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'is paper shows the existence, uniqueness, and asymptotic behavior in time of regular solutions (a la Ladyzhenskaya) to the
Bénard problem for a heat-conducting fluid model generalizing the classical Oberbeck–Boussinesq one.'e novelty of this model,
introduced by Corli and Passerini, 2019, and Passerini and Ruggeri, 2014, consists in allowing the density of the fluid to also
depend on the pressure field, which, as shown by Passerini and Ruggeri, 2014, is a necessary request from a thermodynamic
viewpoint when dealing with convective problems. 'is property adds to the problem a rather interesting mathematical challenge
that is not encountered in the classical model, thus requiring a new approach for its resolution.

1. Introduction

As is well known, one of the most accepted models in the
study of convection problems in fluid mechanics is the so-
called Oberbeck–Boussinesq approximation (hereafter
denoted by O–B) [1–5].'e latter is characterized by the fact
that one keeps the fluid incompressible and allows for
density changes only in the buoyancy term of the linear
momentum equation, by assuming a linear dependence on
temperature.

However, as observed in [6] and further elaborated in
[7], O–B may not be entirely satisfactory or even consistent
from the physical viewpoint [8] if the density is not allowed
to have a dependence also on the pressure field p. As a result,
in [9], a more general theory aimed at removing this in-
congruence was proposed. More specifically, while still
keeping the incompressibility constraint, the density in the
buoyancy term was allowed to depend, linearly, also on p.
'e remarkable feature of this new model is that now, unlike
the classical O–B, the linear momentum equation contains a
pressure term that is not in the classical gradient form. From
a mathematical perspective, this feature is very challenging
in that some fundamental estimates necessary to ensure
stability properties and well-posedness of the relevant
problems [10, 11] no longer hold and, consequently, the

study of such problems requires fresh ideas and different
approach.

With this in mind, a systematic study of the mathe-
matical properties of the new model was started, focusing on
the classical Bénard problem. As is well known, the latter
regards convective motions stemming from a motionless
basic flow, r0, of a horizontal layer of fluid heated from
below. For the new model, the state r0 is given by [7]

v ≡ 0,

T(z) ≡ Tr(z) � T0 −
δT

h
z,

p(z) ≡ pr(z) � p0 + pbe
− ρ0gβz

+
1
β2

αδT

ρ0gh
1 − e

− ρ0gβz
􏼐 􏼑

−
1
β

1 − e
− ρ0gβz

+
αδT

h
z􏼠 􏼡,

(1)

with the z coordinate in the vertical direction. Here, v, T,
and p are the velocity, temperature, and pressure fields,
respectively, ρ0 and p0 are the (constant) gauge density and
pressure, T0 and T0 + δT are the temperature at bottom and
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top of the layer, and h is the thickness of the layer. Finally, α
and β are the positive material constants. Notice that (1)
tends to the motionless solution for the same problem in the
O–B approximation by letting β⟶ 0. In [4, 9, 12], the
linear and nonlinear stability of r0, as well as the existence
and uniqueness for the associated “perturbed problem,” was
investigated. All this work was done in the case of the plane
flow.

'e objective of the current paper is to investigate the
same problem in the more general and appropriate three-
dimensional setting. 'e approach followed here to over-
come the problem of the pressure mentioned earlier on is to
introduce a new equation of the elliptic type for the pressure
field, disregarding the incompressibility constraint (for
steady and for nonlinear equations close to the one of non-
Newtonian fluids, this approach that allows to achieve a
posteriori the divergence-free equation was considered in
[5]. Actually, although this work is done in a “parabolic
context” (for the kinetic field), the technique in [5] in some
sense has inspired the approach in the present paper). In
such a way, the original system of equations is converted to
three highly nonlinearly coupled equations for velocity,
temperature, and pressure fields. However, for this new
problem, it is shown that if the velocity field, v, is sufficiently
smooth and also solenoidal at time t � 0, then v must be
solenoidal in the entire interval of time where the solution
exists, thus providing a solution to the original problem. In
this way, it is shown that, if β< 2π, the relevant perturbed
problem (to the state r0) has a local, strong solution (a la
Ladyzhenskaya) corresponding to initial data of arbitrary
size (in a suitable Sobolev class). Such a solution becomes, in
fact, global if this size is appropriately restricted and the
Rayleigh number is below a certain value, see 'eorem 1.

'e plan of the paper is given in the following. After
formulating the problem and collecting some preliminary
results in Section 1, in Section 2, the classical Galerkin
method is used (see, for instance, [4]) to construct an
“approximate” solution. In Section 3, which constitutes the
main core of this paper, a number of fundamental estimates
on the approximate solution is proven that, again by classical
techniques, allows us to conclude that the latter converges to
a solution of the original problem having the properties
described above.

2. Notations and Preliminary Results

'e flow domain is an infinite, horizontal layer bounded in
the vertical z-direction with thickness h and unbounded and
invariant in the x and y directions. It is assumed that the
generic perturbed field is periodic in x and y of a given
period Lx and Ly, respectively, an assumption that is justified
by the fact that the convective roll pattern has a periodic
structure. 'e relevant spatial region thus becomes a “pe-
riodicity cell” defined (in nondimensional form) as

Ω0 � (0, a) ×(0, b) ×(0, 1), (2)

with a � Lx/h and b � Ly/h. Just for simplicity, set, herein,
a � b � 1. 'e mean value of a function f is indicated as

〈f〉 �
1
Ω0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
􏽚
Ω0

f(x, y, z, t)dx dy dz, (3)

and a partial derivative with a subscript zξϕ � (zϕ/zξ) � ϕξ
with ξ ∈ x, y, z, t􏼈 􏼉, and similarly for higher-order deriva-
tives. As customary, the inner product in L2(Ω0) is denoted
by

(u, v) ≔ 􏽚
Ω0
u · v dx dy dz, (4)

where u and v denote the scalar vector or tensor fields. 'e
components of a vector u are denoted by u ≡ (ux, uy, uz).
Let Wm,p(Ω0) be the usual Sobolev space and ‖u(t)‖m,p be
the associated norm. 'e subspace of Wm,p(Ω0) constituted
by those u with 〈u〉 � 0 is denoted by Wm,p(Ω0). By
L∞((0, T); Wm,p(Ω0)), we denote the space of functions u

such that

|u|∞,m,p ≔ ess sup
t∈[0,T]

‖u(t)‖m,p <∞. (5)

Likewise, for q ∈ [1,∞), the Bochner space
Lq((0, T); Wm,p(Ω0)) is the space defined by the norm

|u|q,m,p ≔ 􏽚
T

0
‖u(t)‖

q
m,pdx􏼠 􏼡

1/q

<∞. (6)

A decisive role in our stability analysis is played by the
Poincaré inequality in Ω0:

‖u‖2 ≤C‖∇u‖2. (7)

As is known (see [13]), set Γ � Ω0∩ z � 0, 1{ }; this in-
equality is true if at least one of the following cases is sat-
isfied: (a) functions with a zero mean value, (b) vector
functions with a vanishing normal component on Γ, and (c)
scalar functions vanishing on Γ. 'roughout, the same
symbol C is used to denote the involved constant, which
depends only on the domain. Since boundary conditions are
used for which the following integration by parts is valid:

‖∇u‖2 � − (Δu, u), (8)

if the Poincaré inequality holds true for u, then by the
Schwarz inequality, it also follows

‖∇u‖2 ≤C‖Δu‖2. (9)

As amatter of fact, inΩ0, there is an equivalence between
the norm of the Laplacian and that of the full set of the
second derivatives, as shown by Ladyzhenskaya (see [14],
equations (17) and (18) at page 18]):

‖Δu‖2 � D
2
u

����
����2. (10)

Further tools, herein suitable, are some typical 3D im-
mersion inequalities: the Sobolev–Gagliardo–Nirenberg
inequality:

‖u‖6 ≤C‖u‖1,2, (11)

which in case the Poincaré inequality also holds true
becomes
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‖u‖6 ≤C‖∇u‖2, (12)

‖∇u‖6 ≤C‖Δu‖2. (13)

In what follows, Morrey’s inequality is also used (still
simplified by the Poincaré inequality):

‖u‖∞ ≤C‖∇u‖6. (14)

A further preliminary result consists in the estimates for
the Laplace problem (e.g., [15, 16]).

Lemma 1. Suppose u is a weak solution to

Δu � f inΩ0 with either(a) u � 0 or(b) zzu � 0 at z � 0, 1.

(15)

,en, if f ∈Wm,2(Ω0), m≥ 0, one has u ∈Wm+2,2(Ω0) in
case (a), and the following inequality holds:

‖u‖m+2,2 ≤ c‖f‖m,2, (16)

with c independent of u and f. ,e same result holds in case
(b) with u ∈Wm+2,2(Ω0), provided f ∈Wm,2(Ω0).

In the present framework, once the perturbation fields
τ � T − Tr and P � p − pr are defined, the following non-
dimensional system of equations are addressed:
∇ · v � 0,

1
Pr

zv
zt

+ v · ∇v􏼠 􏼡 � − ∇P − βPk + Δv + Raτk,

zτ
zt

+ v · ∇τ � Δτ + v · k,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

where Ra and Pr are the Rayleigh and Prandtl numbers,
respectively, and k � (0, 0, 1) is directed along the upward
vertical direction. Notice that, given p0, the perturbation P

has to be zero at the reference state.'e boundary conditions
are homogeneous for τ, while for v, one imposes the im-
permeability condition vz � 0 and the stress-free condition
vx

z � v
y
z � 0, so that one could compare the stability results

with the classic exact ones obtained under the same con-
ditions. Let us set, just for simplicity, ∇ · v � ϕ.

For “regular” solutions, i.e., solutions, such that
v ∈ L
∞

(0, T); W
2,2 Ω0( 􏼁􏼐 􏼑∩L

2 0, T; W
3,2 Ω0( 􏼁􏼐 􏼑,

vt ∈ L
∞

(0, T); L
2 Ω0( 􏼁􏼐 􏼑∩L

2 0, T; W
1,2 Ω0( 􏼁􏼐 􏼑,

(18)

corresponding to v0 ∈W2,2(Ω0) at the initial time, one can
show that system (17) is equivalent to

ΔP + βPz � −
1
Pr
∇ · (v · ∇v + ϕv) + Raτz,

1
Pr

zv
zt

+ v · ∇v + ϕv􏼠 􏼡 � − ∇P − βPk + Δv + Raτk,

zτ
zt

+ v · ∇τ � Δτ + v · k,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

with Robin’s conditions for P at z � 0, 1:

∇P · k + βP � 0. (20)

'e extra nonlinear term lying at the left-hand side of
(19)2 is inserted to make the stress-free condition compatible
with the equation, by matching the mean value of the
horizontal components. As a matter of fact, v · ∇v + ϕv �

∇ · (v⊗v) gives rise, once integrated, to a vanishing boundary
integral, as any other terms in the horizontal projection of
equation (19)2.

Actually, in one direction, the implication is obvious: it is
sufficient to take the divergence of the second equation in
(17) to obtain the first of (19).'e boundary conditions for P

are established by evaluating at z � 0, 1 the normal com-
ponent of (17)2: the trace of vz

t and, by regularity, the trace of
vz

zz are defined and vanished, leading to (20). As a matter of
fact, by deriving the divergence-free condition with respect
to z, one gets vx

zx + v
y
zy + vz

zz � 0, and deriving the stress-free
condition along the boundary (since one can exchange the
order of derivation), one gets vx

zx � vx
xz � 0 and

v
y
zy � v

y
yz � 0, which can be replaced in the previous one.

Conversely, let us assume that (19) holds true and the
solutions are regular; in particular, assume that
P ∈ L2(0, T; W2,2(Ω0)). Let us replace (19)1 in the diver-
gence of (19)2, then one obtains

1
Pr

zϕ
zt

� Δϕ. (21)

Let us remark that 〈ϕ〉 � 0. Indeed, if vx
x or v

y
y is different

from zero, then their mean value is zero by periodicity. So,
one deduces 〈ϕ〉 � 〈vz

z〉 � 0 because after integration in
z ∈ (0, 1), one obtains vz. As a consequence, one can use the
Poincaré inequality for ϕ.

Next, one can perform the L2-inner product of the
equation with ϕ: by taking into account the periodicity
conditions, the right-hand side of (21) becomes

(Δϕ,ϕ) �
1
2

􏽚
1

0
dx 􏽚

1

0
dy ϕ2􏼐 􏼑

z
(x, y, 1) − ϕ2􏼐 􏼑

z
(x, y, 0)􏽨 􏽩

− (∇ϕ,∇ϕ),

(22)

from the regularity hypotheses, one can deduce that the
boundary terms vanish in the trace sense because of im-
permeability and stress-free conditions, which implies vx

zx �

vx
xz � 0 and v

y
zy � v

y
yz � 0. On the other hand, Robin’s

condition for the pressure impliesΔvz � 0 in themomentum
balance at the boundary. Hence, since one can derive the
impermeability condition with respect to x and y, it follows
also vz

zz � 0. 'us, by summing up, one sees that ϕz vanishes
at the boundaries.

In conclusion, one can write

1
Pr

d
dt

‖ϕ‖
2
2 +‖∇ϕ‖

2
2 ≤ 0. (23)

Finally, either the divergence of the velocity is zero at
t � 0 and then for all t> 0, or it decays exponentially to zero.
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'is means that the divergence-free condition can be ful-
filled and is, moreover, physically observable.

Hereafter, a solution with the required regularity is
shown to exist, provided the initial data for (19)2 and (19)3
are in W2,2(Ω0).

Concerning boundary conditions, the change of variable
Π � Peβz turns Robin’s ones into the simpler Neumann
conditions:

Πz � 0, z � 0, 1, (24)

and simplifies the system under study, which becomes like
the one proposed in [9], page. 7, and studied in [4]:

ΔΠ − βΠz � −
eβz

Pr
∇ · (v · ∇v + ϕv) + Rae

βzτz,

1
Pr

zv
zt

+ v · ∇v + ϕv􏼠 􏼡 − Δv � − ∇ e
− βzΠ􏼐 􏼑 − βe

− βzΠk

+Raτk,

zτ
zt

+ v · ∇τ − Δτ � v · k.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

'enew variableΠ is defined up to an arbitrary constant,
unlike P which appears in the buoyancy force and depends
on the boundary value pb which is in the basic solution.
'us, Π can be prescribed with a mean value zero and verify
the Poincaré inequality.

'e trivial solution (v � c1i + c2j, τ � 0, P � 0) corre-
sponding to the Galilean invariance has to be considered
equivalent to the rest state, so for this reason, solutions are
looked in Banach subspaces defined by the following condition:

〈vx〉 �〈vy〉 � 0. (26)

Next, one assigns in Ω0 the periodicity conditions in the
horizontal directions and the stress-free conditions at the
boundaries and homogeneous conditions for the deviatory
temperature τ:

Πz(x, y, 0, t) � Πz(x, y, 1, t) � 0,

v
z
(x, y, 0, t) � v

z
(x, y, 1, t) � 0,

v
x
z(x, y, 0, t) � v

x
z(x, y, 1, t) � 0,

τ(x, y, 0, t) � τ(x, y, 1, t) � 0.

(27)

At the initial time, data are given concordant with the
previous ones:

(v(x, y, z, 0), τ(x, y, z, 0)) � v0(x, y, z), τ0(x, y, z)( 􏼁.

(28)

'e plan is studying (17) before proving the equivalence
with (25). To this end, one looks for solutions such that a.e.
in t, and for k ∈ N0,Π belongs to Wk,2(Ω0), which is defined
as the closure in the Sobolev space norm of C∞(Ω0), whose
functions are periodic in x and y, verifies the homogeneous
Neumann condition at z � 0, 1, and has a zero mean value
(this last feature is necessary to prove the existence).

Analogously, without the isochoric conditions,
v ≡ (vx, vy, vz) has free components such that vx and vy

belong toWk,2(Ω0) (with the mean value zero, as previously
noticed), while vz and τ belong to Wk,2

0 (Ω0), which is the
closure of C∞0 (Ω0).

3. Galerkin Approximation

Still in [9] and in [4], an existence result for Π and further
estimates are given in 2D. 'e proof is unaffected by the
dimension, and the results are summarized below.

Lemma 2. If 0< β< 2π and if f ∈ L2(Ω0), then the problem

ΔΠ − βΠz � eβzf, inΩ0,

Πz(x, y, 0) � Πz(x, y, 1) � 0, for (x, y) ∈ R2,

⎧⎨

⎩ (29)

with periodic side conditions, has a unique solution
Π ∈W2,2(Ω0) such that 〈Π〉 � 0, and the following estimate
holds true:

‖Π‖2,2 ≤C(β)‖f‖2. (30)

In this lemma and hereafter, C(β) stands for a positive
function of β such that limβ⟶0C(β) � c≥ 0. 'e same
convention is kept for C(β, Pr,Ra).

Furthermore, if f � ∇ · w and w ∈ L2(Ω0) with w · k � 0
at z � 0, 1, then in [4], one can also find

‖Π‖1,2 ≤C(β)‖w‖2. (31)

If, moreover, f � ∇ · (∇ · (u⊗u)) with u · k � 0 at z �

0, 1 and ∇ · u � 0, then in [4], one can also find

‖Π‖2 ≤C(β)‖u‖
2
4. (32)

Notice that both these estimates fall into the classic
Navier–Stokes estimate:

‖p‖2 ≤ c‖v‖
2
4, (33)

as β goes to zero.
However, here the case ∇ · v ≠ 0 is, in principle,

considered.
By taking the data of (29) from system (25), all hy-

potheses concerning the boundary conditions are verified,
and by writing

f � −
1
Pr
∇ · (v · ∇v + ϕv) + Ra∇ · (τk), (34)

one sees that (31) can be used.
Hence,

‖∇Π‖2 ≤C(β)
1
Pr

‖v · ∇v‖2 +‖ϕv‖2( 􏼁 + Ra‖τ‖2􏼒 􏼓. (35)

Now, let us introduce Galerkin’s “approximate” solu-
tions of (25). Let us denote by φj􏽮 􏽯

j∈N and χj􏽮 􏽯
j∈N the

periodic eigenfunctions of the Laplace operator, respectively,
verifying Dirichlet and Neumann conditions at zΩ, such
that the vector functions Ψj � (χj, χj,φj) verify the same
boundary condition as v does:
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ΔΨj � − λ(j)Ψj, λ(j) > 0,

Δφj � − η(j)φj, η(j) > 0.
(36)

Moreover, Ψj’s and φj’s are complete orthogonal bases,
respectively, for the vector and scalar fields in W1,2(Ω0).
Further, they belong to W2,2(Ω0). 'e Galerkin approxi-
mation solutions vN and τN,

vN
� 􏽘

N

j�1
C

j
N(t)Ψj,

τN
� 􏽘

N

j�1
A

j
N(t)φj,

(37)

are then defined in a standard way by projecting system (25)
on the N-dimensional subspace spanned by the same
eigenfunctions. 'e ordinary differential equation system so
obtained is the first order in the unknowns C

j
N(t) and

A
j
N(t). It is an autonomous homogeneous system in a

normal form, whose solutions are easily shown to exist for all
N ∈ N.

As a matter of fact, although the pressure terms in the
momentum balance (which will be written in a compact
form as e− βz∇Π) cannot be solved a posteriori as for
Navier–Stokes equations, one can nevertheless define for all
N ∈ N some suitable ΠN as a function of C

j

N(t) and A
j

N(t).
To this end, let us use (34) in Lemma 2 and denote byA the
linear operator:

A ΠN
􏼐 􏼑 ≔ ΔΠN

− βΠN
z � e

βz∇

· −
1
Pr

vN
· ∇vN

+ ϕNvN
􏼐 􏼑 + RaτNk􏼒 􏼓,

(38)

where, of course, ϕN � ∇ · vN. By Lemma 2, the operator is
continuously invertible for 0< β< 2π and

ΠN ≔ −
1
Pr

􏽘

N

k,i�1
A

− 1
e
βz∇ · Ψk · ∇Ψi + Ψi∇ · Ψk( 􏼁􏼐 􏼑C

k
N(t)C

i
N(t)

+ RaA− 1
􏽘

N

i�1
e
βz∇ · φik( 􏼁􏼐 􏼑A

i
N(t),

(39)

where the summation over repeated indices is understood.
According to Lemma 2, the linear operatorA− 1 is defined in

L2(Ω0), and its image belongs to W2,2(Ω0). Moreover, A− 1

does not depend on t.
For the sake of brevity, let us denote

Fki(x, y, z) ≔ A
− 1

e
βz∇ · Ψk · ∇Ψi + Ψi∇ · Ψk( 􏼁􏼐 􏼑,

Gi(x, y, z) ≔ A
− 1

e
βz∇ · φik( 􏼁􏼐 􏼑.

(40)

Next, let us compute

e
− βz∇ΠN

,Ψj􏼐 􏼑 � −
1
Pr

􏽘

N

k,i�1
e

− βz∇Fki,Ψj􏼐 􏼑C
k
NC

i
N

+ Ra􏽘

N

i�1
e

− βz∇Gi,Ψj􏼐 􏼑A
i
N.

(41)

'is expression can be inserted in the Galerkin system,
which can be written as

_C
j

N � − Prλ(j)C
j
N − 􏽘

N

k,i�1
Ψk · ∇Ψi − e

− βz∇Fki,Ψj􏼐 􏼑C
k
NC

i
N+

+ PrRa􏽘
N

i�1
φik − e

− βz∇Gi,Ψj􏼐 􏼑A
i
N,

(42)

_A
j

N � − 􏽘
N

k,i�1
C

k
NA

i
N Ψk · ∇φi,φj􏼐 􏼑 − η(j)A

j

N + C
j

N. (43)

It allows for solutions since the right-hand side is a
Lipschitz continuous function of the variables (in fact, it is at
most quadratic). For all N ∈ N, the initial conditions
C

j
N(0) � C

j
0 � (v0,Ψj) and A

j
N(0) � A

j
0 � (τ0,Ψj) corre-

spond to the initial conditions of (25). Since the aim is still to
derive the equivalence of the differential systems (17) and
(19) by showing existence with ϕ � 0, the required regularity
for the initial data is W2,2. In particular, one has to define the
space as the closure of linear combinations of the eigen-
functions χj − 〈χj〉 so that vx, vy ∈W2,2(Ω0), while
vz, τ ∈W2,2

0 (Ω0), which is directly obtained by closing the
φj’s.

Moreover, an estimate for ‖vN
t (0)‖2 and ‖τN

t (0)‖2 is
hereafter needed, for which the left-hand side of (42)
evaluated in t � 0 has to be increased by directly inserting
(34) in estimate (31):

e
− βz∇ΠN

,Ψj􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ e
− β ∇ΠN

,Ψj􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤C(β, Pr,Ra) vN
· ∇vN

+ ϕNvN
,Ψj􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + τN
,Ψj􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

≤C(β, Pr,Ra) 􏽘
N

k,i�1
C

k
NC

i
N Ψk · ∇Ψi + Ψi∇ · Ψk,Ψj􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + A
j
N

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠.

(44)
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After squaring and summing the inequalities derived by
(42) and evaluating at the initial time, one obtains a bound
independent of N, estimated by the W2,2-norm of the initial

data through Bessel’s inequality. Since the basis is in
W2,2(Ω0), by linearity

ΔvN
(0)

����
����2 � 􏽘

N

j�1
λ(j) v0,Ψj􏼐 􏼑Ψj

����������

����������2

� 􏽘
N

j�1
v0,ΔΨj􏼐 􏼑Ψj

����������

����������2

� 􏽘
N

j�1
Δv0,Ψj􏼐 􏼑Ψj

����������

����������2

≤ Δv0
����

����2. (45)

Concerning the nonlinear terms, one can compute, for
instance,

􏽘

N

j�1
􏽘

N

k,i�1
􏽘

N

l,n�1
Ψk · ∇Ψi,Ψj􏼐 􏼑 Ψl · ∇Ψn,Ψj􏼐 􏼑C

k
N(0)C

i
N(0)C

l
N(0)C

n
N(0)

≤ 􏽘

∞

j�1
v0 · ∇v0,Ψj􏼐 􏼑

2
� v0 · ∇v0

����
����2.

(46)

Next, these nonlinear terms at the right-hand side can be
increased by (12) and (13), through Hölder (p � (3/2) and
p′ � 3) and interpolation (p � (4/3) and p′ � 4) inequalities
(the procedure is detailed in the proof of Lemma 3). Finally,
using the Poincaré inequality and (10), one gets

vN
t (0)

����
����2 ≤C(β, Pr,Ra) Δv0

����
����2 + τ0

����
����2 + Δv0

����
����
2
2􏼒 􏼓,

τN
t (0)

����
����2 ≤C(β, Pr,Ra) Δτ0

����
����2 + v0

����
����2 + ∇v0

����
����2 Δτ0

����
����2􏼐 􏼑.

(47)

Here and hereafter, the L2-norms of the two nonlinear
terms v · ∇v and ϕv are estimated exactly in the same way,
but for brevity only the first one will be developed.

4. Evolutive Estimates and Main Results

Let us formally derive the a priori estimates for solutions of
system (25): by quite a standard procedure, they are verified
just by Galerkin solutions, denoted here by (v, τ), and, as
seen, are bound uniformly with respect to N.

Lemma 3. Let us define the energy functions:

E1(t) ≔
1
2

‖v‖22
Pr

+ Ra‖τ‖
2
2􏼠 􏼡,

E2(t) ≔
1
2

‖∇v‖22
Pr

+ Ra‖∇τ‖
2
2􏼠 􏼡.

(48)

,en, for sufficiently small ε> 0, the following inequalities
hold true:

dE1

dt
+ c ‖∇v‖

2
2 + Ra‖∇τ‖

2
2􏼐 􏼑≤C(β, Pr,Ra) E

3
1 + E

3/2
2 + ε‖Δv‖

2
2􏼐 􏼑 + C(β, Pr)

Ra
ε

‖v‖
2
2, (49)

dE2

dt
+ c ‖Δv‖

2
2 + Ra‖Δτ‖

2
2􏼐 􏼑≤C(β, Pr,Ra)E

3
2 + C(β, Pr)

Ra
ε

E1, (50)

dE2

dt
+ c ‖Δv‖

2
2 + Ra‖τ‖

2
2􏼐 􏼑≤C(β, Pr,Ra)E

3
2 + C(β, Pr)

Ra
ε

‖Δv‖
2
2, (51)

where c ∈ (0, 1). Proof. One can test (25) with (v, τ), and then one multiplies
the third equation by Ra and then sums:

d
dt

E1(t) +‖∇v‖
2
2 + Ra‖∇τ‖

2
2 � − e

− βz∇Π, v􏼐 􏼑 + 2Ra τ, v
z

( 􏼁

−
1
Pr

(v · ∇v, v) −
1
Pr

(ϕv, v) − Ra(v · ∇τ, τ).

(52)
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In order to estimate the nonlinear term arising from the
coupling with the pressure equation, one uses (35): the
nonlinear term at the right-hand side can be increased by

(12) and (13), through Hölder (p � (3/2) and p′ � 3) and
interpolation (p � (4/3) and p′ � 4) inequalities, so that

e
− βz∇Π, v􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌τ�0
≤ c‖v · ∇v‖2‖v‖2 ≤ c‖v‖3‖∇v‖6‖v‖2 ≤ c‖v‖

1/2
2 ‖v‖

1/2
6 ‖Δv‖2‖v‖2

≤ c‖v‖
3/2
2 ‖∇v‖

1/2
2 ‖Δv‖2 ≤

c

4ε2
‖v‖

6
2 +

cε
4

‖∇v‖
2
2 +

cε
2

‖Δv‖
2
2.

(53)

'is term is multiplied by β(C(β)/Pr), while the linear
part of the pressure estimate can be included in the estimate
of the buoyancy term and of the energy equation transport
term, giving rise (in the whole) to

RaC(β, Pr)‖τ‖2‖v‖2 ≤RaC(β, Pr)
ε
2
‖τ‖

2
2 +

1
2ε

‖v‖
2
2􏼒 􏼓. (54)

Here, the termwith the second derivatives does not allow
to get an autonomous bound for E1(t), so that a further
estimate for higher derivatives need to be added. Notice that
the convective terms do not vanish, and by also resorting to
Young’s inequality, they are bounded as follows:

(v · ∇v, v) � 􏽚
Ω0
∇ · v

v2

2
􏼠 􏼡 − 􏽚

Ω0
ϕ

v2

2
≤
1
2
‖ϕ‖2‖v‖

2
4

≤C‖∇v‖2‖v‖
1/2
2 ‖v‖

3/2
6 ≤C‖∇v‖

3
2,

(v · ∇τ, τ) � 􏽚
Ω0
∇ · v

τ2

2
􏼠 􏼡 − 􏽚

Ω0
ϕ
τ2

2
≤
1
2
‖ϕ‖2‖τ‖

2
4

≤C‖∇v‖2‖τ‖
1/2
2 ‖τ‖

3/2
6 ≤C‖∇v‖2‖∇τ‖

2
2 ≤

1
3

C‖∇v‖
3
2 +

2
3

C‖∇τ‖
3
2.

(55)

Analogously,

􏽚
Ω0
ϕv

2 ≤ ‖∇v‖
3
2. (56)

By collecting all these estimates, using the Poincaré
inequality, increasing ‖∇v‖32 with E3/2

2 , and absorbing at the

left-hand side, where possible, the terms of order ϵ, the first
inequality follows.

Now, the balance equations are tested with Δv and Δτ,
respectively, and again (35) is inserted.

First, the following equations are written:

1
2Pr

d
dt

‖∇v‖
2
2 +‖Δv‖

2
2 �

1
Pr

(v · ∇v + ϕv,Δv) + e
− βz∇Π,Δv􏼐 􏼑 − Ra(τk,Δv),

1
2
d
dt

‖∇τ‖
2
2 +‖Δτ‖

2
2 � (v · ∇τ,Δτ) + v

z
,Δτ( 􏼁,

dE2

dt
+‖Δv‖

2
2 + Ra‖Δτ‖

2
2 � e

− βz∇Π,Δv􏼐 􏼑 + Ra τ,Δvz
( 􏼁 + Ra Δτ, v

z
( 􏼁

1
Pr

(v · ∇v,Δv) +
1
Pr

(ϕv,Δv) + Ra(v · ∇τ,Δτ).

(57)

Again, the pressure-related convective terms are
bounded, and then the temperature-depending coupling
terms are estimated:

e
− βz∇Π,Δv􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌τ�0
≤ c‖v · ∇v‖2‖Δv‖2 ≤ ‖v‖6‖∇v‖3‖Δv‖2 ≤

c‖v‖6‖∇v‖
1/2
2 D

2v
����

����
1/2
2 ‖Δv‖2 ≤ c‖∇v‖

3/2
2 ‖Δv‖

3/2
2 ≤

3cε
4

‖Δv‖
2
2 +

c

4ε
‖∇v‖

6
2.

(58)
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In order to reach local-in-time existence of solutions for
any initial data, one writes

RaC(β, Pr) ‖τ‖2‖Δv‖2 +‖Δτ‖2‖v‖2( 􏼁≤RaC(β, Pr)
ε
2
‖Δτ‖

2
2 +

ε
2
‖Δv‖

2
2 +

1
2ε2

E1(t)􏼒 􏼓. (59)

In order to achieve global-in-time existence for small
initial data, one uses an alternative estimate, which follows
by several applications of the Poincaré inequality:

RaC(β, Pr) ‖τ‖2‖Δv‖2 +‖Δτ‖2‖v‖2( 􏼁

≤RaC(β, Pr)
ε
2
‖Δτ‖

2
2 +

1
2ε

‖Δv‖
2
2􏼒 􏼓.

(60)

Now, the nonlinear terms are focused:

(v · ∇v + ϕv,Δv)≤C‖v‖6‖∇v‖3‖Δv‖2 ≤C‖v‖6‖∇v‖
1/2
2 ‖∇v‖

1/2
6 ‖Δv‖2

≤C‖∇v‖
3/2
2 ‖Δv‖

3/2
2 ≤

3ε
4

C‖Δv‖
2
2 +

1
4ε

C‖∇v‖
6
2,

(v · ∇τ,Δτ)≤ ‖v‖6‖∇τ‖3‖Δτ‖2 ≤C‖∇v‖2‖∇τ‖
1/2
2 D

2τ
����

����
1/2
2 ‖Δτ‖2

≤C‖∇v‖2‖∇τ‖
1/2
2 ‖Δτ‖

3/2
2 ≤

3ε
4

C‖Δτ‖
2
2 +

1
4ε

C‖∇τ‖
2
2‖∇v‖

4
2

≤
3ε
4

C‖Δτ‖
2
2 +

1
12ε

C‖∇τ‖
6
2 +

1
6ε

C‖∇v‖
6
2.

(61)

'e terms of order ϵ are still absorbed at the left-hand
side, and then inequalities (50) and (51), respectively, follow
by (59) and (60). □

Lemma 4. Let

T ≔ log
E2(0) + 1

E2(0)
􏼠 􏼡

1/4C

, (62)

then for all t ∈ (0, T], the following estimates hold:

E(t)≤ E(0)

��������
1 + E2(0)

􏽰

1 + E(0) E(0) −
��������
1 + E2(0)

􏽰
􏼐 􏼑

⎛⎝ ⎞⎠

1/2

, (63)

where E(t) ≔ E1(t) + E2(t). Furthermore,

􏽚
T

0
P(t)dt≤C log

E2(0) + 1
E2(0)

􏼠 􏼡

1/4

E(0) + E
1/2

(0)􏼐 􏼑,

(64)

where P(t) ≔ ‖∇v(t)‖22 + ‖Δv(t)‖22 + ‖∇τ(t)‖22 + ‖Δτ(t)‖22.

Proof. By summing side-by-side the first and second in-
equalities in Lemma 3, one obtains

d
dt

E(t) + c1P(t)≤ c2 E(t) + E
3/2

(t) + E
3
(t)􏼐 􏼑. (65)

Here, one has

E
3/2

� E
3/4

E
3/4 ≤

3
4

E +
1
4
E
3
, (66)

and consequently the right-hand side can be bounded by
E + E3. Hence,

􏽚
E(t)

E(0)

dE

E E2 + 1( )
� 􏽚

E(t)

E(0)

1
E

−
E

E2 + 1
􏼒 􏼓dE≤Ct, (67)

then

E(t)
��������
E2(0) + 1

􏽰

E(0)
��������
E2(t) + 1

􏽰 ≤ e
Ct

. (68)

It follows that once the maximal interval corresponding
to a vanishing denominator is identified,

∀t ∈ (0, T)with 2T ≔ log
E2(0) + 1

E2(0)
􏼠 􏼡

1/2C

, (69)

E
2
(t)≤

e2CtE2(0)

1 + E2(0) 1 − e2Ct( )

≤E(0)

��������
1 + E2(0)

􏽰

1 + E(0) E(0) −
��������
1 + E2(0)

􏽰
􏼐 􏼑

,

(70)
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the energy is bounded.
Next, coming back to (65) and integrating in [0, T), one

deduces a bound for the norm in L∞(0, T; W1,2(Ω0))∩
L2(0, T; W2,2(Ω0)), as can be seen hereafter: the inequality

􏽚
T

0
P(t)dt≤C log

E2(0) + 1
E2(0)

􏼠 􏼡

1/4

E(0) + E
1/2

(0)􏼐 􏼑,

(71)

implies in particular the integrability of ‖∇v(t)‖22 and of
‖Δv(t)‖22. □

Although, the Galerkin solutions exist for all t> 0, their
uniform estimates exist only in the finite interval defined in
(69). Global-in-time solution will be found only by asking
suitable smallness of Ra and of the initial data.

Finally, (25) is derived formally with respect to t, and the
same procedure is repeated as in the first estimate, but for the
nonlinear convective terms. Now, in order to bound the
initial data for vt, initial data in W2,2 is chosen:

ΔΠt − βΠtz � −
eβz

Pr
∇ · vt · ∇v + ϕtv + v · ∇vt + ϕvt( 􏼁

+Raeβzτtz,

1
Pr

zvt

zt
+ vt · ∇v + ϕtv + v · ∇vt + ϕvt􏼠 􏼡 − Δvt

� − ∇ e− βzΠt( 􏼁 − βe− βzΠtk + Raτtk,

zτt

zt
+ vt · ∇τ + v · ∇τt − Δτt � v

z
t .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(72)

Again, the terms depending on ϕ or ϕt will be bounded
exactly as the corresponding convective ones.

Lemma 5. Let us define the energy function as

E(t) ≔
1
2

vt

����
����
2
2

Pr
+ Ra τt

����
����
2
2

⎛⎝ ⎞⎠. (73)

,en, for sufficiently small ε> 0, the following inequality
holds true:
dE
dt

(t) + c ∇vt

����
����
2
2 + Ra ∇τt

����
����
2
2􏼒 􏼓≤C(β, Pr,Ra)‖Δv‖

2
2E(t)

+ C(β,Pr)
Ra
ε

vt

����
����
2
2,

(74)

where c ∈ (0, 1).

Proof. Let us start with the equation

d
dt

E(t) + ∇vt

����
����
2
2 + Ra ∇τt

����
����
2
2 � − e

− βz∇Πt, vt􏼐 􏼑 + 2Ra τt, v
z
t( 􏼁 +

−
1
Pr

vt · ∇v + v · ∇vt, vt( 􏼁 −
1
Pr

ϕtv + ϕvt, vt( 􏼁 − Ra vt · ∇τ + v · ∇τt, τt( 􏼁.

(75)

Technically, the estimates of the nonlinear convective
terms are the only different ones from the previous ones,
since the terms are not homogeneous:

e
− βz∇Πt, vt􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌τt�0
≤ c vt

����
����2 vt · ∇v

����
����2 + v · ∇vt

����
����2􏼐 􏼑

≤ c vt

����
����2 vt

����
����3‖∇v‖6 + vt

����
����2‖v‖∞ ∇vt

����
����2􏼐 􏼑

≤ c vt

����
����
3/2
2 ∇vt

����
����
1/2
2 ‖Δv‖2 + vt

����
����2‖Δv‖2 ∇vt

����
����2􏼒 􏼓

≤ c ‖Δv‖
2
2 vt

����
����
2
2 + ε ∇vt

����
����
2
2􏼒 􏼓.

(76)

'e same estimates can be repeated for the other non-
linear terms, such as

ϕvt, vt( 􏼁≤ c‖∇v‖6 vt

����
����2 vt

����
����3,

ϕtv, vt( 􏼁≤ c vt

����
����2‖v‖∞ ∇vt

����
����2,

vt · ∇τ, τt( 􏼁≤ c‖∇τ‖6 vt

����
����2 τt

����
����3,

v · ∇τt, τt( 􏼁≤ c τt

����
����2‖v‖∞ ∇τt

����
����2.

(77)

'e gradient terms can be absorbed at the left-hand
side. □

Starting from (74), where the positive term at the left-
hand side can be neglected and the term ‖vt‖

2
2 at the right-
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hand side can be bounded by E(t), by a generalized
Gronwall argument, one shows that

E(t)≤ e
c 􏽒

T

0
‖Δv(t)‖22+1( )dt

E(0). (78)

As a matter of fact, (71) implies v ∈ L2(0, T; W2,2(Ω0)),
so thatE(t) is bounded in (0, T). Further, by coming back to
(74) and integrating again, it follows also

􏽚
T

0
∇vt

����
����
2
2 + ∇τt

����
����
2
2􏼒 􏼓dt≤O v0

����
����2,2, τ0

����
����2,2􏼐 􏼑, (79)

and this is independent of the size of Ra.

Theorem 1. Let β< 2π and Pr and Ra be arbitrary, then
system (25) with initial data (v0, τ0) ∈W2,2(Ω0) admits a
solution a la Ladyzhenskaya, namely,

(v, τ) ∈ L
∞ 0, T; W

2,2 Ω0( 􏼁􏼐 􏼑∩L
2 0, T; W

3,2 Ω0( 􏼁􏼐 􏼑,

vt, τt( 􏼁 ∈ L
∞ 0, T; L

2 Ω0( 􏼁􏼐 􏼑∩ L
2 0, T; W

1,2 Ω0( 􏼁􏼐 􏼑,
(80)

where

T ≔ log
E2(0) + 1

E2(0)
􏼠 􏼡

1/4C

. (81)

Moreover, if ∇ · v0 � 0, then ∇ · v(t) � 0 for all t ∈ (0, T].
Finally, if Ra, ‖v0‖2,2, and ‖τ0‖2,2 are sufficiently small,
depending on Pr and β, then T �∞ is taken in (80) and (v, τ)

decays exponentially fast to zero.

Proof. Employing the estimates proved in Lemma 4, it is
routine to show that the approximate solutions constructed
with the Galerkin method converge to a solution:

(v, τ) ∈ L
∞ 0, T; W

1,2 Ω0( 􏼁􏼐 􏼑∩L
2 0, T; W

2,2 Ω0( 􏼁􏼐 􏼑,

Π ∈ L
2 0, T; W

2,2 Ω0( 􏼁􏼐 􏼑,

vt, τt( 􏼁 ∈ L
∞ 0, T; L

2 Ω0( 􏼁􏼐 􏼑∩ L
2 0, T; W

1,2 Ω0( 􏼁􏼐 􏼑,

(82)

where T is given in (81).
'e proof of the further regularity properties, implying

that the solution fulfils system (17) too, is based on (78) and
(79) and in particular on the uniform boundedness of ‖vt‖2,
as well as the integrability of ‖∇vt(t)‖22. To this end, viewing
the momentum balance as a Poisson problem and increasing
the pressure in the usual way, the following is obtained with
the help of Lemma 1:

‖v(t)‖2,2 ≤C ‖v · ∇v‖2 +‖∇Π‖2 + vt

����
����2 +‖τ‖2􏼐 􏼑

≤C ‖∇v‖
4
2 + ε‖Δv‖

2
2 + vt

����
����2 +‖τ‖2􏼐 􏼑.

(83)

'e ε term at the right-hand side can be absorbed by the
left-hand side, so that finally the following bound is obtained:

ess sup
(0,T)

‖v(t)‖2,2 ≤Cess sup
(0,T)

‖∇v(t)‖
4
2 +‖τ‖2 + vt

����
����2􏼐 􏼑

≤O v0
����

����2,2, τ0
����

����2,2􏼐 􏼑.

(84)

Moreover, again from Lemma 1, it is also obtained that

􏽚
T

0
‖v(t)‖

2
3,2dt≤C 􏽚

T

0
‖v · ∇v‖

2
1,2 +‖Π‖

2
2,2 + vt

����
����
2
1,2 +‖τ‖

2
1,2􏼒 􏼓dt.

(85)

It is remarked that, as noticed in Section 2, the com-
patibility condition related to the Neumann problem is
verified. Here, the nonlinear terms at the right-hand side can
be increased by using (14) and interpolation inequality:

v · D
2v

����
����2 ≤ c‖v‖∞ D

2v
����

����2 ≤ c D
2v

����
����
2
2,

∇v(∇v)
T

����
����≤ c‖∇v‖

2
4 ≤ c‖∇v‖6‖∇v‖3 ≤ c D

2v
����

����
2
2.

(86)

'e proof that τ is bounded in L∞(0, T; W1,2(Ω0))∩
L2(0, T; W2,2(Ω0)) is similar and simpler.

'e proof of global existence follows from Lemmas 3 and
5 by setting

E0(t) ≔ E(t) + E(t),

P0(t) ≔ ‖∇v(t)‖
2
2 +‖Δv(t)‖

2
2 + ∇vt(t)

����
����
2
2

+ Ra ‖∇τ(t)‖
2
2 +‖Δτ(t)‖

2
2 + ∇τt(t)

����
����
2
2􏼒 􏼓.

(87)

In fact, if inequalities (49), (51), and (74) are added,
bringing to the left-hand side the three terms with factor
Ra/ε and using the Poincaré inequality

E≤ kP, (88)

to absorb them in P0 for sufficiently small Ra (depending
on ε), one gets

d
dt

E(t) + c1P(t)≤ c2 E
3/2

(t) + E
3
(t)􏼐 􏼑. (89)

'e constant c1 is now fixed positive by suitably
restricting Ra. Again, using the Poincaré inequality on the
left-hand side of (89), one infers

d
dt

E(t) + c1 − c2 E
1/2

(t) + E
2
(t)􏼐 􏼑􏽨 􏽩

1
k

E(t)≤ 0. (90)

'us, the exponential decay follows by choosing at the
initial time:

E
1/2

(0) + E
2
(0)≤

1
2

c1

c2
. (91)

In fact, by continuity, for some time, E(t)≤E(0). But,
this reinforces the previous condition so that the positive
function in square brackets cannot decrease and is bounded
from below by a positive constant for all times. □
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