection of cells. The single-use, microfluidic cartridge
contains a control circuitry for addressing each individual dielectrophoretic (DEP) cage (cage size can be set to
accommodate a single cell). The DEPArray™ analysis platform utilizes high quality, image-based selection to allow
identification and sorting of individual, intact cells of interest by morphological parameters on the cartridge. The
automated system uses a five-channel fluorescent microscope and camera to capture images and identify cells.

[21,265–268]

Other Technologies

FASTcell™ Technology SRI Biosciences, Silicon Valley

Fluorescence cytometry based on Fiberoptic Array Scanning Technology (FAST cytometer), combined with an
automated digital microscopy imaging system. Immunofluorescently labelled CTCs, CK positive, are detected on a
glass slide using laser-printing optics, which can scan 300,000 cells per second. Rare cells detected by laser scanning up
to almost 1,000 times faster than digital microscopy.

[269,270]
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Epic Sciences CTC platform Epic Sciences, Inc.

CTC detection and enumeration in peripheral blood through protein biomarker analysis. Upon blood cell lysis,
nucleated cells are deposited on up to 12 microscope slides, immunofluorescently stained, and scanned. A digital
algorithm, which includes protein expression and morphology, differentiates CTCs from surrounding white blood cells.
CTCs are confirmed and classified as traditional CTCs, CTC clusters, CK(−) CTCs, and apoptotic CTCs. Further,
genomic analyses (DNA FISH or next-generation sequencing) are performed if required.

[271,272]

ISET® technology Rarecells Diagnostics

Unbiased label-free CTC enrichment of all types of CTC by size via vacuum filtration, with high sensitivity (96%) and
specificity (98%), maintaining cell morphological and structural integrity. Intact CTC and CTM can be isolated in a
fixed or live form and be further exposed to in vitro diagnostic analyses: cytopathological staining, ICC, IF, and
molecular analyses (bulk and single-cell).

[273,274]
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5. Conclusions

In conclusion, the reports we discussed here suggest a compelling need to address the definition
of common criteria describing critical subtypes of CTCs. During the progression of cancer, EMT can
confer properties of stem cell state and acquisition of malignant traits by more differentiated neoplastic
cells. Of clinical relevance, patients with CTCs presenting a stem cell-like or EMT phenotype respond
less to chemotherapies and show shorter progression-free survival. Detection of this type of CTC
could be a powerful diagnostic tool for patient stratification and for the early determination of failure
of a therapeutic intervention. As proof, gene signatures and stem cell–like markers expressed in
CTCs have been identified for non-invasive prognosis. The molecular targeting of CSCs and CTCs
represents a potential strategy to counteract cancer progression, and to overcome treatment resistance
and relapse. Additionally, the identification of CSC and CTC targets might contribute to addressing
the chemo-resistance of circulating CSCs, a major problem in cancer biology and therapeutics.
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