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Abstract: Ticagrelor is a powerful P2Y12 inhibitor with pleiotropic effects in the cardiovascular
system. Consistently, we have reported that in patients with stable coronary artery disease (CAD) and
concomitant chronic obstructive pulmonary disease (COPD) who underwent percutaneous coronary
intervention (PCI), 1-month treatment with ticagrelor was superior in improving biological markers
of endothelial function, compared with clopidogrel. The objective of this study was to investigate the
mechanisms underlying these beneficial effects of ticagrelor by conducting molecular analyses of
RNA isolated from peripheral blood cells of these patients. We determined mRNAs levels of markers
of inflammation and oxidative stress, such as RORγt (T helper 17 cells marker), FoxP3 (regulatory
T cells marker), NLRP3, ICAM1, SIRT1, Notch ligands JAG1 and DLL4, and HES1, a Notch target
gene. We found that 1-month treatment with ticagrelor, but not clopidogrel, led to increased levels of
SIRT1 and HES1 mRNAs. In patients treated with ticagrelor or clopidogrel, we observed a negative
correlation among changes in both SIRT1 and HES1 mRNA and serum levels of Epidermal Growth
Factor (EGF), a marker of endothelial dysfunction found to be reduced by ticagrelor treatment in
our previous study. In conclusion, we report that in stable CAD/COPD patients ticagrelor positively
regulates HES1 and SIRT1, two genes playing a protective role in the context of inflammation and
oxidative stress. Our observations confirm and expand previous studies showing that the beneficial
effects of ticagrelor in stable CAD/COPD patients may be, at least in part, mediated by its capacity to
reduce systemic inflammation and oxidative stress.
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1. Introduction

Dual antiplatelet therapy (DAPT), consisting of the co-administration of aspirin and of a P2Y12

inhibitor, is the gold standard treatment for chronic stable coronary artery disease (CAD) patients
following percutaneous coronary intervention (PCI). Among antiplatelet drugs, ticagrelor, due to its
higher efficiency in inhibiting the P2Y12 receptor, is a more potent platelet inhibitor as compared with
clopidogrel [1,2]. In acute coronary syndrome (ACS) patients, treatment with ticagrelor resulted in
a reduced number of cardiovascular events and in improved peripheral arterial function compared
to clopidogrel [3–5], suggesting that ticagrelor, beside its antiplatelet activity, modulates biological
processes involved in cardiovascular protection. In patients with stable CAD and concomitant chronic
obstructive pulmonary disease (COPD), we have shown that ticagrelor, compared with clopidogrel, is
superior in improving biological markers of endothelial function [2,6]. These benefits are consistent
with observations in patients with stable CAD and concomitant diabetes in which treatment with
ticagrelor led to higher improvement of endothelial dysfunction in comparison to ticagrelor [7]. Lastly,
unlike clopidogrel, ticagrelor retained some efficacy to prevent ischemic events over and above those
of aspirin during chronic therapy [8].

To date, the molecular mechanisms underlying these pleiotropic effects of ticagrelor have not
been elucidated, but there is evidence suggesting that they are related to inhibition of the equilibrative
nucleoside transporter-1 (ENT1) leading to increased circulating levels of adenosine and cyclic adenosine
monophosphate (cAMP) [9,10]. Adenosine, by binding adenosine receptors (ARs), regulates biological
processes involved in CAD and COPD progression including oxidative stress and inflammatory
responses [11], and functions of monocytes, neutrophils, CD4 T-helper cells, and CD8 cytotoxic T-cells,
all implicated in CAD [12,13]. Specifically, in human monocytes, adenosine reduces inflammation
through the inhibition of the expression of adhesion molecules, such as intercellular adhesion molecule 1
(ICAM1) [14]. Furthermore, in human monocyte-derived macrophages, cAMP limits inflammasome
activation by promoting LR pyrin domain containing 3 (NLRP3) degradation [15,16], this latter found
upregulated in cardiovascular disease [17]. Moreover, in several inflammatory diseases [18–21], A2aR
signaling activation has been associated to the reduction of pro-inflammatory T-helper (Th) 17 cells
and the increase of anti-inflammatory T-regulatory (Tregs) cells. Importantly, Th17/Tregs ratio has
been found to be a determinant of both CAD and COPD progression [22–25]. Furthermore, adenosine,
by downregulating the expression of Notch1 receptor, suppresses the activity of inflammatory CD8
T-cells [26], which are increased in COPD and stable CAD patients [27,28].

Dysregulation of the Notch signaling, a major regulator of cardiovascular homeostasis and
of innate and adaptive immune response, has been observed in cardiovascular diseases [13,29].
Specifically, altered levels of Notch ligands JAGGED-1 (JAG1) and Delta-like 4 (DLL4) have been
linked to the progression of atherosclerosis [30,31]. Of interest, altered expression levels of Notch1
and its target gene HES1 have been associated to COPD [32,33]. The Notch pathway is regulated by
cross-talks with a plethora of pathways [34,35] including the NAD+-dependent protein deacetylase,
sirtuin1 (SIRT1), an oxidative stress sensor [36] and a repressor of inflammatory response [37], whose
expression and activity is reduced in peripheral blood mononuclear cells (PBMCs) of stable CAD,
ACS [38], and COPD [39] patients.

Many studies have investigated the possible molecular mechanisms underlying the pleiotropic
activity of ticagrelor in ACS [40–43] and SCAD [7] providing evidence of a ticagrelor-mediated increase
in circulating levels of adenosine and cAMP [10,44–47]. Additionally, several studies have also focused
on the effects of ticagrelor on circulating inflammation markers [48–51]. The aim of our study was
to expand the comparison between ticagrelor and clopidogrel to include the effects of treatment
on markers of inflammation related to endothelial dysfunction (Supplementary Figure S1) never
investigated in this context, in order to provide more molecular details that could help to gain a better
understanding of the pleiotropic effect of ticagrelor on the vascular system.
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2. Results

2.1. Ticagrelor, But Not Clopidogrel, Increases SIRT1 and HES1 mRNA Levels

We compared the mRNA expression levels of RORγt (Th17 cells transcription factor), FoxP3 (Tregs
transcription factor), NLRP3, ICAM1, SIRT1, Notch ligands JAG1 and DLL4, and of HES1, Notch target
gene, in RNA isolated from peripheral blood cells obtained from stable CAD/COPD patients following
PCI before (T0) and after 1-month (T30) treatment with ticagrelor or clopidogrel. At T0, mRNA levels
of RORγt, FoxP3, NLRP3, ICAM1, and JAG1 did not differ between the treatment groups (Figure 1A–E),
whereas HES1 mRNA levels were lower in ticagrelor, compared to clopidogrel (Figure 2B). In both
ticagrelor- and clopidogrel-treated groups, we found no significant differences between T0 and T30
in the levels of RORγt, FoxP3, NLRP3, ICAM1, and JAG1 mRNAs (Figure 1A–E). The results relative
to DLL4 mRNA are not shown because the expression level of this ligand was too low to provide a
reliable assessment of the expression of this gene.

SIRT1 and HES1 mRNAs were significantly increased at T30 compared to T0 following ticagrelor
but not clopidogrel treatment (Figure 2A,B). Before–after analyses showed that unchanged levels
of RORγt, FoxP3, NLRP3, ICAM1, and JAG1 mRNAs between T0 and T30 were not due to lack of
response of these genes expression to each drug, but rather to a heterogeneous response characterized
by similar number of patients showing no difference, increased or reduced levels of the specific mRNA
in response to treatment (Supplementary Figure S2A–F). Instead, the response of SIRT1 to ticagrelor
showed prevalently no changes (10/20 patients) or increased (8/20 patients) mRNA levels and reduced
levels only in 2/20 patients. On the contrary, in the clopidogrel group the changes in SIRT1 mRNA were
equally distributed between patients showing no changes (8/21), increased (6/21), or reduced levels
(7/21) of mRNA (Figure 3A). Similarly, in the ticagrelor group HES1 mRNA increased in 15/21 patients
and was unchanged in 1/21 patients or decreased in 5/21 patients. In the clopidogrel-treated group the
levels of HES1 mRNA were increased in 8/21 patients, decreased in 9/21 patients, or unchanged in 4/21
patients (Figure 3B).

Figure 1. Droplet digital (dd) PCR based analysis of the expression of inflammation- and oxidative
stress-related genes in peripheral blood cells of stable coronary artery disease (CAD)/concomitant
chronic obstructive pulmonary disease (COPD) patients following 1-month treatment with ticagrelor
and clopidogrel. Scatter plots, with medians, of the expression levels of RORγt (A), FoxP3 (B), NLRP3
(C), ICAM1 (D), and JAG1 (E) are shown. The absolute quantity of cDNA (copies/µL) was normalized
to the average number of copies of GUSB. Follow up vs. baseline gene expression values, ANOVA test.
Comparison of gene expression levels at baseline, student t test.
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Figure 2. Droplet digital (dd) PCR based analysis of the levels of SIRT1 and HES1 mRNA in peripheral
blood cells of stable CAD/COPD patients following 1-month treatment with ticagrelor or clopidogrel.
Scatter plots, with medians, of the expression levels of SIRT1 (A) and HES1 (B) in peripheral blood cells
of stable CAD/COPD patients following 1-month treatment with ticagrelor or clopidogrel. The absolute
quantity of cDNA (copies/µL) was normalized to the average number of copies of GUSB. Follow up vs.
baseline gene expression values, ANOVA test, * p < 0.05 and ** p < 0.01. Comparison of gene expression
levels at baseline, student t test, ** p < 0.01.

Figure 3. Before-after analysis of SIRT1 and HES1. Before-after plot of SIRT1 (A) and HES1 (B) gene
expression in peripheral blood cells from patients before and after one month of treatment with
clopidogrel or ticagrelor. For clarity, only changes in gene expression higher than 20% of the values at
baseline are connected and color-coded (red for fold changes >1.2 and blue for <0.8).

Severity of diseases, co-morbidities, and pharmacological treatment can determine differences
in gene expression. Furthermore, drug interaction may modulate ticagrelor concentration and
therefore effectiveness of the treatment [52]. To identify possible associations between disease severity,
comorbidity or drug treatment, we performed correlation analyses between these variables and changes
in SIRT1 or HES1 after a 1-month treatment. Interestingly, we found that being a man is associated
with an increase in SIRT1 expression after treatment (R = 0.357; p = 0.022). We also found an inverse
association between the variations of SIRT1 and treatment with inhaled corticosteroids (R = −0339;
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p = 0.003) or long-acting beta2 agonist (R = −0.311; p = 0.048) (Supplementary Figure S3). These data
show that men respond better than women to ticagrelor with regard to SIRT1 expression and suggest
that drugs for the management of COPD may affect the effectiveness of treatment with ticagrelor.
On the contrary, we found no association between other co-morbidities, COPD severity, and treatment
response. Due to the high homogeneity of patients with stable CAD and the relative small study
population, it was not possible to stratify patients according to CAD severity.

2.2. Correlation Analyses Between SIRT1 and HES1 mRNA Levels and Markers of Endothelial Dysfunction in
Treated Patients

Endothelial dysfunction (ED) comprises alterations of the endothelial cell (EC) physiology
(including increased expression of pro-inflammatory cell adhesion molecules (CAMs), such as
intercellular adhesion molecule-1 (ICAM1) and vascular cell adhesion molecule-1 (VCAM1), impaired
nitric oxide (NO) production and signaling, EC apoptosis, and increased vascular permeability) that
can be reflected in changes in the serum of patients. We have developed an ex-vivo assay to determine
the levels of apoptosis in the endothelium of patients. The assay involves the determination of the
number of annexin V/propidium iodide positive apoptotic human umbilical vein endothelial cells
(HUVECs) following 48 h of cultivation in the presence of medium containing 20% of patients’ serum.
We have shown that the levels of apoptosis in HUVECs treated with serum from stable and acute CAD
patients reflect the gravity of the disease [53,54]. Furthermore, we have reported that this assay can
reliably detect a reduction in apoptosis in HUVECs treated with serum from stable CAD/COPD patients
following treatment with ticagrelor [6] or from subjects with hypercholesterolemia and low-moderate
cardiovascular risk, following eight weeks consumption of a red yeast rice, polymethoxyflavones,
and antioxidants containing nutraceutical supplement [55]. In another study by our group, this
approach was used, in parallel with measurements of changes in brachial wall shear stress and flow
mediated dilation, to assess ED in patients that underwent surgical or transcatheter aortic valve
replacement [56]. Of relevance, in stable CAD/COPD patients, following ticagrelor treatment we
also found decreased serum levels of epidermal growth factor (EGF), increased NO generation in
HUVECs treated with patient’s serum, measured by diaminofluorescein (DAF) assay, and attenuated
reactive oxygen species (ROS) production in PBMC isolated from patients, assessed by flow cytometric
analysis [2,6]. In order to determine whether the observed changes of SIRT1 and HES1 mRNA could be
related to these markers of endothelial function, and whether the different effect of the drugs on SIRT1
and HES1 mRNA could be explained by differences in antiplatelet activity, we conducted association
analyses between changes in SIRT1 and HES1 mRNA and changes in the levels of EGF, ROS, apoptosis,
NO and platelets reactive units (PRU) after 1-month treatment (changes were defined as the ratio
between values at T30 over values at T0).

Following treatment with ticagrelor or clopidogrel, we found correlations between changes in
HES1 and SIRT1 mRNA levels and changes in the levels of EGF (HES1, R = −0.469, p < 0.01; SIRT1,
R = −0.440, p < 0.01) (Figure 4A). In addition, changes in HES1 mRNA levels also correlated with
changes in SIRT1 mRNA levels (R = 0.466, p < 0.01) (Figure 4B). On the contrary, we found no correlation
among changes in HES1 or SIRT1 and ROS (HES1, R = −0.150, p = 0.36; SIRT1, R = −0.78, p = 0.65),
apoptosis (HES1, R = 0.176, p = 0.27; SIRT1, R = 0.077, p = 0.63) and NO (HES1, R = 0.002, p = 0.99;
SIRT1, R = −0.05, p = 0.76). Similarly, no correlation was found between changes in HES1 or SIRT1
mRNA and changes in the levels of PRU (HES1, R = −0.163, p = 0.31; SIRT1, R = −0.207, p = 0.20).
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Figure 4. Correlation analyses. (A) Correlation between changes in SIRT1 and HES1 mRNA expression
levels and changes in serum levels of Epidermal Growth Factor (EGF). Correlations were assessed by
Spearman’s correlation test (HES1, R = −0.469, p < 0.01; SIRT1, R = −0.440, p < 0.01). (B) Correlation
between changes in HES1 and SIRT1 mRNA expression levels. Correlations were assessed by Spearman’s
correlation test (R = 0.466, p < 0.01). SIRT1 and HES1 changes were defined as ratio between mRNA
levels after (T30) and before (T0) treatment with ticagrelor or clopidogrel. EGF changes were expressed
as ratio between serum EGF concentration at T30 over serum EGF concentration at T0.

3. Discussion

Although concerns remain as to dosage equivalence, the PLATO (PLATelet inhibition and
clinical Outcome) trial results showed that ticagrelor is superior to clopidogrel in preventing ischemic
events in patients with acute coronary syndrome (ACS) [5]. To test the effect of ticagrelor over
clopidogrel in patients with CAD, we selected a population of patients with stable CAD and chronic
inflammation supported by the presence of a COPD diagnosis. COPD is a well-known chronic
condition associated with inflammation and ED [57,58]. A similar approach has already been used in
the study of Mangiacapra et al. who enrolled patients with stable CAD and type 2 diabetes to study the
effect of ticagrelor and clopidogrel on endothelial function. In this case, diabetic patients were selected
because they are a well-established subgroup of patients with ED, independently by cardiologic
clinical presentation [7]. The choice to investigate the effects of ticagrelor on ED is in apparent contrast
with a study showing that the anti-aggregatory effects of ticagrelor are less pronounced during acute
inflammation [59], but is supported by data showing pleiotropic effects of ticagrelor beyond its potent
antiplatelet effects [60,61]. Consistently, we found reduced levels of surrogate markers of endothelial
dysfunction in patients with stable CAD and concomitant COPD following PCI and 1-month treatment
with ticagrelor, but not with clopidogrel [6]. We now report that, in the same patients, treatment
with ticagrelor, but not with clopidogrel, results in increased of levels of SIRT1 and HES1 mRNAs in
peripheral blood cells.

Ticagrelor, unlike clopidogrel, has antiplatelet- and P2Y12-independent activities that seem to
involve increased levels of adenosine/cAMP in plasma able to reduce both systemic inflammation
and oxidative stress [9,10], although a single study has shown that ticagrelor is not able to increase
adenosine circulating levels [62]. In order to gain more insights on the molecular pathways modulated
by ticagrelor, we determined, in RNA isolated from peripheral blood cells of stable CAD patients
following PCI, the effect of 1-month treatment with ticagrelor or clopidogrel on mRNA expression levels
of inflammation- and oxidative stress-related genes, such as ICAM1, NLRP3, SIRT1, JAG1, DLL4, HES1,
RORγt (Th17 marker), and FoxP3 (Tregs marker). Among the mRNAs analyzed, we found an increase
of SIRT1 mRNA levels after treatment with ticagrelor but not clopidogrel. Specifically, we found that,
although the number of patients with increased levels of SIRT1 were comparable in both treatment
groups (6/21 in clopidogrel and 8/20 in ticagrelor), in the ticagrelor-treated group, only 2/20 patients
showed a significant reduction of SIRT1 levels, which instead was detected in 7/21 patients treated
with clopidogrel (Figure 3A). Our results, suggesting that ticagrelor may counteract SIRT1 reduction in
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RNA from peripheral blood of stable CAD/COPD patients, are consistent with previous reports of
reduced activity of SIRT1 in serum of COPD patients [39] and inhibition of SIRT1 gene in peripheral
monocytes in ACS and stable CAD patients [38]. SIRT1, one of the class III NAD+-deacetylases sirtuin
family [63], has gained great attention for its impact on the regulation of aging-related processes [36].
SIRT1 blunts inflammatory response and oxidative stress mainly through the deacetylation of target
proteins, such as Forkhead box O3 A (Foxo3a) [64], activator protein-1 (AP-1) [65], nuclear factor kappa
B (NF-κB) [66], Notch1 [67,68], and NLRP3 [69]. Furthermore, SIRT1 interferes with Toll-like receptor
(TLR) 2- mediated monocyte adhesion to the vascular endothelium, an early step in the pathogenesis of
CAD [70]. Of interest, SIRT1 genetic overexpression significantly decreased oxidative stress in cigarette
smoke-exposed rodent lungs [71].

We also found increased expression of HES1 in more than a half of ticagrelor-treated patients
(15/21), compared to the clopidogrel group, in which the number of patients with increased or decreased
HES1 mRNA levels were similar (8/21 and 9/21, up- and down-regulated, respectively) (Figure 3B).
HES1, a transcription factor belonging to the Hairy and Enhancer of Split (HES) family, is required
for differentiation of T and B cells [72] and plays a major role in the reduction of inflammation and
neutrophil-mediated responses by controlling production of macrophage-derived chemokines [73,74].
In macrophages, HES1 functions as a feedback inhibitor of production of pro-inflammatory cytokines,
such as IL (Interleukin)-6 and IL-12 [75,76]. HES1 is a target gene and essential transducer of the
Notch pathway, implicated in the regulation of cell fate decisions, such as differentiation, proliferation
and survival [77]. The Notch pathway is triggered by the interaction between the Notch receptors
(Notch 1–4) and ligands (DLL1, 3, 4 and JAGGED-1, -2), on adjacent cells, leading to the release of the
active form of Notch which translocates into the nucleus, where it promotes the transcription of its
target genes [77]. Notch regulates heart and vascular functions during development and is involved in
the repair of the damaged and/or stressed myocardium [29,78,79]. Dysregulation of the Notch pathway
has been linked to atherosclerosis [80,81] and to COPD [82]. In COPD patients, reduced levels of
NOTCH1 and HES1 have been shown in the endothelium [33] and in the airways epithelium [32].

Our data, analyzed in the context of the existing literature, suggest that increased levels of SIRT1
and HES1 in RNA of peripheral blood cells of stable CAD/COPD patients may be part of the protective
action of ticagrelor. Of interest, we found a positive correlation between changes of SIRT1 and HES1
mRNA levels after the treatment with ticagrelor or clopidogrel (Figure 4B). Little is known about SIRT1
and HES1 interaction. SIRT1 physically interacts with HES1 leading to stimulation of its role as negative
regulator of transcription [83], whereas in neural stem cells SIRT1 through inhibition of HES1 expression
mediates response of the cell to glucose [84] and induces their differentiation [85]. The biological
meaning of this association in the context of ticagrelor/clopidogrel treated stable CAD/COPD patients
deserves further studies.

Correlation analysis showed that SIRT1 and HES1 changes were not associated to changes in
platelet activity, indicating that the ticagrelor effect on these parameters is not directly related to
the inhibition of P2Y12. On the contrary, changes in both mRNA SIRT1 and HES1 levels negatively
correlated with changes in EGF levels (Figure 4A). High levels of EGF and its receptor EGFR have
been detected in lung tissue specimens of COPD patients [86] and high airway immunoreactivity has
been associated to mucin hypersecretion in COPD [87]. EGF is involved in endothelial dysfunction,
neointimal hyperplasia, cardiac hypertrophy and remodeling [88] and, as shown by us, reduction in
circulating levels of EGF could be involved in the ticagrelor-mediated improvement of endothelial
function in stable CAD/COPD patients [2]. The cross-talk between EGF and Notch signaling is well
characterized: EGF and Notch pathways can cooperate in either synergistic or antagonistic fashion
in malignancies [89] and the EGF, via EGFR, acts as a negative regulator of HES1 expression in
keratinocytes [90]. On the contrary, little is known on the cross-talk between EGF/SIRT1. In cancer,
SIRT1 is upregulated during EGF-mediated epithelial-to-mesenchymal transition [91], while in vascular
smooth muscle cells, resveratrol, a SIRT1 stimulator, interferes with EGF-induced ROS production [92].
The negative correlation found in this study may be suggestive of a cross-talk among EGF, SIRT1,
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and/or HES1 in peripheral blood of stable CAD/COPD patients, according to which ticagrelor-mediated
EGF-reduction may lead to the induction of SIRT1/HES1 axis.

A limitation of this study is represented by the use of RNA isolated from whole peripheral
blood, which contains different cell types (lymphocytes, monocytes, and granulocytes). Therefore,
no conclusions can be drawn with respect to the molecular mechanism involved in SIRT1 and HES1
upregulation, which could be due to the effect of the drug either on the expression of these genes or on
the size of specific populations of cells expressing these genes. The use of whole blood could have also
reduced the sensitivity of our assay, thus allowing the detection, at follow up, of significant changes in
the expression of SIRT1 and HES1 but of none of the other genes analyzed (RORγt, FoxP3, NLRP3,
ICAM1, JAG1, and DLL4).

Another limitation is the lack of information on the deacetylase activity of SIRT1 in our samples
that, as shown by Conti and collaborators, would have provided more specific information, compared
to the mRNA, about the role of SIRT1 [39] in mediating the pleiotropic effects of ticagrelor in stable
CAD/COPD patients. This limitation could explain the lack of association between changes in SIRT1
mRNA and neither the other inflammation markers investigated (NLRP3, ICAM1, RORγt, and FoxP3),
known to be regulated by SIRT1 [64,66,67,69] nor the surrogate markers of endothelial function
(apoptosis, ROS and NO levels), previously found by us to be reduced by ticagrelor treatment [6].

A third limitation of the study is represented by the relatively small number of patients and by
the impossibility to conduct statistical power analysis due to lack of published data on the effects of
ticagrelor/clopidogrel on the expression of the studied genes. Therefore, this should be considered
a pilot study, providing information for future studies aimed to validate our findings, which could
be relevant not only for dissecting the mechanism of action of ticagrelor but also for providing novel
blood markers (SIRT1 and HES1 mRNA) able to predict whether the single patient will benefit of
effects of ticagrelor beyond its antiplatelet activity.

4. Material and Methods

4.1. Study Design and Population/Randomization and Interventions

This is a sub-study of the clinical trial “The comparisoN between ticAgrelor and clopidogrel
effect on endoTHelial platelet ANd iNflammation parameters in patiEnts with stable coronary
artery disease and chronic obstructiVE pulmonaRy disease undergoing percutaneous coronary
intervention (NATHAN-NEVER)” registered at www.clinicaltrials.gov (NCT02519608, September 2015).
The protocol was approved by “Comitato Etico Unico della Provincia di Ferrara”. Written informed
consent was given by all subjects in accordance with the Declaration of Helsinki. This study was
an investigator-initiated, prospective, single-center, randomized, open-label phase II trial involving
46 consecutive patients with stable coronary artery disease requiring coronary artery angiography
(CAA) and PCI, and concomitant COPD. The diagnosis of COPD was based on spirometry data
according to international guidelines and in particular by the presence of not fully reversible airflow
limitation defined as a ratio between forced expiratory volume at 1 s (FEV1) and forced vital capacity
(FVC) ratio < 0.7 after the administration of a bronchodilator [93]. An independent blinded reviewer
analyzed spirometry and documentation available to confirm COPD diagnosis and to adjudicate severity
of airflow limitation based on post-bronchodilator FEV1 (from mild to very severe). Patients were
randomly assigned to receive clopidogrel (n = 23) or ticagrelor (n = 23) on top of standard therapy
with aspirin. The primary endpoint of the study was the 1-month rate of HUVECs apoptosis and the
rate of apoptosis after 1 month was significantly lower in patients treated with ticagrelor (7.4 ± 1.3%
vs. 9.3 ± 1.5%, p < 0.001), satisfying the pre-specified primary endpoint [6]. The study design,
the characteristics of the study participants, including the severity of both diseases, comorbidities,
and drug treatment, the outcomes of this trial are described in [6].

www.clinicaltrials.gov
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4.2. Blood Samples

A 21-gauge needle was used to collect blood samples from an antecubital vein of patients before
PCI and drug administration, and at the 1-month visit. Details of the sampling procedures are reported
in [6]. After the withdrawal, blood samples were stored frozen until RNA extraction.

4.3. RNA Isolation and cDNA Synthesis

RNA was isolated from blood samples using the QIAamp RNA Blood Mini Kit (Qiagen, Carlsbad,
CA, USA). One volume of blood was mixed with 5 volumes of buffer EL (erythrocyte lysis) and
incubated for 10 to 15 min on ice, vortexing briefly 2 times during incubation to selectively lyse
red blood cells. White cells were then collected by centrifugation at 400× g for 10 min at 4 ◦C and
supernatant was removed. White cells were lysed using highly denaturing conditions to inactivate
the RNases. After homogenization using the QIAshredder spin column, the sample was applied to
the QIAamp spin column. Total RNA binds to the QIAamp membrane and contaminants are washed
away, leaving pure RNA to be eluted in 30–100 µL RNase-free water. RNA concentration and purity
were determined by NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA,
USA). RNA was treated with the RNase-Free DNase Set (Qiagen, Carlsbad, CA, USA), in order to
eliminate DNA contamination. The 100 ng of total RNA were reverse transcribed to cDNA using the
SuperScript™ III First-Strand Synthesis SuperMix (Life Technologies, Carlsbad, CA, USA).

4.4. Droplet Digital PCR Reaction

For droplet digital (dd) PCR, 2 µL of cDNA (1 ng/µL) were used in each reaction. 20 µL of a
solution containing cDNA, primers and QX200™ ddPCR™ EvaGreen Supermix (Bio-Rad, Hercules,
CA, USA) were used for droplets preparation using a Bio-Rad QX200 droplet generator (Bio-Rad,
Hercules, CA, USA). Emulsified samples were transferred to a 96-well plate, sealed with the PX1
PCR plate sealer (Bio-Rad, Hercules, CA, USA) and amplified using the SimpliAmp thermal cycler,
(Applied Biosystems, Waltham, CA, USA). The parameters for ddPCR were: 95 ◦C enzyme activation
step for 5 min followed by 40 cycles of a two-step cycling protocol (95 ◦C for 30 s and 60 ◦C for 1 min).
The sequences of primers used are shown in Supplementary Table S1. At the end of thermal cycling,
a QX200 droplet reader (Bio-Rad, Hercules, CA, USA) was used to quantify the number of generated
droplets from each reaction mix. Expression data was extracted using QuantaSoft software (Bio-Rad,
Hercules, CA, USA) and the absolute quantity of cDNA per sample (copies/µL) was normalized to the
average number of copies of GUSB (β-glucuronidase) mRNA in each sample.

4.5. Statistical Analysis

Normal distribution of the variables was verified with the D’Agostino–Pearson normality
test and with the Shapiro–Wilk test (alpha = 0.05). Variables were presented as scatter plot with
median. Outliers were identified and removed. Normally distributed variables were checked for
homoscedasticity by Levene test. Follow up toward baseline groups were compared employing
repeated measures ANOVA to take into account for samples dependency. Student t test for independent
measures was employed to test statistical significance in the mean differences of gene expression
levels at baselines between treatments. p-values ≤ 0.05 were considered statistically significant.
Correlations between continuous variables were tested by Spearman’s correlation coefficient correlation.
Correlation of baseline categorical variables and gene expression was tested by point-biserial correlation.
Statistical analysis was performed with GraphPad Prism version 7.0 (GraphPad software Inc., San Diego,
CA, USA) and R (R Foundation for Statistical Computing, Vienna, Austria, 2019).

5. Conclusions

In conclusion, we showed that the effect of ticagrelor related to the mitigation of endothelial
dysfunction in stable CAD/COPD patients may be mediated, at least in part, by its capacity to increase
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SIRT1 and HES1 mRNAs levels (Supplementary Figure S1). These findings are consistent with studies
suggesting that the pleiotropic effects of ticagrelor on the vascular system may be ascribed to a reduction
of systemic inflammation and oxidative stress.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/5/1576/s1.
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