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Abstract

We study the nonlinear almost compressible 2D Oberbeck-Boussinesq system, characterized
by an extra buoyancy term where the density depends on the pressure, and a corresponding
dimensionless parameter β, proportional to the (positive) compressibility factor β0. The local
in time existence of the perturbation to the conductive solution is proved for any “size” of the
initial data. However, unlike the classical problem where β0 = 0, a smallness condition on
the initial data is needed for global in time existence, along with smallness of the Rayleigh
number. Removing this condition appears quite challenging and we leave it as an open
question.

1 Introduction

In modeling convective phenomena, almost all available results of existence, stability etc., are
achieved in the Oberbeck-Boussinesq (O-B) approximation [1, 8, 11, 18, 15, 17, 7]. As is well
known, in spite of the need of compressibility to produce convection , the peculiarity of this
approximation consists in keeping the incompressibility hypothesis ∇ · ~v = 0 (with ~v velocity
field of the fluid), while allowing for (linear) variation of density with temperature only in the
term involving the external force (gravity). It must be noted that the O-B model is pretty
accurate even for gas flow, though the corresponding instability prediction occurs at a threshold
lower than that suggested by experiments.

However, in the recent paper [9] it was shown that the O-B model presents some basic
drawbacks. In the first place, it was noticed that any change in the density would be at odds with
the Gibbs law, if dependence on p was not taken into account; in addition, such a dependence
was also necessary in order to avoid instability in wave propagation.

Thus, in order to make the O-B model more ”natural” and accurate, in [9], among other
things, it was proposed a rather general approach, consistent with thermodynamical principles,
that includes an extra buoyancy term depending on the pressure field. In other words, the
variation of the density, ρ in the gravity force has the following expression

ρ = ρ0(1− α0(T − T0) + β0(p− p0))
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where T , p, are temperature and pressure fields, Moreover, ρ0, T0 and p0 are (constant) gauge
density, temperature and pressure while α0 and β0 are respectively the thermal expansion coeffi-
cient and the compressibility. We assume they are positive constants depending on the material.
The classical O-B approximation is then re-obtained by setting β0 = 0.

One important consequence of this more comprehensive scheme is that the well-posedness
of the associated mathematical problem requires now the pressure field to be treated as an
independent unknown, satisfying a suitable elliptic problem and subject to Robin boundary
conditions, see [3]

∇p · ~n+ β0p = 0, on ∂Ω,

where ~n is the outer normal.
It is just this feature that makes the problem particularly interesting and more difficult than

the classical one.
In order to test some significant aspects of the generalized model, in the joint paper [16],

the second author has investigated its stability predictions in the simple physical setting of
the classical Bénard problem of a horizontal layer of fluid heated from below. Here, the basic
state s0 = (~v, T, p)0, consists of the fluid at rest, subject to a constant temperature gradient
and a suitable corresponding pressure distribution. More precisely, denoting by z the vertical
coordinate, h the thickness of the layer, g the gravity, and T0 and T0−δT < T0 the temperatures
at the bottom and the top of the layer, we have that s0 is characterized by

~v ≡ 0 , T (z) = T0 −
δT

h
z

p(z) = p0 + p
b
e−ρ0gβ0z +

1

β20

α0δT

ρ0gh

(

1− e−ρ0gβ0z
)

− 1

β0

(

α0δT

h
z + 1− e−ρ0gβ0z

)

,

(1.1)

where the constant p0 is a gauge pressure, while p
b
is a prescribed value arising from the appro-

priate boundary condition on p. Notice that this basic solution is peculiar of the new model and
reduces to that of the O-B one formally taking β0: the first bracket tends asymptotically to the
first term of the second bracket. The main result proved in [3] states that, in the linear stability
framework, convective rolls set in at a Rayleygh number (basically, temperature gradient) less
than the critical value predicted by the classical model. This result is shown under ”stress-free”
boundary conditions on ~v, which we shall also adopt throughout this paper.

The main objective of this article is to perform a nonlinear analysis of the stability of
the basic flow (1.1) and, as a necessary requirement, to investigate the well-posedness of the
associated initial-boundary value problem for the perturbation fields. We shall be concerned
with 2D perturbations. The reason of this choice is because, unlike the analogous problem for
the classical O-B model, this case already presents an unusual feature. More precisely, the proof
of global existence of strong solutions can be seemingly obtained only by restricting the size of the
energy –namely, the L2-norm– of the initial data (and, of course, of the relevant dimensionless
parameters). As a matter of fact, even the existence of weak solutions appears difficult to
establish, because of lack of a uniform bound of the energy on a time interval of arbitrary
length. The reason for this unexpected, somehow, situation is due to the fact, mentioned earlier
on, that the pressure is now an independent unknown satisfying a suitable elliptic problem
under Robin boundary conditions. More importantly, it enters the linear momentum equation
no longer just in a gradient form (see (2.1)2). We leave it as an interesting open question whether
global weak and/or strong solutions can be obtained without restricting the size of the initial
data. In fact, it would be of some interest to find out whether smallness of the initial energy is
just a mathematical requirement, or else a necessary physical property.
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It is worth remarking that the extension of our result to the 3D case, under analogous restric-
tions on the initial data, does not present conceptual difficulties and will be treated elsewhere
[14].

The plan of the paper is as follows: in Section 2 we formulate the nonlinear stability problem,
moreover, we recall some previous findings and prove a number of basic properties for the
pressure field. In particular, we show unique solvability for the pressure equation, on condition
that the material constant β is less than 2π. Notice that such a restriction was also needed in
the linear analysis [3]. In the subsequent Section 3 we devote our effort to the proof of existence
for the nonlinear perturbation problem. We exploit the usual techniques of functional analysis
applied to the study of this type of questions [2, 7, 12, 13]. In particular, we derive several a
priori “energy” estimates and couple them with the classical Gälerkin method with a special
basis, to prove existence of solutions. For all Rayleigh numbers and initial data of arbitrary
“size”, it is shown that a strong solution (in the sense of Ladyzhenskaya; see e.g. [12]) does exist
for some time interval [0, T ) where T can be estimated in terms of the initial data. However, if
only the L2-norm of these data is sufficiently small and the Rayleigh number is below a certain
constant, then we can take T = ∞. Furthermore, we show that, in such a case, all solutions must
decay to zero, as time increases, exponentially fast, thus also proving the nonlinear stability of
the state (1.1).

2 Preliminary results

We begin to introduce some notation. We recall that the layer is bounded in the z (vertical)
direction and unbounded and invariant in the x-direction. The observed convective rolls are also
invariant in the y-direction and can be described by x-periodic functions. Then, the relevant
region of flow can be written in non-dimensional variables as

Ω := {(x, y, z) ∈ R
3 : z ∈ (0, 1)}.

Since we are interested in 2D flow, we restrict the spatial domain to the periodicity cell Ω0 =
{(x, z) ∈ (0, 1) × (0, 1)}.

Definition 2.1. (Mean value of f)

〈f〉 = 1

|Ω0|

∫

Ω0

f(x, z, t) dx dz

For the derivates we write ∂ξφ := ∂φ
∂ξ (:= φξ) for any variable ξ ∈ {x, z, t} and analogously

for higher order derivates. We denote the material derivate by d
dt or by a superposed dot.

The starting point of our analysis is the (nondimensional) system governing the evolution of the
perturbation (~v, τ, P ) to the basic state (1.1), see [3, pag. 5]:















∇ · ~v = 0,
1
Pr

(

∂~v
∂t + ~v · ∇~v

)

= −∇P − βP~k +∆~v +Ra τ~k,

∂τ
∂t + ~v · ∇τ −∆τ = ~v · ~k,

(2.1)

where ~k is the upward unit vector and P = p−p(z), with p(z) given in (1.1). Moreover, Pr := ν
D

and Ra := α0gδTh3

νD are Prandtl and Rayleigh numbers, D is the diffusivity, while β := ρ0gβ0h.
We endow the above system with stress-free boundary conditions for the velocity field ~v and
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(homogeneous) Dirichlet boundary condition for τ . Thus, we obtain the following set of side
requirements

vz(x, 0, t) = vz(x, 1, t) = 0, (2.2)

vxz (x, 0, t) = vxz (x, 1, t) = 0, (2.3)

τ(x, 0, t) = τ(x, 1, t) = 0. (2.4)

By taking the divergence of (2.1)2 one necessarily get an equation for P as unknown

∆P + βPz = − 1

Pr
∇ · (~v · ∇~v) + Ra τz (2.5)

with Robin’s boundary conditions

Pz(x, 0, t) + βP (x, 0, t) = Pz(x, 1, t) + βP (x, 1, t) = 0. (2.6)

Herein, we are going to show that the existence of a solution P for this problem is also sufficient
to solve (2.1). To this end, as done in [3], we set Π = Peβz and face the system















∆Π− βΠz = − 1
Pre

βz∇ · (~v · ∇~v) + Ra eβzτz,
1
Pr

(

∂~v
∂t + ~v · ∇~v

)

−∆~v = −∇(e−βzΠ)− βe−βzΠ~k +Ra τ~k,

∂τ
∂t + ~v · ∇τ −∆τ = ~v · ~k,

(2.7)

still with conditions (2.9), (2.2), (2.4) and with Neumann conditions for Π on ∂Ω:

Πz(x, 0, t) = Πz(x, 1, t) = 0. (2.8)

We underline that one can not get rid of (2.5) in the present context, which is a full coupling
context, so that (2.5) has to be inserted in system (2.1). Notice that t is just a parameter for
the elliptic problem given by (2.7)1 and (2.8) for data (~v, τ).

In addition, we shall assume periodicity in the x-direction. Finally, we append the initial
conditions:

(~v(x, z, 0), τ(x, z, 0)) = (~v0(x, z), τ0(x, z)). (2.9)

We are going to prove the existence for Π in

F := {p ∈ L2(Ω0) : 〈p〉 = 0, periodic in x, ∂zΠ = 0 in z = 0, 1}.

In F for (m,n) ∈ N0 ×N0 we have the basis

φimn(x, z) =

{

cos(2πmx) cos(πnz) if i = 1,

sin(2πmx) cos(πnz) if i = −1.
(2.10)

Remark 2.1. All the functions in this basis have mean value zero.

For the ”temperature” field τ and the stream function ϕ, associated to ~v by

vx = −ϕz vz = ϕx ,

we can use

ξimn(x, z) =

{

cos(2πmx) sin(πnz) if i = 1,

sin(2πmx) sin(πnz) if i = −1.
(2.11)
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In the periodicity cell, which is bounded, we use the Lebesgue and Sobolev spaces which are
denoted by Lq (with the norm ‖.‖q) and W l,q (with the norm ‖.‖l,q).

We construct Sobolev spaces starting from bases (2.10) and (2.11). We define W k,2
N (Ω0),

k = 0, 1, 2 as the closure with respect to the W k,2(Ω0)-norm of finite combinations of elements

of the basis (2.10). We denote by W k,2
D the subspace generated by the closure of the linear

hull of (2.11) in the W k,2(Ω0)-norm, for k = 0, 1, 2. Analogously, we denote by W
k,2
D (Ω0) with

k = 0, 1, 2 the linear hull of of the vectorial divergence free functions obtained from (2.11) taken
as stream functions, and afterwards closed by the W k,2(Ω0)-norm for k = 0, 1, 2. If k = 0 we
denote these spaces as HD(Ω0) and HD(Ω0), respectively.
As customary, in L2(Ω0) we use the scalar product

(u, v) :=

∫

Ω0

uv dx dz.

We recall the Bochner spaces Lq((0, T );Wm,p(Ω0)), i.e. Lq functions on the interval (0, T )
defined in the Sobolev space Wm,p(Ω0) with norm

|u|q,m,p :=
(

∫ T

0
‖u(t)‖qm,p dx

)
1

q

,

|u|∞,m,p := esssup
t∈[0,T ]

‖u(t)‖m,p.

We also recall some inequalities, holding true in Ω0: the Poincaré inequality ([3, pag. 12])
for Π:

‖Π‖2 ≤ 1

2π
‖∇Π‖2,

the Poincaré inequality for the vectorial field ~v, which can be found in [5],

‖~v‖2 ≤ ‖∇~v‖2,
and for τ (see [3]):

‖τ‖2 ≤ 1√
5π

‖∇τ‖2.

Moreover, in order to deal with the nonlinearities in two dimensions, use will be made of La-
dyzhenskaya’s inequality (see [5]):

‖~v‖4 ≤
(

1√
2

)

1
2

‖~v‖
1
2

2 ‖∇~v‖
1
2

2

Moreover, we know that the norms of ∂xx, ∂yy are equivalent to the full set of the second deriva-
tives. In particular

1

16
‖∆~v‖2 ≤ ‖D2~v‖2 ≤ 1

4
‖∆~v‖2, (2.12)

and the same for τ . The proof can be found in [3].
Still in [3], the reduced system

{

∆Π− βΠz = eβzf in Ω0

Πz(x, 0) = Πz(x, 1) = 0 for x ∈ R
(2.13)

allows for zero mean value periodic solutions in W 2,2
N (Ω0) if 〈f〉 = 0, in this way the linear

differential operator is invertible. We give here a shorter proof under more general conditions
than in [3].
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Theorem 2.1. Let f ∈ L2(Ω0), and assume 0 ≤ β < 2π. Then problem (2.13) with homoge-
neous Neumann conditions has a unique x- periodic solution Π ∈ W 2,2(Ω0) such that 〈Π〉 = 0
and the following estimates hold true

‖∇Π‖2 ≤ 1

2π − β
‖eβzf‖2, ‖∆Π‖2 ≤ 2π

2π − β
‖eβzf‖2. (2.14)

Proof. We introduce the test function space

H :=
{

ϕ ∈W 1,2(Ω0) :

∫

Ω0

ϕ = 0
}

.

By multiplying both sides (2.13)1 by ϕ ∈ H, integrating by parts over Ω (x-periodicity) and
taking into accounts the boundary conditions, we formally obtain

a(Π, ϕ) := (∇Π,∇ϕ) + β(Πz, ϕ) = −(eβ̂zf, ϕ) for all ϕ ∈ H. (2.15)

This is a weak form of (2.13) and a(Π, ϕ) is a bounded bilinear form because

(∇Π,∇ϕ) + β(Πz, ϕ) ≤ ‖∇Π‖2‖∇ϕ‖2 + β‖∇Π‖2‖ϕ‖ ≤ C‖Π‖1,2‖ϕ‖1,2.

Furthermore by Cauchy-Schwarz and Poincaré inequalities

a(Π,Π) = (∇Π,∇Π) + β(Πz ,Π) ≥ (∇Π,∇Π)− β(Πz ,Π) (2.16)

≥ ‖∇Π‖22 −
β

2π
‖∇Π‖22 =

(

1− β

2π

)

‖∇Π‖22.

Existence and uniqueness then come from (2.16) by the Lax-Milgram theorem if β < 2π.

In Section 3, to construct the solution of the full system, we need an explicit expression
of the solution Π of problem (2.13) and we can use the corresponding coefficients of the basis
functions (2.10) as given in [3], since the data verify the condition 〈f〉 = 0. Actually, the property
holds true because if the data of (2.13) are taken from the full system, then from the boundary
conditions one sees

〈f〉 = − 1

Pr
〈∇ · (~v · ∇~v)〉+Ra〈τz〉 = 0 . (2.17)

Now, we prove a further estimate:

Lemma 2.1. Assume β < 2π and let Π ∈W 2,2(Ω0) be the unique zero mean value solution of

∆Π− βΠz = eβz∇ · ~w, (2.18)

with Neumann conditions at z = 0, 1 and x−periodic conditions: if ~w ·~n = 0 and ~w ∈W 1,2(Ω0),
then

‖Π‖2 ≤ c(β)‖~w‖2. (2.19)

where c(β) is a constant increasing with β and bounded from below.

Proof. We choose test functions such that

(∆Π− βΠz, ψ) = (Π,∆ψ + βψz). (2.20)
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Actually,

(∆Π, ψ) − β(Πz, ψ) = (2.21)
∫

Ω0

[

∇ · (ψ∇Π−Π∇ψ)− β
∂(Πψ)

∂z

]

+(Π,∆ψ) + β(Π, ψz). (2.22)

Once the Neumann conditions on Π are stated, then the boundary term vanishes in two cases:
if ψ verify Robin’s conditions

∇ψ · ~n+ βψ = 0, z = 0, 1

on both boundaries, and if ψ is constant, this last possibility is irrelevant: actually if we want
to estimate the L2-norm of a zero mean value function by the Riesz theorem, then constant test
functions give no contribution, since they lie in the kernel of the functional.
Therefore, we just need to show that R(β) > 0 exists such that

‖Π‖2 = sup
‖ϕ‖2≤1

|(Π, ϕ)| = sup
‖ϕ‖2≤1

|(Π, ϕ − 〈ϕ〉)| = sup
‖ψ‖2,2≤R

|(Π,∆ψ + βψz)|. (2.23)

because (Π, 〈ϕ〉) = 〈ϕ〉〈Π〉 = 0. So, let us look for ψ verifying ∆ψ+βψz := ϕ−〈ϕ〉 with Robin’s
boundary condition. If we make the substitution ψ = e−βzψ, by [3] the equation above with
Robin’s condition is equivalent to (2.13) with Neumann conditions. So, from Theorem 2.1 a
mean value zero solution ψ exists and is unique. In this way we proved (2.23): for all ϕ we can
write ψ = eβzψ.

Now, we want to estimate the left hand side of (2.20) by the right-hand side of equation
(2.18) tested by ψ ∈W 2,2(Ω0)

(∆Π− βΠz , ψ) = (∇ · (eβz ~w)− βeβzwz , ψ)

=

∫

Ω0

∇ · (ψeβz ~w) dΩ0 − (eβz ~w,∇ψ)− (βeβzwz , ψ) .

≤ eβ(1 + β)‖~w‖2‖ψ‖1,2.

Here, the boundary term vanishes by the hypothesis on ~w.
Finally, we can write

‖Π‖2 = sup
‖ψ‖2,2≤R

|(Π,∆ψ + βψz)| ≤ sup
‖ψ‖2,2≤R

eβ(1 + β)‖~w‖2‖ψ‖1,2 ≤ eβ(1 + β)R‖~w‖2 (2.24)

Remark 2.2. If the right hand side of (2.18) contains terms of the kind ~w = ~v ·∇~v with stress-
free and impermeability conditions on ~v (besides of the periodicity in x), their inner product with
ψ ∈W 2,2(Ω0) allows several applications of the Gauss theorem with boundary integrals each time
vanishing. One easily sees

∫

Ω0

eβz∇ · (~v · ∇~v)ψ = −
∫

Ω0

eβzβ∇ · (vz~v)ψ +∇ · (~v ⊗ ~v) · ∇ψ] =

=

∫

Ω0

eβz[β(vz)2ψ + 2βvz~v · ∇ψ + ~v · (D2ψ) · ~v]

≤ eβ(β + 1)2‖~v‖24‖ψ‖2,2 . (2.25)
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The estimate so obtained is the generalization of the classical one

‖p‖2 ≤ c‖~v‖24
holding at β = 0 for the classical O-B approximation. This is due to the particular boundary
conditions and the particular domain (bounded in one direction and with flat boundaries).

Finally, estimate (2.14) too can slightly be changed by considering f = ∇ · ~w with ~w · ~n = 0
at the boundary:

‖∇Π‖2 ≤
c(β)

2π − β
‖~w‖2, (2.26)

Remark 2.3. In [3] it was observed that system (2.1) with the boundary conditions (2.2)− (2.3)
is satisfied if ~v = c~i, τ = 0 and Π = 0, so that for all c > 0 it is the basic solution. The constant
c is an arbitrary real number, so that this class of solutions corresponds to the Galileian invari-
ance of the equation, and we can call it null solution (though it is not exactly the rest state).
In fact, if we define a subspace by the condition Πx = 0, ~vx = 0 and τx = 0, the full-system
projects in such subspace since it becomes linear. For any size of the dimensionless parame-
ters and of the initial data, one can find particular solutions of (2.1) in the form (Π, ~v, τ) =
(G(z, t),A(z, t)~i,T(z, t)). Such solutions have to verify:















∂2G
∂z2 − β ∂G∂z = Ra eβz ∂T∂z
1
Pr

∂A
∂t − d2A

dz2
= 0

∂T
∂t − ∂2T

∂z2 = 0.

(2.27)

Actually, for any Ra, Pr and β positive, problem (2.1) with arbitrary f, g ∈ Wm,2(0, 1) and
m ∈ N















vx(x, z, 0) = f(z)

vz(x, z, 0) = 0

τ(x, z, 0) = g(z),

has a unique global solution

~v ∈ L∞
(

(0,∞);Wm,2(0, 1)
)

τ ∈ L2
(

(0,∞);Wm,2(0, 1)
)

.

Such solutions are clearly

A = 2

∞
∑

n=1

(

∫ 1

0
f(s) cos(nπs) ds

)

cos(nπz)e−Prn2π2t.

For T and G we can write as in [16]

T = 2
∞
∑

n=1

(

∫ 1

0
g(s) sin(nπs) ds

)

sin(nπz)e−n
2π2t.

G = e−βzψ, where
∂ψ

∂z
= Ra eβzT,

so that

G = G0 + 2Ra
∞
∑

n=1

e−n
2π2t

n2π2 + β2

(

∫ 1

0
g(s) sin(nπs) ds

)(

β sin(nπz) + nπ(e−βz − cosnπz)
)

, (2.28)

where G0 is a constant.
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3 Basic apriori estimates

First a priori estimate

This estimate leads, as we prove in the next section, to a solution such that

Π ∈ L2(0, T ;L2(0, T )),

~v ∈ L∞(0, T ;H(Ω0)) ∩ L2(0, T ;W1,2
D (Ω0)),

τ ∈ L∞(0, T ;H(Ω0)) ∩ L2(0, T ;W 1,2
D (Ω0)),

for bounded T which becomes unbounded as β goes to 0.
From the estimate (2.19) and by the Remark 2.2 we have

‖Π‖2 ≤ C(β)
[ 1

Pr
‖~v‖24 +Ra ‖τ‖2

]

. (3.1)

where we denote by C(β) any, possibly different, function of β such that lim
β→0

C(β) = c ∈ R+.

As customary, we introduce the energy:

E(t) :=
1

2

(‖~v‖22
Pr

+ Ra ‖τ‖22
)

.

Now, we formally test (2.1) with (~v, τ), then we multiply the third equation by Ra, we use
Ladyzenskaya and Poincaré inequalities and sum

d

dt
E(t) + ‖∇~v‖22 +Ra ‖∇τ‖22 = −β(e−βzΠ, vz) + 2Ra(τ, vz)

≤ β‖Π‖2‖~v‖2 + 2Ra ‖τ‖2‖~v‖2

≤ βC(β)

Pr
‖~v‖24‖~v‖2 +Ra(βC(β) + 2)‖τ‖2‖~v‖2

≤ β2C2(β)

2Pr2
‖~v‖42 +

‖∇~v‖22
2

+ (βC(β) + 2)Ra

(

‖~v‖22
2

+
‖τ‖22
2

)

So that finally
dE(t)

dt
+

‖∇~v‖22
2

+ Ra ‖∇τ‖22 ≤ C(E2(t) + E(t)) , (3.2)

where
C = max{β2C2(β), (βC(β) + 2)max{PrRa, 1}}. (3.3)

Now, choosing a positive ǫ < 1 and disregarding the positive definite functions on the left hand
side, we can integrate the inequality and the outcome is

E(t)(E(0) + 1)

E(0)(E(t) + 1)
≤ eCt,

It follows

1− eCt
E(0)

E(0) + 1
≤ 1

E(t) + 1
.

E(t) ≤ eCtE(0)

1 + E(0)(1 − eCt)
∀t < 2T := log

[

(E(0) + 1

E(0)

)

]1/C

. (3.4)
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Now, E(t) is bounded as follows

E(t) ≤
√

E(0)(E(0) + 1)

1 + E(0) −
√

E(0)(E(0) + 1)
:= M(E(0)) ∀t ∈ [0, T ]. (3.5)

Then, by inserting (3.5) in (3.2) and integrating in [0, T ]

∫ T

0
(‖∇~v‖22 + ‖∇τ‖22) dt <

2C

min{Ra, 1/2}
(

M2 +M

)

log

[

(E(0) + 1

E(0)

)

]
1

2C

+E(0) := M1, (3.6)

where we put T as defined in (3.4), M is as in (3.5) and tends to 0 if E(0) does.
Second a priori estimate

This estimate gives further regularity to any solution verifying the first one. In particular

Π ∈ L2((0, T );L2(0, T )),

~v ∈ L∞((0, T );W1,2
D (Ω0)) ∩ L2((0, T );W2,2

D (Ω0)),

τ ∈ L∞((0, T );W 1,2
D (Ω0)) ∩ L2((0, T );W 2,2

D (Ω0))

Now, we test with ∆~v and ∆τ and we again insert (3.1)

1

2Pr

d

dt
‖∇~v‖22 + ‖∆~v‖22 =

1

Pr
(~v · ∇~v,∆~v)− β(e−βzΠ~k,∆~v)− Ra(τ~k,∆~v). (3.7)

1

2

d

dt
‖∇τ‖22 + ‖∆τ‖22 = (~v · ∇τ,∆τ)− (vz,∆τ). (3.8)

Next, we focus on the non-linear terms: for arbitrary positive ε one can write

(~v · ∇~v,∆~v) ≤ ‖~v‖4‖∇~v‖4‖∆~v‖2 ≤
1√
2
‖~v‖1/22 ‖∇~v‖2‖∆~v‖3/22

≤ ‖~v‖22‖∇~v‖42
4
√
2ε4

+
3

4
√
2
ε4/3‖∆~v‖22.

(~v · ∇τ,∆τ) ≤ ‖~v‖4‖∇τ‖4‖∆τ‖2 ≤
1√
2
‖~v‖1/22 ‖∇~v‖1/22 ‖∇τ‖1/22 ‖∆τ‖3/22

≤ ‖~v‖22‖∇~v‖22‖∇τ‖22
4
√
2ε4

+
3

4
√
2
ε4/3‖∆τ‖22.

Let us set

D(t) =
‖∇~v‖22
2Pr

+ Ra
‖∇τ‖22

2
.

We can write

d

dt
D(t)+

(

1− 3

4
√
2Pr

ε4/3− ε2
)

‖∆~v‖22++

(

1− 3

4
√
2
ε4/3

)

Ra ‖∆τ‖22 ≤ C2‖~v‖22D2(t)+C3D(t),

(3.9)
where the last two terms on the left hand side are positive provided ε is sufficiently small, while
C2 depends on β, Pr, ε and C3 depends on Ra, Pr, β, ε.
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By (3.5) we know that ‖~v‖22 is uniformly bounded in [0, T ] and by (3.6) one also has D(t) ∈
L2(0, T ). As a consequence, by using a generalized Gronwall argument, from

d

dt
D(t) ≤ C2MD2(t) +C3D(t) := M2(D

2(t) +D(t)) , (3.10)

where M2 depends on Pr, Ra, β and E(0). As we did to get (3.5) we obtain

D(t) ≤
√

D(0)(D(0) + 1)

1 +D(0)−
√

D(0)(D(0) + 1)
:= M3(D(0)) (3.11)

We put (3.11) in (3.9), and after integration we also achieve

∫ T

0
(‖∆τ‖22 + ‖∆~v‖22) dt < C4

(

M2
2 +M2

)

log

[

(E(0) + 1

E(0)

)

]
1

2C

+D(0) := M4 (3.12)

where C4 depends on Ra, Pr , β ,ε and E(0).
Third a priori estimate

Here we show that the solution is in fact a Ladyzhenskaya solution. One gets

~vt ∈ L2((0, T );HD(Ω0)),

τt ∈ L2((0, T );HD(Ω0)),

which implies, as a consequence

~v · ∇~v ∈ L2(0, T ;L2(Ω0)) so that Π ∈ L2(0, T ;W 1,2
N (Ω0)).

In order to prove this, we test (2.1)2 with ∂~v
∂t , the non-linear convective term vanishes by the

boundary condition. Next, we apply Cauchy-Schwarz and Ladyzhenskaya inequalities (when
using (3.1) for the pressure) and get

‖~v2t ‖2 ≤ C2(‖∆~v‖22 + ‖~v‖22‖∇~v‖22 + ‖τ‖22). (3.13)

where C depends on Ra, Pr and β. Analogously for τt we simply have:

‖τt‖22 ≤ 2(‖∆τ‖22 + ‖~v‖22).

Now, since the norms on the right-hand side are bounded or integrable, we integrate the in-
equality in t ∈ [0, T ] so getting

∫ T

0
(‖~vt‖22 + ‖τt‖22) dt < C2

(

M4 +MM1 +M log
(E(0) + 1

E(0)

)
1

2C

)

.

Finally, we prove two further energy inequalities allowing the existence of a global in time regular
and stable solution for Ra and initial data sufficiently small.

Let us formally test (2.1) with (~v, τ), then we multiply the third equation by Ra, we use
Ladyzenskaya and Poincaré inequalities and sum to get

1

2

d

dt
E(t) + ‖∇~v‖22 +Ra ‖∇τ‖22 ≤

β2C2(β)

Pr2
‖~v‖2‖∇~v‖22 +Ra(βC(β) + 2)

(ε2

2
‖τ‖22 +

‖~v‖22
2ε2

)

.
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In comparison with the first estimate, here we have just changed what comes from the Π-term,
i.e

‖~v‖24‖~v‖2 ≤
1√
2
‖~v‖2‖∇~v‖2‖~v‖2 ≤

1√
2
‖~v‖2‖∇~v‖22.

At the end, for ε ∈ (0, 1) we obtain

dE(t)

dt
+
(

1− βC(β)

Pr

√

E(t)− Ra(βC(β) + 2)

2ε2

)

‖∇~v‖22 +Ra
(

1− ε2(βC(β) + 2)

2

)

‖∇τ‖22 ≤ 0,

(3.14)
Now, we can prove

Lemma 3.1. Let the initial data for (2.7) belong to L2(Ω0), β < 2π, Ra < 1
(βC(β)+2)2 and

E(0) < Pr2

16β2C2(β)
, then one has

E(t) ≤ e−C0tE(0),

C0

∫ +∞

0
(‖∇~v‖22 +Ra ‖∇τ‖22) dt < E(0). (3.15)

where C0 = min{Pr
2 − 2βC(β)

√

E(0), 1}.

Proof. By the Poincaré inequality (since 1 < 5π2), for ε ∈ (0, 1), from (3.14) we get

dE(t)

dt
+
(

Pr−βC(β)
√

E(t)−PrRa(βC(β) + 2)

2ε2

)‖~v‖22
Pr

+(2−ε2(βC(β)+2))
Ra

2
‖τ‖22 ≤ 0. (3.16)

By taking Ra sufficiently small to have

Pr−RaPr(βC(β) + 2)

2ε2
=

Pr

2ε2

(

2ε2 − Ra(βC(β) + 2)
)

>
Pr

2
,

we achieve

dE(t)

dt
+
(Pr

2
− 2βC(β)

√

E(t)
)‖~v‖22
2Pr

+ (2− ε2(βC(β) + 2))
Ra

2
‖τ‖22 ≤ 0. (3.17)

Just to fix the ideas, ε = 1/
√

(βC(β) + 2) is compatible with all the previous restrictions and
implies 2− ε2(βC(β) + 2) = 1. If moreover

2βC(β)
√

E(0) <
Pr

2
, (3.18)

then

C(t) := min{Pr
2

− 2βC(β)
√

E(t), 1}

is such that C(0) > 0. Therefore, by coninuity, a maximal t∗ > 0 exists such that C(t) is non
negative for t ∈ (0, t∗). Inequality (3.17) now reads

dE

dt
+ C(t)E(t) ≤ 0, (3.19)

and implies that for t ∈ (0, t∗)
E(t) ≤ E(0). (3.20)
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By definition if t∗ is a finite number then C(t∗) = 0; this means that

βC(β)
√

E(t∗) =
Pr

2
. (3.21)

If we put (3.21) in (3.18) we obtain
E(t∗) > E(0),

which is an absurdum since one could at most have E(t∗) = E(0). We have so proved that,
since C(t) is bounded from below as follows

0 <
Pr

2
− 2βC(β)

√

E(0) ≤ Pr

2
− 2βC(β)

√

E(t),

then for all t > 0
dE

dt
+C0E(t) ≤ 0. (3.22)

where C0 = C(0) is the minimum of C(t). So, the exponential decay follows and can finally be
used to integrate (3.14) in (0,∞) so getting (3.15).

Remark 3.1. If β = 0, which is the classic O-B Bénard problem, the restriction on the initial
data E(0) is unnecessary to get the exponential decay.

Remark 3.2. Notice that the rate of decay decreases as β increases.

We are now going to prove a last inequality by still making use of a positive arbitrary ε
together with the previous results. In order to do this we need the following:

Remark 3.3. The present boundary conditions imply a Poincaré-like inequality with the gradi-
ents bounded by the laplacians. Actually,

‖∇~v‖22 = −(~v,∆~v) ≤ ‖~v‖2‖∆~v‖2 ≤ ‖∇~v‖2‖∆~v‖2 (3.23)

and analogously for τ

‖∇τ‖22 = −(τ,∆τ) ≤ ‖τ‖2‖∆τ‖2 ≤
1√
5π

‖∇τ‖2‖∆τ‖2. (3.24)

Hence, (3.23) and (3.24) are Poincarré inequalities for the gradients.

Lemma 3.2. Let the initial data for (2.7) belong to W 1,2(Ω0), β < 2π and E(0) < Pr2

16β2C2(β) ,

then if Ra < min{ 1
(βC(β)+2)2

, 25π4

64(25π4+1)(β2C2(β)+1)
}, it follows that T ∗ and C6 > 0 exist, only

depending on Pr, such that

D(t) ≤ e
C5

C0
E2(0)

D(0) (3.25)

D(t) ≤ e−C6tD(T ∗), ∀t > T ∗ (3.26)

where C5 depends on Ra, Pr and β.

C7

∫ +∞

0
(‖∆~v‖22 +Ra ‖∆τ‖22) dt < D(0), (3.27)

where C7 depends on E(0), Pr, Ra, β, D(0) and T ∗.
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Proof. We prove (3.25) by starting from an inequality which is the analogous of (3.9): we get it
by just applying Poincaré inequality to the gradients which is possible because of remark 3.3

d

dt
D(t) +

(

1− 3

4
√
2Pr

ε4/3 −
(

β2C2(β) + 1
)Ra

ε2

)

‖∆~v‖22 +
(

1− 3

4
√
2
ε4/3 −

(

1 +
1

25π4

)

ε2
)

Ra ‖∆τ‖22

≤ C2‖~v‖22D2(t). (3.28)

We first notice that if ε < min{1,Pr3/4}

1− 3

4
√
2Pr

ε4/3 >
8− 3

√
2

8
>

1

4
,

1− 3

4
√
2
ε4/3 >

8− 3
√
2

8
>

1

4
,

and so (3.28) implies also

d

dt
D(t) +

(

1

4
−
(

β2C2(β) + 1
)Ra

ε2

)

‖∆~v‖22 +
(

1

4
−
(

1 +
1

25π4

)

ε2
)

Ra ‖∆τ‖22 < C2‖~v‖22D2(t),

(3.29)

Next, if we impose also ε2 < 25π4

8(25π4+1)
, then (3.29) implies

d

dt
D(t) +

(

1

4
−
(

β2C2(β) + 1
)Ra

ε2

)

‖∆~v‖22 +
1

8
Ra ‖∆τ‖22 ≤ C2‖~v‖22D2(t). (3.30)

Just for simplicity we choose ε2 = 25π4

8(25π4+1) and so if Ra < 25π4

32(25π4+1)(β2C2(β)+1) and by Lemma
3.1 we get

dD

dt
< C2E(0)D2(t) ∀t ∈ (0,∞).

Then from (3.15) by using the same Gronwall arguments as for (3.12) we have

D(t) < eC2

∫∞
0
E(0)D(t) dtD(0) < e

C5

C0
E2(0)

D(0).

Next, since E(0) and Ra satisfy the hypotheses of Lemma 3.1 and since by Remark 3.3 one
can use Poincaré inequality on the left-hand side of (3.30), we can write

d

dt
D(t) + c1(t)‖∆~v‖22 + c2(t)Ra ‖∆τ‖22 < 0, (3.31)

where, with the further restriction Ra < 25π4

64(25π4+1)(β2C2(β)+1)

c1(t) :=
1

8
−C2E(0)D(0)e−C0t

and

c2(t) :=
1

8
−C2 PrE(0)D(0)e−C0t.

We wish to prove that for sufficiently large t both c1(t) and c2(t) are bounded from below by
positive constants.
Since

lim
t→+∞

c1(t) = lim
t→+∞

c2(t) =
1

8
,
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by continuity T ∗ exists such that for t > T ∗ both c1(t) and c2(t) are positive. More,

sup
t∈(0,∞)

c1(t) = sup
t∈(0,∞)

c2(t) =
1

8
,

As a conseguence for t > T ∗ we have the following inequality

d

dt
D(t) +

5π2

8

(

‖∇~v‖22 +Ra ‖∇τ‖22
)

<
d

dt
D(t) +

1

8

(

‖∆~v‖22 +Ra ‖∆τ‖22
)

< 0.

Thus, on one side
D(t) ≤ e−C6tD(T ∗),

where C6 =
5π2

4 min{Pr, 1}; on the other side by integrating from T ∗ to ∞

1

8

∫ +∞

T ∗

(‖∆~v‖22 +Ra ‖∆τ‖22) dt < D(T ∗). (3.32)

In (0, T ∗) we do not know about the sign of c1 and c2. However, we come back to (3.30) and
use (3.25) (showing the boundedness of D) together with Lemma 3.1 :

∫ T ∗

0

d

dt
D(t)dt+

1

8

∫ T ∗

0
(‖∆~v‖22 +Ra ‖∆τ‖22)dt ≤ C2

∫ T ∗

0
‖~v‖22D2(t)dt,

D(T ∗) +
1

8

∫ T ∗

0
(‖∆~v‖22 +Ra ‖∆τ‖22)dt ≤ C2

∫ T ∗

0
e−C0tE(0)c24D

2(0)dt+D(0), (3.33)

where c4 = e
2C5

C0
E2(0)

. By summing (3.33) and (3.32) then (3.27) follows.

4 Existence results for the full non-linear system

Actually, we apply the operator ∇× to (2.1); from the identity ∇×∇ = 0 we get:























∆Π− βΠz = −2eβz

Pr [(ϕzx)
2 − ϕxxϕzz] + Ra eβzτz,

1
Pr

(

∂∆ϕ
∂t − det(∇ϕ,∇∆ϕ)

)

−∆2ϕ = −βe−βzΠx +Ra τx,

∂τ
∂t + det(∇ϕ,∇τ)−∆τ = ϕx.

(4.1)

In order to get equivalent problems, the initial conditions

{

ϕ(x, z, 0) = ϕ0(x, z),

τ(x, z, 0) = τ0(x, z),
(x, z) ∈ Ω (4.2)

must be of the kind ϕ0 ∈ W 2,2
D (Ω0) and τ0 ∈ W 1,2

N (Ω0). The full set of boundary conditions
associated to (4.1) becomes:















Πz(x, 0, t) = Πz(x, 1, t) = 0,

∆ϕ(x, 0, t) = ∆ϕ(x, 1, t) = 0,

τ(x, 0, t) = τ(x, 1, t) = 0,

for (x, t) ∈ R× (0,∞). (4.3)
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Theorem 4.1. Let β < 2π, Ra and Pr be arbitrary. If ~v0 ∈ W
1,2
D (Ω0) and τ0 ∈ W 1,2

D (Ω0), then
a finite T > 0 exists, such that system (2.1) is fulfilled a.e. in space-time by a unique solution:

Π ∈ L1(0, T ;W 1,2
N (Ω0)),

~v ∈ L∞(0, T ;W1,2
D (Ω0)) ∩ L2(0, T ;W2,2

D (Ω0)),

τ ∈ L∞(0, T ;W 1,2
D (Ω0)) ∩ L2(0, T ;W 2,2

D (Ω0)).

If moreover Ra and the initial data ‖~v0‖2, ‖τ0‖2 fulfil the conditions in Lemma 3.2 , then the
solution exists for all t in the class

Π ∈ L1(0,∞;W 1,2
N (Ω0)),

~v ∈ L∞(0,∞;W1,2
D (Ω0)) ∩ L2(0,∞;W2,2

D (Ω0)),

τ ∈ L∞(0,∞;W 1,2
D (Ω0)) ∩ L2(0,∞;W 2,2

D (Ω0)),

and decays exponentially fast in the norm of W 1,2(Ω0).

Proof. The statement simply follows by proving the existence of a weak solution by the first
estimate, then the other properties are an easy consequence of Lemma 3.1 and Lemma 3.3.
For weak solution we mean that (Π, ~v, τ) has to verify

(∇Π,∇̺) + β(Πz , ̺) =
1

Pr

[

−(eβz~v · ∇~v,∇̺)− β(eβz~v · ∇vz, ̺)
]

−Ra(eβ zτz, ̺)

1

Pr

(

∂~v

∂t
+ ~v · ∇~v, ~ψ

)

+(∇~v,∇~ψ) = −β(e−βzΠ, ~ψ) + Ra(τ, ~ψ),

(

∂τ

∂t
, ϑ

)

+(~v · ∇τ, ϑ) + (∇τ,∇ϑ) = (vz, ϑ) (4.4)

for all ̺ ∈W 1,2
N (Ω0), ~ψ ∈ W

1,2
D (Ω0) and ϑ ∈W 1,2

D (Ω0).
Now, we look for Galerkin approximation solutions, which solve the projection of the system in
finite dimension spaces.
We begin the proof by defining such approximation solutions

τN =
∑

i=1,2

N
∑

m,n=1

Aimnξ
i
mn,

ΠN =
∑

i=1,2

N
∑

m,n=1

Bi
mnφ

i
mn, (4.5)

ϕN = −
∑

i=1,2

N
∑

m,n=1

Cimnξ
i
mn

αmn
,

where the coefficients Aimn = Aimn(t), Bmn = Bmn(t), C
i
mn = Cimn(t) are unknowns.

As customary, we define the Galerkin approximation solutions as the solutions of the projec-
tion of the PDE system in a finite dimensional subspace (whose dimension is in our case 2N2),
in such a way that the coefficients of the finite sums verify for all values of i and m,k = 1...N
an ODE system.
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But in the present case, the system is constrained by the pressure equation which, in order
to get a Galerkin solution, has to be also projected, as an algebraic equation, in the same finite
subspace where we write the ODE system. To this end we recall the explicit expressions in [3]:

N
∑

n=1

Bi
mnD

m
nk = −βRa

αmk

N
∑

n=1

AimnMnk +
1

Pr

∑

i′ i′′

N
∑

n,l=1

Ci
′′

rsC
i′

nlQ
i i′i′′

rsnlmk

where

Qi i
′i′′

rsnlmk =
(2sφi

′

rs

αrs

π2nli′′φ−i
′′

nl

αnl
− 2πri′ξ−i

′

rs

αrs

ξi
′′

nl(πl)
2

αnl
, eβziφ−imk2πm

)

− (4.6)

(πsφirs
αrs

4π2n2ξi
′′

nl

αnl
+

2πriξ−i
′

rs

αrs

2π2nli′′φnl
αnl

,−eβzkπξimk + βeβzφimk

)

, (4.7)

Dm
nk = δnk + β







− 2
αmk

(

1
n+k +

1
n−k

)

n, if n+ k odd,

0 if n+ k even,
(4.8)

Mnk = πn
(

(−1)k+neβ − 1
)

(

1

π2(n+ k)2 + β2
+

1

π2(n − k)2 + β2

)

. (4.9)

Finally for β < 2π, the constraint can be substituted in the Galerkin balance momentum equa-
tion in this form:

Bi
mj = −βRa

αmj

(

N
∑

l,k=1

AimlMlk +
1

Pr

∑

i′ i′′

N
∑

n,l=1

Ci
′′

rsC
i′

nlQ
i i′i′′

rsnlmk

)

(Dm)−1
kj . (4.10)

By the second equation in (4.1):

Ċimj + 4
∑

i′,i′′

N
∑

s,l,r,n=1

Ci
′

slC
i′′
rnG

i i′ii′′

rnslmj + PrαmjC
i
mj = 2πimPr

(

β
∑

j

NjkB
−i
mk − RaA−i

mj

)

, (4.11)

where

Nkj =
(

1− e−β(−1)k+j
)

(

π(j + k)

π2(j + k)2 + β2
+

π(j − k)

π2(j − k)2 + β2

)

.

By the third equation in (4.1) we obtain

Ȧimj + 4
∑

i′i′′

(

N
∑

s,l,r,n=1

Ai
′

slC
i′′

rnG
i i′i′′

rnslmj

)

+αmjA
i
mj = −i

C−i
mj

αmj
, (4.12)

where
Gi i

′i′′

rnslmj = (detJ(ξirn, ξ
i′

sl), ξ
i′′
mj),

The algebraic equations (4.10) leading to the differential equations (4.11) and (4.12) are a
constraint for a first order ODE system in normal form. Namely,



















~̇A = ~C · A0( ~A) + A1( ~A) + A2( ~C),

~̇C = ~C · C0( ~C) + C1( ~C) + C2( ~A) + C3( ~B),
~B = B0( ~A) + ~C · B1( ~C).

(4.13)
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where Ai,Bi and Ci, with i = 0, 1, 2, 3 are linear operators. Once the expression of ~B is directly
substituted in the system, its right hand side is at most quadratic in the ”space” variables, so
that it can be treated by Peano’s Theorem.
Finally, we can give a standard proof that from the sequence of the approximation solutions
one can always extract a subsequence weakly converging to a weak solution (4.4). Concerning
the linear terms in (4.4), the weak convergence is trivially implied by the uniform bounds in
(3.5),(3.6),(3.11) and (3.12), which are fulfilled by the Galerkin solutions too. In fact, they are
bounded by the projections of the initial data in the respective finite dimensional spaces.
The nonlinear terms are all convective-like, so that the scheme of the weak convergence can be
sketched once for all by writing for instance (4.4)2 in the integral form

1

Pr
(~v(t), ~ψ)+

1

Pr

∫ T

0
(~v·∇~v, ~ψ)dt+

∫ T

0
(∇~v,∇~ψ)dt=−β

∫ T

0
(e−βzΠ~k, ~ψ)dt+Ra

∫ T

0
(τ~k, ~ψ)dt+(~v0, ~ψ) (4.14)

so we want
∫ T

0
~vN · ∇~vN ⇀

∫ T

0
~v · ∇~v,

Since coefficients CNimn(t) , defined in (4.5), are uniformly bounded and uniformly continous, this
follows by the convergence to zero a.e. in t of

((~vN − ~v) · ∇~vN , ~ψ) + (~v · ∇(~vN − ~v), ~ψ) ≤ ‖~vN − ~v‖4‖∇~vN‖2‖~ψ‖4 + (~v ⊗ ~ψ,∇(~vN − ~v)).

Since ~vN ∈ L∞((0, T ),W 1,2(Ω0)), ∇~vN is bounded because of the a priori estimate and ~ψ⊗~v is
allowed as test function, being in L∞((0, T ), L2(Ω0)), then the sum tends to zero as N → ∞.

Remark 4.1. Since the solution in Theorem 4.1 is found as limit of regular divergence free
function it is divergence free (as announced). We have so proved that system (2.1) and system
(2.7) are equivalent in that class of solutions.
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