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Abstract. Two birational subvarieties of Pn are called Cremona equivalent

if there is a Cremona modification of Pn mapping one to the other. If the

codimension of the varieties is at least 2, they are always Cremona Equivalent.
For divisors the question is much more subtle and a general answer is unknown.

In this paper I study the case of rational quartic surfaces and prove that they
are all Cremona equivalent to a plane.

Abstract. Deux sous variétés birationnelles de Pn sont dites Cremona équi-

valentes s’il existe une transformation de Cremona de Pn qui envoie l’une sur
l’autre. Si la codimension des variétés est au moins deux, elles sont toujours

Cremona équivalentes. En ce qui concerne les diviseurs la question est plus

subtile et l’on ne connâıt pas de réponse générale. Dans cet article je considère
le cas des surfaces quartiques rationnelles et je démontre qu’elles sont toutes

Cremona équivalentes à un plan.

Introduction

Let X ⊂ Pn be an irreducible and reduced projective variety over an algebraically
closed field. A classical question is to study the birational embedding of X in Pn
under the action of the Cremona group of Pn. In other words considering X1 and
X2, two birationally equivalent projective varieties in Pn, one wants to understand
if there exists a Cremona transformation of Pn that maps X1 to X2. If this is the
case X1 is said to be Cremona Equivalent (CE) to X2, see Definition 1.1. This
projective statement can also be interpreted in terms of log Sarkisov theory, [BM],
and is related to the Abhyankar–Moh problem, [AM] and [Jel]. In the latter paper
it is proved, using techniques derived form Abhyankar–Moh problem, that over
the complex field the birational embedding is unique as long as dimX < n

2 . The
general problem is then completely solved in [MP] where it is proved that this is
the case as long as the codimension of Xi is at least 2, see also [CCMRZ] for a
more algorithmic way to produce the required Cremona equivalence. Examples of
inequivalent embeddings of divisors are well known, see also [MP], in all dimensions.
The problem of Cremona equivalence is therefore reduced to study the action of
the Cremona group on divisors. A class of divisors for which a reasonable answer
is known is that of cones. In [Me2] it is proved that two cones are CE if their
hyperplane sections are birational.
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The special case of plane curves has been widely treated both in the old times,
[Co], [SR], [Ju], and more recently, [Na], [Ii], [KM], [CC], and [MP2], see also [FLMN]
for a nice survey. In [CC] and [MP2] a complete description of plane curves up
to Cremona equivalence is given and in [CC] a detailed study of the Cremona
equivalence for linear systems is furnished. In particular it is interesting to note
that the Cremona equivalence of a plane curve is dictated by its singularities and
cannot be guessed without a partial resolution of those, [MP2, Example 3.18]. Due
to this it is quite hard even in the plane curve case to determine the Cremona
equivalence class of a fixed curve simply by its equation.

It is then natural to investigate surfaces in P3. In this set up using the ]-Minimal
Model Program, developed in [Me] or minimal model program with scaling [BCHM],
a criterion for detecting surfaces Cremona equivalent to a plane has been given in
[MP2]. The criterion, inspired by the previous work of Coolidge on curves Cremona
equivalent to lines [Co], allows to determine all rational surfaces that are Cremona
equivalent to a plane, [MP2, Theorem 4.15]. Unfortunately, worse than in the plane
curve case, the criterion requires not only the resolution of singularities but also
a control on different log varieties attached to the pair (P3, S). So far it has been
impossible to apply it to explicit examples of surfaces in P3. The main difficulty
coming from the necessity to check the threshold, see Definition 1.2, on all good
models, see Definition 1.4, of the pair (P3, S). In this note I start removing this
condition from the criterion in Corollary 1.7. This improvement gives back a result
that can be applied in a wide range of cases. Next I concentrate on the case of
quartic rational surfaces. The reason I study this special class of surfaces is twofold.
Firstly it is quite easy to study the CE up to cubic surfaces, see Proposition 1.10.
Then rational quartic surfaces are the first non immediate case having hundreds of
non isomorphic families, [De] [Jes]. Beside this, there is an intrinsic complexity of
quartic surfaces in P3 that deserves to be studied under any perspective. Smooth
quartic surfaces are the only smooth hypersurfaces with automorphisms not coming
from linear automorphism of Pn, [MM]. In a recent paper K. Oguiso produced
examples of isomorphic smooth quartic surfaces that are not CE, [Og]. It is a long
standing problem to determine which quartic surfaces are stabilized by subgroup
of the Cremona group, that is for which quartic surface S ⊂ P3 there is a Cremona
modification ω : P3 99K P3 such that ω is not an isomorphism and ω(S) = S.
The above problem has been studied by Enriques [En] and Fano [Fa] and also by
Sharpe and coauthors in a series of papers, [MS] and [SS], at the beginning of
the XXth century. More recently Araujo-Corti-Massarenti continued the study of
mildly singular quartic surfaces admitting a non trivial stabilizers in the Cremona
Group, [ACM], in the context of Calabi-Yau pairs preserving symplectic forms. In
the light of these specialities of quartic surfaces the main theorem I prove is the
following, quite surprising, result.

Theorem 1. Let S ⊂ P3 be an irreducible and reduced rational quartic surface.
Then S is Cremona Equivalent to a plane.

This shows that any rational quartic has a huge stabilizer in the Cremona group
disregarding the type of singularity it may have. Indeed it is amazing that, even if
there are hundreds of non isomorphic families of rational quartics, see [Jes] [De], the
Cremona group of P3 is playable enough to smooth any of them to a plane. A similar
statement is not true for rational surfaces of degree at least 8, as a straightforward
consequence of Noether-Fano inequalities. I have not a precise feeling on what
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happens in the remaining degrees 5,6,7, but I think it is worthwhile to study them
all.

The proof of the theorem is based on the simplified version of the criterion in
[MP2] together with the analysis of some special Cremona modification associated
to linear systems of quadrics. Indeed in many instances it is useful to produce a
linear system of quadrics having multiplicity half the multiplicity of S along some
valuation embedded in Sing(S). Via this linear system the quartic is often simplified
and can be linearized in an easier way.

I want to thank Ciro Ciliberto for reviving my interest in Cremona Equivalence
for rational surfaces during a very pleasant stay in Cetraro and Igor Dolgachev
for pointing out Jessop’s book [Jes] and the Cyclides treated in the final Exam-
ple. Thanks are due to the referee, whose careful reading prevented misprints and
clarified the exposition.

1. Preliminaries

I work over the complex field.

Definition 1.1. Let X,Y ⊂ PN be irreducible and reduced subvarieties of di-
mension r. I say that X is Cremona Equivalent (CE) to Y if there is a birational
modification φ : PN 99K PN such that φ(X) = Y and φ is well defined on the
generic point of X.

It is clear that if X is CE to Y then X and Y are birational. This necessary
condition is also sufficient as long as X is not a divisor by the main theorem in
[MP], see also[CCMRZ]. In this note I am interested in studying the CE of rational
surfaces of P3. For this reason I start with some definition and results about uniruled
3-folds.

Definition 1.2. Let (T,H) be a Q-factorial uniruled 3-fold and H an irreducible
and reduced effective Weil divisor on T . Let

ρ(T,H) =: sup {m ∈ Q|H+mKT is Q-linearly equivalent to an effective Q-divisor }

be the (effective) threshold of the pair (T,H).

Remark 1.3. The threshold is not a birational invariant of pairs and it is not pre-
served by blowing up. Consider a plane H ⊂ P3 and let Y → P3 be the blow up of
a point in H then ρ(Y,HY ) = 0, while ρ(P3, H) = 1/4. For future reference note
that both are less than one.

In [MP2], to overcome this problem it was introduced the notion of good mod-
els and of sup threshold ρ(T, S), [MP2]. These combined allowed to characterize
the Cremona Equivalence to a plane, [MP2, Theorem 4.15]. The dark side of this
characterization is the impossibility to check it on explicit examples.

Here, by a simple trick, I want to simplify the statement of [MP2, Theorem
4.15] to make it applicable in many instances. For this purpose I start recalling the
following definition.

Definition 1.4. Let (Y, SY ) be a 3-fold pair. The pair (Y, SY ) is a birational model
of the pair (T, S) if there is a birational map ϕ : T 99K Y such that ϕ is well defined
on the generic point of S and ϕ(S) = SY . A good model, [MP2], is a pair (Y, SY )
with SY smooth and Y terminal and Q-factorial.
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Remark 1.5. Let (T, S) be a pair. To produce a good model it is enough to consider
a log resolution of (T, S). Clearly there are infinitely many good models for any pair
and running a directed MMP one can find the one that is more suitable for the needs
of the moment.

My first aim is to show that to check the Cremona Equivalence to a plane it is
not necessary to go through all good models. In this direction the first technical
result I am proving is that, even if the threshold is not a birational invariant of the
pair as a number, there is the following useful property.

Lemma 1.6. Let (T, S) and (T1, S1) be birational models of a pair. Assume that
(T, S) has canonical singularities. If ρ(T, S) = a ≥ 1 then ρ(T1, S1) ≥ a.

Proof. Let ϕ : T 99K T1 be a birational map with ϕ(S) = S1. Let

Z
q

��

p

  
T

ϕ // T1,

be a resolution of the map ϕ.
I have

aKZ + SZ = (a− 1)KZ +KZ + S = p∗(a− 1)KT + ∆ + p∗(KT + S) + ∆S =

= p∗(aKT + ST ) + ∆ + ∆S ,

for Q-divisors ∆ and ∆S . The pairs (T, S) has canonical singularities, therefore ∆
and ∆S are effective divisors. By hypothesis aKT +S is Q-effective, thus aKZ +SZ
is Q-effective. Since

q∗(aKZ + SZ) ∼Q aKT1
+ S1

this is enough to prove that ρ(T1, S1) ≥ a. �

As a direct consequence of Lemma 1.6 I may reformulate the condition of being
Cremona Equivalent to a plane, [MP2, Theorem 4.15], avoiding the check of the
threshold of all good models.

Corollary 1.7. A rational surface S ⊂ P3 is Cremona equivalent to a plane if and
only if there is a good model (T, ST ) of (P3, S) with 0 < ρ(T, ST ) < 1.

Proof. By Theorem 4.15 in [MP2] S is Cremona equivalent to a plane if and only
if for all good models the threshold is bounded from the above by 1 and there is
a good model with positive threshold. By Lemma 1.6 if there is a good model, say
(T, ST ), with 0 < ρ(T, ST ) < 1 all good models have threshold bounded by 1. �

Remark 1.8. Via a general projection S ⊂ P3 of a quintic elliptic scroll in P4, it
is possible to produce examples of good models (T, ST ) with T rational, ST non
rational and ρ(T, ST ) = 0. Allowing non rational singularities we may produce pairs
with 0 < ρ < 1 and S non rational. Let S ⊂ P3 be a cone over a smooth cubic
curve then ρ(P3, S) = 3/4 and the pair is not CE to a plane.

There is a class of surfaces, and more generally hypersurfaces, that are CE to a
hyperplane.
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Remark 1.9. Let X ⊂ Pn be a monoid, that is an irreducible and reduced hyper-
surface of degree d with a point, say p, of multiplicity d − 1. Then I can write
X = (x0Fd−1 + Fd = 0). Let us consider the linear system

L := {(Fd−1x1 = 0), . . . , (Fd−1xn = 0), X}.
Then ϕL : Pn 99K Pn is a birational modification and ϕL(X) is a hyperplane. It
follows that any monoid is CE to a hyperplane.

As a warm up I study rational surfaces of degree at most 3, see [MP2] and [Me2].

Lemma 1.10. Let S ⊂ P3 be an irreducible and reduced rational surface of degree
at most 3. Then (P3, S) is CE to a plane.

Proof. The statement is immediate in degree 2 by Remark 1.9, because any
quadric is a monoid. Let S be a rational cubic. If S is smooth then (P3, S) is a good
model with ρ(P3, S) = 3/4, hence I conclude by Corollary 1.7. If S has a double
point, then it is a monoid and I conclude again by Remark 1.9. If S is a cone, then
its plane section is a rational curve and I conclude by [Me2, Theorem 2.5]. �

2. Rational quartic surfaces

In this section I study the CE of rational quartic surfaces proving Theorem 1. The
case of quartic surfaces singular along a twisted cubic is by far the most interesting
from a geometric point of view.

Remark 2.1. There are two classes of these surfaces, a general projection of a
rational scroll of degree 4 in P4 and the tangential variety of the twisted cubic. The
former has ordinary double points along Γ while the latter has cuspidal singularities.
It is interesting to note that, from the point of view of CE they behave in the same
way.

Proposition 2.2. Let S ⊂ P3 be a quartic surface singular along a twisted cubic
Γ. Then S is CE to a plane.

Proof. Let ν : T → P3 be the blow up of Γ with exceptional divisor E. Then
T has a scroll structure, say π : T → P2, given by the secant lines of Γ, onto P2.
In particular all fibers of π are irreducible and reduced and T = P(E), for a vector
bundle E on P2 classically known to be defined by the following exact sequence

0→ OP2(−1)⊕2 → O⊕4
P2 → E ⊗OP2(1)→ 0.

Moreover I have π∗O(1) = ν∗O(2) − E and ST = π∗C, for C ⊂ P2 an irreducible
and reduced conic. Let ST = ν−1

∗ (S) be the strict stranform of the surface S. Then
I have ρ(T, ST ) = 0. Note that at this point both the tangential variety and the
general projection are pull backs of smooth conics. Therefore they are isomorphic
as abstract varieties, but they differ in the scheme theoretic intersection with the
exceptional divisor E. This is the only reason we end up with non isomorphic quartic
surfaces in P3.

Next we want to extend a standard Cremona transformation of the base P2 to a
birational modification of T , following [Me, 5.7.4].

Let f1, f2, f3 ⊂ ST be three fibers of π in general position and li = ν(fi) the
corresponding line in P3. Let Qi ⊂ P3 be the unique quadric containing Γ∪ lj ∪ lk,
with {i, j, k} = {1, 2, 3}, and Di = ν−1

∗ (Qi) ⊂ T its strict transform. Note that
both Qi and Di are smooth quadrics and Di ∩Dj = fk, for {i, j, k} = {1, 2, 3}.
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Let p : Z → T be the blow up of the fi with exceptional divisors Ei. Then by
construction I have Ei ∼= P1×P1, p−1

∗ (Di) ∼= P1×P1, and in both cases the normal
bundle is (0,−1). This shows that there is a birational morphism q : Z → T1 that
blows down the Di’s.

Claim. T1
∼= T and ST1 := (q ◦ p−1)(ST ) ∼ π∗1O(1).

Proof of the claim. The varieties T , Z and T1 are all scrolls. T and T1 over P2, and
Z over the blow up of P2 in 3 non collinear points, say W . Let T1 = P(E1) and
η : W → P2 and ξ : W → P2 be the morphisms at the base level, induced by p and
q respectively,

P(EZ) = Z

p

xx

q

''
πZ

��

P(E) = T

π

��

T1 = P(E1)

π1

��
P2 W

ηoo ξ // P2,

In particular I have η∗E ∼= EZ ∼= ξ∗E1. The map ξ ◦ η−1 is a standard Cremona
modification, thus η and ξ are both the blow blow-ups of three non collinear points.
Then I have E = E1 up to a twist. In particular T ∼= T1. Moreover, the choice of
fi ⊂ ST yields (q ◦ p−1)(ST ) ∼ π∗1O(1). �

By the Claim T1
∼= T and ST1 ∼ π∗1(O(1)). By construction the 3-fold T had the

contraction ν : T → P3. Therefore there is a contraction ν1 : T1 → P3 that sends
ST1

to a quadric, This shows that S is CE to a quadric and therefore it is CE to a
plane by Proposition 1.10. �

Remark 2.3. I want to give an alternative way to interpret the birational modifi-
cation described in the proof of Proposition 2.2. Consider three secant lines f1, f2,
f3 to Γ and the linear system Λ of cubics containing R := Γ∪ l1 ∪ l2 ∪ l3. It is easy
to see that dim Λ = 3. Observe that a general element D ∈ Λ is a smooth cubic. In
particular D is isomorphic to a plane blow up in 6 general points, say {q1, . . . , q6}.
The reducible curve R is represented, in the plane, by the 4 conics passing through
a subset of {q1, . . . , q6} in such a way that any point is triple for R. Therefore the
plane model of Λ|D is a linear system of dimension 2, degree 9, multiplicity 3 in
{q1, . . . , q6}, and containing the degree 8 curve R. This shows that the plane model
of Λ|D is R + O(1) and therefore it induces a birational map onto P2. That is Λ

induces a birational map onto P3.
This modification is a degeneration of the classical cubo cubic Cremona modifi-

cation centered on a curve of degree 6 and genus 3 of P3.

The following Theorem settles the CE problem for rational quartic surfaces.

Proposition 2.4. Let S ⊂ P3 be a rational surface of degree 4, then S is CE to a
plane.

Proof. If S is a cone then its general plane section is rational and I conclude by
[Me2]. If S has a point of multiplicity 3, I conclude by Remark 1.9.
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From now on I assume that S has only singular points of multiplicity 2. The
first step in the proof is to show that rational quartic surfaces with isolated double
points are CE to quartic surfaces with non isolated singularities.

Assume that S has isolated singularities. Then the rationality of S forces the
presence of an elliptic point. By a computation on Leray spectral series, see [Um],
S has a unique irrational singularity. Furthermore, by [Jes] and [De] classification,
the irrational singularity is of the following type, in brackets the corresponding
equation of S:

(1) a double point with an infinitely near double line
[x2

0x
2
1 + x0x1Q2(x2, x3) + F4(x1, x2, x3) = 0],

(2) a tachnode with an infinitely near double line
[x2

0x
2
1 + x0(x3

2 + x1Q2(x2, x3)) + F4(x1, x2, x3) = 0].

Let S be a rational quartic with a singular point of type (a), a ∈ {1, 2}, and
let Λa ⊂ |O(2)| be the linear system of quadrics having multiplicity a + 1 on the
valuation associated to the double line. Then it is easy to check that the map
ϕΛa

: P3 99K Xa ⊂ P7−a is birational.
As observed in [MP2, Example 4.3]X1 ⊂ P6 is the cone over the Veronese surface.

With a similar argument, X2 ⊂ P5 is the projection of X1 from any smooth point
z ∈ X1. This shows that X2 is the cone over the cubic surface C ⊂ P4, where C is
the projection of the Veronese surface, say V , from a point z ∈ V .

The main point here is that in both cases I have Sa := ϕΛa
(S) ⊂ |OP7−a(2)|.

Case 2.5 (S2). Assume thst S has a point of type (2). Then the pair (P3, S) is
birational to (X2, S2). The surface S2 ⊂ X2 ⊂ P5 has degree 6 and X2 has degree
3. Let x ∈ S2 be a general point and π : P5 99K P4 the projection from x. Then
π(X2) = Q is a quadric cone and Sx := π(S2) is a surface of degree 5. Hence there
is a a cubic hypersurface D ⊂ P4 such that

D|Q = Sx +H,

for some plane H. Let y ∈ Sx be a general point and πy : P4 99K P3 the projection
from y.

Claim. S̃ := πy(Sx) is a quartic surface singular along a line.

Proof. The point y is general therefore deg S̃ = 4. The map πy|Q is birational and
it contracts the embedded tangent cone TyQ∩Q = Π1∪Π2 to a pair of lines l1∪ l2.
Up to reordering I may assume that H ∩ Π1 is the vertex of the cone. Therefore
S̃ ∩Π1 is a cubic passing through y. Hence S̃ has multiplicity 2 along l1. �

The surface S is therefore CE to a quartic with non isolated singularities.

Case 2.6 (S1). Assume that S has a point of type (1). Then (P3, S) is birational
to (X1, S1).

Claim. S1 is in the smooth locus of X1 and S1 has at most ordinary double points.

Proof. Let me start describing the map ϕ := ϕΛ1
: P3 99K X1, following [MP2,

Example 4.3],
Let S ⊂ P3 be the quartic, I may assume that the irrational singular point is

p ≡ [1, 0, 0, 0] ∈ S and the equation of S is

(x2
0x

2
1 + x0x1Q+ F4 = 0) ⊂ P3.
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Let ε : Y → P3 be the weighted blow up of p, with weights (2, 1, 1) on the coordinates
(x1, x2, x3), and exceptional divisor E ∼= P(1, 1, 2). Then I have:

- ε∗(x1 = 0) = H + 2E, ε|H : H → (x1 = 0) is an ordinary blow up and H|E
is a smooth rational curve;

- ε∗(S) = SY + 4E, SY |E is a smooth elliptic curve, and SY |H is a union of
four smooth disjoint rational curves.

In particular both H and SY are on the smooth locus of E and hence on the smooth
locus of Y . The surface H is ruled by, the strict transforms of, the lines in the plane
(x1 = 0) passing through the point p. Let lY be a general curve in the ruling and
ΛY = ε−1

∗ (Λ1) the strict transform linear system. Then E · lY = 1 and by a direct
computation I have

- ΛY · lY = (ε∗(O(2))− 2E) · lY = 0
- SY · lY = (ε∗(O(4))− 4E) · lY = 0
- KY · lY = (ε∗(O(−4)) + 3E) · lY = −1.
- H · lY = (ε∗(O(1))− 2E) · lY = −1.

Then H can be blown down to a smooth rational curve with a birational map
µ : Y → X1 and by construction SY = µ∗S1. This shows that the unique singularity
of X1 is the singular point in E and SY has at most isolated rational double
points. �

If S1 is smooth then (X1, S1) is a good model of (P3, S) with threshold ρ(X1, S) =
4/5 and I conclude by Corollary 1.7. Assume that S1 is singular and let x ∈ Sing(S1)
be a singular point. Set π : P6 99K P5 be the projection from x. Then π|X1

: X1 99K
X2 is birational and π(S1) ∈ |OX2(2)|. I am therefore back to the previous case.
This shows that (P3, S) is CE to a quartic with non isolated singularities.

To conclude the Proposition I am left to study the case of quartics with non
isolated singularities.

From now on I fix a rational quartic S with a curve Γ of double points. Assume
first that Γ contains a line l. Fix a general point x ∈ S and the linear system Λ of
quadrics through l and x. Let ϕ : P3 99K P5 be the map associated to the linear
system Λ. I have ϕ(P3) = Z ∼= P1×P2, embedded via the Segre map, and ϕ(S) = S̃
is a divisor of type (3, 2) in P1 × P2. Note that divisors of type (1, 0) are planes

and divisors of type (0, 1) are quadrics, then I have deg S̃ = 3 + 4 = 7. If S̃ is

smooth then (Z, S̃) is a good model of (P3, S) with ρ(Z, S̃) = 2/3 and I conclude

by Corollary 1.7. If S̃ is singular let y ∈ Sing(S̃) be a point and π : P5 99K P4 the
projection from y. Then π|Z is a birational map, Y := π(Z) ⊂ P4 is a quadric of

rank 4, and SQ := π(S̃) is a rational surface of degree 7− 2 = 5.

Claim. The vertex of the quadric is a smooth point of SQ.

Proof. The surface S̃ is a divisor of type (3, 2) in Z and it is singular in y. Let l
and P , respectively, be the line and the plane passing through x in Z. The general
choice of x ∈ S yields l 6⊂ S̃. The line l is mapped to the vertex of the quadric
and S̃|l = 2x + p for some point p. This shows that SQ contains the vertex of the
quadric and it is smooth there. �

The 3-fold Q is a quadric cone. If SQ is smooth let ν : T → Q be a Q-
factorialization of Q and ST the strict transform of SQ. Then (T, ST ) is a good
model for (P3, S) and ρ(T, ST ) = 2/3. Therefore I conclude by Corollary 1.7. If SQ
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is singular let z ∈ Sing(SQ) be a point. By the Claim it is not the vertex of Q. Thus
the projection from z produces a birational model of (Q,SQ) , say (P3, Z), with Z
a rational cubic and I conclude by Lemma 1.10.

Assume that Γ does not contain a line. It is easy to see that deg Γ ≤ 3. Moreover
if deg Γ = 3 the curve Γ is a twisted cubic. Therefore I am left to consider the
following cases: Γ an irreducible conic, Γ a twisted cubic. If Γ is a conic let x ∈ S
be a general point. Then the linear system of quadrics through Γ and x maps
(P3, S) to the pair (P3, S′) with S′ a rational cubic surface, and I conclude again
by Lemma 1.10. If Γ is a twisted cubic I conclude by Proposition 2.2. �

Example 2.7. I finish giving an explicit example of linearization of quartics that
has been classically studied for being envelopes of bitangent spheres, [Jes, Chapter
V]: the Cyclides. I thank Igor Dolgachev for pointing out this special class of quartics
and Alex Massarenti for working out the explicit equations with Macauley2

Let S ⊂ P3 be a quartic with the following equation

(x2 + y2 + z2 − w2)2 + w2q = 0,

where q is a polynomial of degree 2. The surface S is singular along the conic
C = (w = x2 + y2 + y2 = 0). Assume first that there is a further singularity, say
p 6∈ C, this is for instance the case of the Dupin’s cyclid. Let Q be a general quadric
through C ∪p. Then Q∩S = 2C+R for some residual curve R. The residual curve
R is a quartic rational curve. Fix a general point in q ∈ S. Then the linear system
that linearizes S is

Λ = |IC2∪p2∪R∪q(4)|.
If p is defined over the field of real numbers then the map is defined over the real
numbers. Here is a sample with plausible equations. Let us start with

S = ((x2 + y2 + z2 − w2)2 + w2((w − x)2 + y2 − z2) = 0)

the singular point is p = [1, 0, 0, 1] and the general point q = [0, 0, 1, 1]. Then a
linear system that linearize S is

{x2zw + y2zw + z3w + 2x2w2 + y2w2 + xzw2 − z2w2 − 4xw3 − 2zw3 + 2w2,

x2yw + y3w + yz2w + xyw2 − 2yw3, x3w + xy2w + xz2w − 2x2w2 − 2y2w2 + xw3,

x4 + 2x2y2 + y4 + 2x2z2 + 2y2z2 + z4 − x2w2 − y2w2 − 3z2w2 − 2xw3 + 2w4}.

If S has not further double points let Γ be a smooth rational quartic curve in S.
Let p ∈ Γ ∈ S be a general point and consider the linear system

Σ = |IC3∪p3∪Γ(6)|.

Let D ∈ Σ be a general element then

D ∩ S = 6C + Γ +R

This time the residual curve R has degree 8 and genus 3. The linear system that
linearizes S is then

Λ = |IC3∪p3∪R(6)|.
Denote by E the cone over C with vertex p, then E + S ⊂ Λ and E is contracted
by ϕΛ.

It is not clear to me if any such cyclid contains a rational quartic curve defined
over the field of real numbers.
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