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ABSTRACT 9 

In this work, a simple and effective numerical model is proposed for studying flexible and rigid 10 

foundations in bilateral and frictionless contact with a three-dimensional elastic half-space. For this 11 

purpose, a Galerkin Boundary Element Method for the substrate is introduced, and both surface 12 

vertical displacements and half-space tractions are discretized by means of a piecewise constant 13 

function. The work focuses on a transversely isotropic substrate having the plane of isotropy 14 

parallel to the half-space boundary, hence the relationship between vertical displacements and half-15 

space reactions is given by Michell solution, reducing to Boussinesq solution for an isotropic half-16 

space. Several numerical tests are performed for showing the effectiveness of the model, on one 17 

hand by determining vertical displacements of flexible rectangular foundations subjected to vertical 18 

pressures, on the other hand by accurately determining the translational and rotational stiffness of 19 

rigid rectangular and L-shaped foundations. Particular attention is given to the determination of the 20 

center of stiffness in case of unsymmetrical foundations, since it turns out to be not coincident with 21 

foundation area centroid. 22 

 23 
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1. INTRODUCTION 1 

The three-dimensional (3D) elastic half-space can be considered an accurate physical model for 2 

describing the behavior of a semi-infinite linear elastic and homogeneous continuum, which can be 3 

adopted, for instance in the civil engineering field, for studying the response of a soil media 4 

subjected to external loads or displacements transmitted by flexible or rigid foundations. In this 5 

field, the use of a continuum model is accurate since it considers surface deflections arising both 6 

under the directly loaded regions, both within certain areas outside the loaded regions, as the 7 

common experience can suggest [1]. In most of real-life case studies, soil media exhibits anisotropic 8 

properties due to layering or stratification, requiring the adoption of a homogeneous, linear elastic 9 

and transversely isotropic half-space [2, 3]. Furthermore, continuum model can also be adopted in 10 

the mechanical engineering field for studying composites and surface coatings [4, 5, 6]. For these 11 

reasons, the linear elastic and transversely isotropic half-space was studied by many authors [7, 8, 9, 12 

10, 11, 12]. Focusing on the homogeneous linear elastic and isotropic half-space, which can be 13 

assumed as a simpler model for representing half-space behavior in soil and rock mechanics [1, 13], 14 

the pioneering works of Cerruti [14] and Boussinesq [13] introduced the potential of a 3D linear 15 

elastic and isotropic half-space, which allowed to obtain the expressions of stresses and 16 

displacements generated by a concentrated force tangential and normal to the half-space surface 17 

[15], respectively. Many researchers in the past focused on the determination of the displacements 18 

generated by various force distributions on half-space surface [1]. Among the others, Lamb [16] 19 

studied the problem in cylindrical coordinates, whereas Love [17] determined the expression of 20 

half-space surface displacements generated by a uniform pressure over a rectangular area. The 21 

determination of pressures and displacements generated by rigid foundations on the half-space 22 

represents another problem involving Boussinesq solution. Many researchers determined the 23 

solution of the indentation of the rigid footing or punch problem by adopting different approaches 24 

such as power series, the Finite Element Method (FEM) or the Boundary Element Method (BEM) 25 



 

3 

[18, 19, 20, 21, 22, 23, 24, 25]. A resume of some numerical and analytical solutions of problems 1 

related to half-space surface loaded by flexible and rigid foundations can be also found in the books 2 

by Poulos and Davis [26] and Selvadurai [1]. Moreover, this problem is strictly related to the 3 

determination of the dynamic stiffness of a rigid foundation resting on an elastic soil [27, 28], and it 4 

is also a classical problem in physics, since its solution represents the charge density of a thin 5 

electrified plate [29, 30]. The recent article by Selvadurai and Samea [31] contains references to 6 

these and other developments in contact mechanics. Furthermore recently, a renewed interest on the 7 

determination of stresses generated by half-space surface loadings over polygonal domains has been 8 

carried on by Marmo and co-workers [32, 33], with particular attention to L-shaped foundations. 9 

In this work, a Galerkin Boundary Element Method (GBEM) is adopted for studying the 10 

behavior of flexible and rigid foundations in bilateral and frictionless contact with a 3D elastic and 11 

transversely isotropic half-space having the plane of isotropy parallel to the half-space boundary, 12 

with particular attention to the determination of the static stiffness of the rigid foundations. The 13 

proposed numerical model is based on a mixed variational formulation that assumes half-space 14 

surface vertical displacements and normal tractions in the contact region as independent fields. Such 15 

fields are numerically approximated by means of piecewise constant functions defined in the 16 

contact region of the half-space boundary only. For the sake of simplicity, the contact region is 17 

subdivided into rectangular portions.  18 

The proposed numerical approach has been recently used to study the in-plane bending of 19 

Timoshenko beams in bilateral frictionless contact with an elastic isotropic half-space making use 20 

of a Finite Element-Boundary Integral Equation (FE-BIE) method [34], allowing to obtain fast and 21 

accurate results in terms of beam displacements and contact tractions. The FE-BIE method was 22 

extensively used with elastic two-dimensional substrate, e.g., in the static analysis of Timoshenko 23 

beams and frames in frictionless [35, 36] or fully adhesive [37, 38] contact with a half-plane, and 24 

also to study bars and thin coatings [39, 40]. Moreover, the FE-BIE coupling method was also used 25 



 

4 

to analyze the buckling of Euler-Bernoulli [41, 42] and Timoshenko [43] beams in bilateral 1 

frictionless contact with an elastic half-plane. In all these studies, the numerical performance of the 2 

FE-BIE coupling method shown an excellent convergence rate in comparison with those of other 3 

standard numerical methods. 4 

It is worth noting that the development of efficient algorithms for solving integral equations is a 5 

nontrivial issue and represents an active field of research [44, 45, 46, 47]. Differently by the 6 

classical FEM-BEM approach based on collocation BEM, which requires an additional 7 

computational effort to remedy the lack of symmetry of the BEM coefficient matrix, the proposed 8 

GBEM involves a symmetric substrate matrix, Additionally, in the present study the weakly 9 

singular BIE is evaluated analytically, so avoiding singular and hyper-singular integrals, that are the 10 

major concern of the classical BEM. Moreover, the resolving matrix has dimensions proportional to 11 

the number of the rigid foundation FEs. Conversely, in the standard FEM, a refined mesh requires a 12 

stiffness matrix with dimensions that are several times the square of the number of FEs used for the 13 

rigid footing. Finally, the proposed GBEM allows to set the global equilibrium equations in a 14 

proper variational framework, so avoiding to pose them as a posteriori conditions. Consequently, 15 

rigid foundations of arbitrary shape subjected to general load distributions can easily be studied. 16 

This aspect will be particularly suitable in the structure-footing-soil interaction problem that will be 17 

studied in forthcoming works by making use of the FE-BIE method. The advantages outlined result 18 

in accurate solutions at low computational cost. 19 

The proposed variational formulation and the corresponding numerical model is formulated for 20 

foundations having an arbitrary shape and particular attention is given to the determination of the 21 

stiffness matrix of the rigid foundation-substrate system. The stiffness parameters are accurately 22 

determined with a small computational effort and turn out to be in excellent agreement with existing 23 

numerical solutions. Furthermore, in case of unsymmetrical rigid foundations, it is demonstrated 24 
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that the center of stiffness does not coincide with the foundation centroid, as it was originally 1 

pointed out by Conway and Farnham [20]. 2 

The work is organized as follows. Considering a transversely isotropic half-space with the plane 3 

of isotropy parallel to the half-space boundary, the variational formulation of the rigid foundation-4 

substrate system problem is provided and suitable equivalent elastic moduli are introduced to 5 

reduce the problem to the isotropic case. Then, the corresponding numerical model is detailed for 6 

the case of a flexible foundation loaded by vertical pressures and for the case of rigid foundations 7 

with prescribed vertical displacements. Particular attention is given to the definition of the stiffness 8 

matrix of the rigid foundation-substrate system. Finally, several numerical tests regarding 9 

rectangular flexible foundations and rectangular and L-shaped rigid foundations are proposed for 10 

highlighting the effectiveness of the numerical model. 11 

2. VARIATIONAL FORMULATION 12 

A flat foundation resting in bilateral frictionless contact with a semi-infinite substrate is referred 13 

to a Cartesian coordinate system (0; x , y , z), where the x–y plane defines the boundary of the half-14 

space, whereas z is chosen in the downward transverse direction (Fig. 1). The foundation is 15 

subjected to a distribution of vertical loads p(x, y) on the surface Ω. 16 

 17 

 18 

 19 

Fig. 1. Flat foundation resting on an elastic half-space. 20 
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 1 

According to Voigt compact notation, for a transversely isotropic material having the z-axis 2 

normal to the plane of isotropy, the stress–strain relationship reduces to [9, 10] 3 
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 (1) 4 

and the elastic constants can be written in terms of the engineering constants 5 

)]21()1[()1(11 xzzxxyxyzxxzxEC νν−ν−ν+νν−= , (2a) 6 

)21()1(33 xzzxxyxyzEC νν−ν−ν−= , (2b) 7 

)]21()1[()(12 xzzxxyxyzxxzxyxEC νν−ν−ν+νν+ν= , (2c) 8 

)21(13 xzzxxyzxxEC νν−ν−ν= , (2d) 9 

zxGC =44 , (2e) 10 

( ) 2/121166 CCC −= , (2f) 11 

where Ez denotes Young’s modulus along the vertical direction z, whereas the transverse directions 12 

x and y share the same Young’s modulus Ex, Gij and νij are the shear modulus and Poisson's 13 

coefficient, respectively, associated with the pair directions i, j = x, y, z. In particular, due to this 14 

special kind of material symmetry, νij/Ei = νji/Ej. 15 

Positive definiteness of the strain energy function of a transversely isotropic material requires [9, 16 

10]:  17 

02)(,0,02,0,0,0 2

133312111211121166443311 >−+>+>−=>>> CCCCCCCCCCCC , (3) 18 

The three-dimensional problem for a homogeneous, linear elastic and transversely isotropic half-19 

space loaded by a point force normal to its boundary plane has been treated by many authors, see [7, 20 
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8, 9, 10, 11, 12, 48] and references cited therein. In particular, the vertical displacement w of a point 1 

on the half-space boundary due to a generic normal traction r(ξ, η) over a surface Ω is given by 2 

Ω ηξ
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=

),;,(

dd),(1
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s

 (4) 3 

where 4 

( ) ( )22
),;,( η−+ξ−=ηξ yxyxd  (5) 5 

is the distance between the points (x, y, 0) and (ξ,η, 0), whereas, after some algebraic manipulation 6 

of Eqs. (7.1.14) and (7.1.15) reported in [10], the equivalent elastic moduli Es along the vertical 7 

direction z and Et in the isotropic plane can be written as [48, 49, 50, 51]: 8 
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( )4411
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( )1333112 CCCEt +=  (6b) 10 

It is worth remembering that Eq. (6a) was first shown in [7]. It can be easily verified that both Es 11 

and Et are positive for all kind of transversely isotropic materials. In fact, Eq. (3d) gives C11 > C12, 12 

which implies 2C11 > C11 + C12 so that also 2C11 C33 > (C11 + C12) C33; consequently, making use 13 

of Eq. (3f), it is straightforward to verify that 133311 CCC − > 0 and 133311 CCC + > 0. It is worth 14 

remarking that, for an isotropic substrate, the equivalent elastic moduli Es, Et reduce to Esoil/(1− 2
soilν ) 15 

and 2Esoil/[(1+νsoil)(1−2νsoil)], respectively, Esoil and νsoil being Young's modulus and Poisson ratio 16 

of the isotropic substrate; correspondingly, Eq. (4) reduces to Boussinesq solution [9, 15]. 17 

Horizontal displacement u and v of a point on half-space boundary are given by 18 
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Due to the theorem of work and energy for exterior domains [52], the strain energy of the 1 

substrate is 2 

Ω
= yxyxwyxrwrU s dd)0,,(),(

2

1
),( . (8) 3 

Making use of Eq. (4), Eq. (8) becomes 4 
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The potential energy of the substrate Πs can be written as 6 

( , ) ( , ) ( , ) ( , ,0) d ds sr w U r w r x y w x y x y
Ω

Π = −   (10) 7 

and also 8 
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2

1
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i.e.,  Πs equals one half of the work of the external loads. Making use of Eq. (4), Eq. (11) becomes 10 
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With reference to a rectangular foundation with size length L1 and L2, height tf and equivalent 12 

elastic modulus Ef = Ep/(1− 2

pν ), Ep and νp being Young's modulus and Poisson ratio of the isotropic 13 

foundation, the parameter characterizing the foundation-soil system is [1] 14 
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=α . (13) 15 

Values of αL1 less than 1.4 (L2/L1)
1/6

 characterize plates stiffer than substrates, so they perform like 16 

rigid foundations, whereas values of αL1 greater than 150 (L2/L1)
1/6

 describe flexible plates. These 17 

results also hold for beams in bilateral frictionless contact with an elastic half-space [34]. 18 
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The surface Ω may be divided into elements of generic shape (triangles, rectangles). In the 1 

following, rectangles with length hxi and height hyi are assumed together with piecewise constant 2 

base function: 3 





Ω
=ρ

on  elsewhere0

elementth  on the1
),(

i
yxi  (14) 4 

Hence, vertical displacement and soil reaction for each ith element can be approximated as 5 

w
(i)

(x, y) = ρi(x, y) qi, (15) 6 

r
(i)

(x, y) = ρi(x, y) ri, (16) 7 

where qi and ri denote nodal vertical displacement and normal traction lumped at the center of the 8 

corresponding ith surface element. 9 

3. FLEXIBLE FOUNDATION: NORMAL TRACTION PRESCRIBED ON THE HALF-10 

SPACE BOUNDARY 11 

For a flexible flat foundation, the normal tractions r(x, y) coincide with the prescribed vertical 12 

loads p(x, y) at any point of the surface Ω. Therefore, making use of Eqs. (10) and (9), the potential 13 

energy of the substrate with flexible flat foundation Πsf can be written as 14 

Ω−=Π yxyxwyxppUw ssf dd)0,,(),()()( , (17)  15 

for prescribed vertical loads p(x, y) on the surface Ω of the half-space.  16 

The prescribed vertical loads p(x, y) can be approximated with the piecewise constant function 17 

reported in Eq. (14), thus for each ith element 18 

p
(i)

(x, y) = ρi(x, y) pi, (18) 19 

where pi denote the value assigned to the ith surface element. Substituting Eqs. (15) and (18) in the 20 

variational principal (17) and assembling over all the elements, the potential energy takes the 21 

expression 22 
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The components of matrices Hf and G are: 1 
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where (xi, xi+1; yi, yi+1) are the (global) coordinates of the ith surface element and (ξj, ξj+1; ηj, ηj+1) 4 

are the coordinates of the jth surface element. It is obvious that the square matrix Hf turns out to be 5 

equal to a diagonal matrix, whose elements represent the area of each surface element, whereas the 6 

elements of matrix G are evaluated analytically and are reported in Appendix. 7 

Requiring the total potential energy in Eq. (19) to be stationary, the following system of 8 

equations is obtained: 9 

Hf q = G p (22) 10 

that represents the governing equation of the discrete Galerkin method for Eq. (4) when normal 11 

tractions p are prescribed on the half-space boundary. The formal solution of Eq. (22) is 12 

q = 1−
fH G p. (23) 13 

The average displacement wavg is defined by 14 
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where A is the area of the surface Ω. Substituting Eq. (4) in Eq. (24) yields  16 
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Making use of Eq. (18), Eq. (25) reduces to 18 
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i j jij pg

A
w

1
avg , (26) 19 

Obviously, the same results of Eq. (26) can be obtained starting from Eq. (22), by writing the ith 20 

row: 21 
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=
j jijiiif pgqh ,  (27) 1 

Then, the sum of all the ith contributions of the expression above, divided (averaged) with respect 2 

the area A, allows to obtain: 3 

 ==
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4. RIGID FOUNDATION: VERTICAL DISPLACEMENT PRESCRIBED ON THE 5 

HALF-SPACE BOUNDARY 6 

For a rigid flat foundation, the distribution of vertical displacement w(x, y, 0) underlying the 7 

footing are prescribed by 8 

xywyxw yx 000)0,,( ϕ+ϕ+= , (29) 9 

where w0, ϕ0x, and ϕ0y are specified at the origin x = y = z = 0 (Fig. 1). 10 

Making use of Eq. (12), the potential energy of the rigid foundation-substrate system Πsr can be 11 

written as:  12 

Ω
−−Π=Π yxyxwyxryxpwrwr ssr dd)0,,()],(),([),(),( . (30) 13 

Substituting Eq. (29) in Eq. (30) yields 14 
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where the vector q0 = [w0, ϕ0x, ϕ0y]
T
 collects the displacements prescribed at the origin and 16 

 ΩΩΩ
Ω=Ω== d,d,d xpMypMxpP yx  (32) 17 

are the three external load resultants. It can readily be noted that, in Eq. (31), each difference in 18 

square brackets corresponds to a global equilibrium equation.  19 

Substituting Eqs. (15) and (16) into the variational principle (31) and assembling over all 20 

substrate elements 21 
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where the elements of matrix G are reported in Appendix, the vector f = [P, Mx, My]
T
 collects the 1 

three external loads and  2 
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 (37) 7 

represent the area and first moment of area with respect to x-axis or y-axis of each surface element, 8 

respectively. Obviously, the diagonal of the matrix Hf, whose components are reported in Eq. (20), 9 

coincides with hr0. 10 

Requiring the potential energy in Eq. (33) to be stationary, the following system of equations is 11 

obtained 12 
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The first relation of Eq. (38), Hr r = f, imposes global equilibrium equation between the substrate 14 

tractions r and the external load resultants f, whereas the second relation 15 

G r = T

rH  q0,  (39) 16 

represents the governing equation of the discrete Galerkin method for Eq. (4) with displacements 17 

prescribed by Eq. (29). It is worth remarking that Eq. (4) represent a weakly singular integral 18 

equation of the first kind with prescribed function w(x, y, 0). Existence, uniqueness and regularity 19 

results for the unknown r(x, y, 0) are reported in [53]. Stability and convergence properties of 20 

Galerkin approximations given by Eq. (39) was proved in [29] for both piecewise constant and 21 
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piecewise-linear boundary elements. Once normal tractions on boundary half-space are found, 1 

displacements and stresses at arbitrary points of the half-space can be evaluated analytically 2 

adopting the procedures described in [10, 12]. 3 

The formal solutions to Eq. (38) yields 4 

r = G
−1

 T

rH q0 = G
−1

 (w0 hr0 + ϕ0x hrx + ϕ0y hry), (40) 5 

Kr q0 = f, (41) 6 

where the stiffness matrix of the rigid foundation-substrate system 7 

Kr = Hr G
−1 T

rH  (42) 8 

is a 3-by-3 matrix.  9 

4.1 Static stiffnesses for rigid foundation  10 

The first row of Eq. (41) reads as 11 

w0 + k r,12/kr,11 ϕ0x + k r,12/kr,11 ϕ0y = P/kr,11,  (43) 12 

hence, introducing the center of stiffness K having coordinates 13 

xK = k r,12/kr,11,     yK = k r,13/kr,11,  (44) 14 

the left hand-side of Eq. (43) represents the vertical displacement wK in correspondence of the 15 

center of stiffness and kr,11 stands for the vertical stiffness kV of the rigid foundation.  16 

Making use of Eqs. (43) and (44), the second and third rows of Eq. (41) reduce to 17 

kϕ,11 ϕ0x + kϕ,12 ϕ0y = Mx − P xK, (45) 18 

kϕ,12 ϕ0x + kϕ,22 ϕ0y = My − P yK, (46) 19 

where 20 

kϕ,11 = k r,22 − k r,12 xK,  (47a) 21 

kϕ,12 = k r,23 − k r,12 kr,13/kr,11,  (47b) 22 

kϕ,22 = k r,33  − k r,13 yK.  (47c) 23 
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The rotational stiffness coefficients of the rigid foundation coincide with the eigenvalues of the 1 

system of equations (45) and (46) and the corresponding eigenvectors identify the direction of the 2 

principal axes of stiffness. In particular, the two principal rotational stiffness kϕ,I and kϕ,II are 3 
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 +−±+= ϕϕϕϕϕϕϕ

2

12,

2

22,11,22,11,II,I, 4
2

1
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and the angle α between the principal axis of stiffness and the x-axis is given by 5 

,12

,11 ,22

tan 2α
k

k k

ϕ

ϕ ϕ

=
−

. (49) 6 

It is worth remark that Eqs. (44) and (49) are mesh-dependent, hence the center of stiffness K 7 

and the angle α may not coincide with the corresponding geometric center of area and angle 8 

between the principal axis and the x-axis of the foundation shape. This means that a concentrated 9 

vertical force P has to be applied at the center of stiffness K in case of a rigid indenter with an 10 

unsymmetrical shape, in order to have no rotation of the indenter with respect to x and/or y-axis. 11 

This aspect was pointed out by Conway and Farnham [20] by performing numerical tests on 12 

unsymmetrical L-shaped punches. Nonetheless, for a foundation with both double symmetric shape 13 

and mesh, direct computations show that the center of stiffness K and the principal axes of stiffness 14 

coincide with the geometric centroid and the geometric principal axes, respectively.  15 

Finally, the rotations and moments referred to the principal axes of stiffness transform as usual  16 

ϕI = ϕ0x cosα + ϕ0y sinα, (50a) 17 

ϕII = − ϕ0x sinα + ϕ0y cosα.  (50b) 18 

ϕ0x = ϕI cosα − ϕII sinα, (51a) 19 

ϕ0y = ϕI sinα + ϕII cosα. (51b) 20 

MI = (Mx − P xK) cosα + (My − P yK) sinα, (52a) 21 

MII = − (Mx − P xK) sinα + (My − P yK) cosα.  (52b) 22 

The resolving Eqs. (40) and (41) reduce to: 23 
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r = wK G
−1

 hr0 + ϕ0x G
−1

 (hrx − xK hr0) + ϕ0y G
−1

 (hry − yK hr0),  (53) 1 

wK = P/kv,    ϕI = MI/kϕ,I,    ϕII = MII/kϕ,II.  (54) 2 

5. SURFACE DISCRETIZATION 3 

The surface Ω of the footing is subdivided into quadrilateral elements and the simplest 4 

subdivision is obviously a regular mesh. However, it is well known that the solution of Eq. (4) with 5 

prescribed displacements exhibits singular behavior near the edges and corners [54, 55, 56]. 6 

Therefore, a regular mesh may not be able to describe correctly surface displacements and substrate 7 

reaction at edges and corners of the indenter. In order to obtain accurate results, it is common to use 8 

power graded meshes [30, 57, 58], Alternatively, edge and corner singularities can be treated using 9 

singular boundary elements close to edges and corners, see [59, 60] and references cited therein. 10 

Power graded meshes are characterized by a grading exponent β ≥ 1. A generic dimensionless 11 

coordinate t, on the interval (0,1) is described by the following expression: 12 
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 (55) 13 

where n is the number of points on the interval. For β = 1 the mesh turns out to be uniform, but as β 14 

increases, the points are more concentrated at the end of the interval. In the following, a square with 15 

unitary side length is considered and the same number of subdivisions is adopted along x and y axes 16 

(nx = ny = n). 17 

Considering the squares in Fig. 2, it is worth noting that for increasing β, the elements near 18 

surface edges and corners tend to be smaller and smaller, however, elements close to the origin tend 19 

to be bigger. Consequently, the exponent β in Eq. (55) has to be chosen in order to obtain accurate 20 

results both near surface edges and close to the origin. 21 
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n 4 8 16 
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=
 1

 

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

 
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

 
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

 

β 
=

 2
 

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

 
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

 
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

 

β 
=

 3
 

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

 
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

 
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

 

β 
=

 4
 

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

 
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

 
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

 

 1 

Fig. 2. Examples of power-graded meshes for a square with unitary side length varying the number 2 

of element n and grading exponent β. 3 

6. UNIFORM PRESSURE APPLIED TO A RECTANGULAR SURFACE 4 

In order to ascertain the correctness of Eq. (23) and of the components of the flexibility matrix G 5 

of the half-space, a uniform pressure p applied to a generic rectangular surface having length L1 and 6 

width L2 (Fig. 3) is considered. In this case, the analytic solution was determined by Love [9, 15, 7 

17]. 8 
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 1 

 2 

Fig. 3. Elastic half-space loaded by a constant pressure p over a rectangular surface. 3 

 4 

Dimensionless displacements are evaluated at four points O, N, M, C (Fig. 3) varying exponent β 5 

and increasing the number of subdivisions along each side. The first point O coincides with the 6 

origin of the coordinate system; the second one, M, is at the midpoint of the edge parallel to x-axis; 7 

the third one, N, is at the midpoint of the edge parallel to y-axis; and the last one, C, is corner of the 8 

loaded rectangle surface. It is worth noting that the adopted surface discretizations do not allow to 9 

evaluate displacements at the exact points described above since each displacement value is applied 10 

in the center of the corresponding boundary element. 11 

The case of a square loaded surface (L1 = L2 = L) having the same number of elements in x and y 12 

directions (nx = ny = n) is considered first. Obviously, the displacements at points M and N are 13 

equal. The analytic values wa determined by Love [9, 15, 17] are 14 

wO = wa(0, 0) = 1.122 pL1/Es, (56a) 15 

wM = wN = wa(0, L1/2) = 0.7659 pL1/Es, (56b) 16 

wC = wa(L1/2, L1/2) = 0.5611 pL1/Es. (56c) 17 
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(c)  (d) 1 

 2 

Fig. 4. Relative errors δw for displacements evaluated at points (a) O, (b) C and (c, d) M, N. 3 

 4 

Fig. 4 shows the relative error δw =(w − wa)/wa for the three displacements reported in Eqs. (56). 5 

In particular, Fig. 4a shows the relative errors for the displacement at origin. In this case, the 6 

convergence ratios are coincident and close to n
−2

 for all surface discretization cases. However, 7 

relative errors are small also for the uniform discretization case. Indeed, for n = 32 and β = 1, 8 

relative error is close to 0.5%, whereas for n = 16 and β = 3, relative error is close to 4%. 9 

Considering the displacement at corner (Fig. 4b), the convergence ratios are small for β = 1 and 2 10 

(n
−0.75

 and n
−1.7

, respectively), whereas for β = 3 and 4 convergence ratios are close to n
−2.7

 and n
−3.7

, 11 

respectively. For n = 32 and β = 1, relative error is close to 10%, whereas for n = 16 and β = 3, 12 

relative error is close to 0.8%. Finally, Figs. 4c and 4d show relative errors related to the 13 

(a)                     (b) 
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displacement at edge midpoint M or N. In this case, errors for β equal to 3 and 4 do not have a 1 

monotonic behavior. Nonetheless, neglecting values for n = 4, errors can still be represented in bi-2 

logarithmic scale. Convergence ratio for β = 1 is close to n
−0.75

, whereas for β equal to 2, 3 and 4 3 

ratios are almost coincident and close to n
−1

. For β = 3 errors are lower with respect to other 4 

discretization cases, Therefore, for this example the power graded mesh with β = 3 turns out to be 5 

quite effective. 6 

Figs. 5a and 5b show the dimensionless displacement w* = w /[pL1/Es] along the x-axis and 7 

along the diagonal of the square surface, where the coordinate is equal to 2 x, for increasing β and 8 

assuming n = 16. In this example the exponent β does not influence results significantly. 9 

 10 

(a) (b) 11 

 12 

Fig. 5. Dimensionless vertical displacements w* (a) along the x-axis and (b) along the diagonal due 13 

to a uniform pressure over a square surface. 14 

 15 

With reference to rectangular surfaces loaded by uniform pressure, Fig. 6 shows dimensionless 16 

vertical displacements w* at points O, M, N and C versus the ratio L1/L2. The surface discretization 17 

is characterized by a power graded mesh with β = 3 and assuming nx = ny = 64. Results are in good 18 

agreement with Love’s solution [9, 15, 17]. 19 
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 1 

 2 

Fig. 6. Dimensionless vertical displacements w* beneath a rectangular area due to a uniform 3 

pressure (continuous lines for present analysis, cross symbols for Love’s solution). 4 

 5 

Making use of Eq. (25), the average displacement wavg for a uniform vertical pressure 6 

distribution over a rectangle having total load resultant P = p L1 L2 reduces to 7 

),(
)(

212

21

avg LLg
LL

P
w ii= , (57) 8 

where gii(L1, L2) is reported in Appendix and must be evaluated replacing lxi and lyi with L1 and L2, 9 

respectively, and gives analytical estimates for wavg, whereas numerical results are derived by using 10 

Eq. (28). 11 

Usually, the average displacement wavg is written in the form [61]: 12 

21

avg
LLEc

P
w

svf

=  (58) 13 

where cvf is reported in Table 1 for some values of the L1/L2 ratio. Therefore, the vertical stiffness kvf 14 

of a flexible foundation is 15 

21

avg

LLEc
w

P
k svfvf == . (59) 16 

Tab. 1. Dimensionless vertical stiffness cvf for flexible rectangular foundation. 17 

L1/L2 1 1.5 2 3 5 10 100 

Analytical integration Eq. (57) 

Present analysis (β=3, nx=ny=64) 
1.057 1.067 1.088 1.134 1.225 1.408 2.708 

Timoshenko and Goodier 1951 [61] 1.05  1.06 1.09 1.14 1.22 1.41 2.70 
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7. RIGID RECTANGULAR FOUNDATION  1 

In this section a rigid rectangular foundation with size length L1 and L2 is considered, its centroid 2 

is located at the origin and the x and y axes coincide with the centroidal axes of the foundation (Fig. 3 

1). Vertical load P and moments Mx, My are applied at the origin. 4 

 5 

Fig. 7. Rigid rectangular foundation resting on an elastic half-space. 6 

 7 

The resolving Eqs. (52) and (53) reduce to: 8 

r = w0 G
−1

 hr0 + ϕ0x G
−1

 hrx + ϕ0y G
−1

 hry, (60) 9 

w0 = P/kv,    ϕ0x = Mx/kϕx,    ϕ0y = Mx/kϕy, (61) 10 

where the vertical stiffness kv and the rotational stiffnesses kϕx, kϕy can be written as 11 

kv = T

0rh G
−1

 hr0, (62a) 12 

kϕx = T

rxh G
−1

 hrx, (62b) 13 

kϕy = T

ryh G
−1

 hry, (62c) 14 

7.1 Rigid square foundation with vertical load 15 

The case of a square foundation (L1 = L2 = L) having the same number of elements in x and y 16 

directions (nx = ny = n) is considered first. Taking into account the vertical load P only, adopting n = 17 

16 elements for each side and varying β, Fig. 8a shows dimensionless normal traction r(x, 0)/(P/L
2
) 18 

along x-axis, whereas Figs. 8c shows dimensionless normal traction r(x, x)/(P/L
2
) along the 19 
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diagonal. The singularities of normal tractions close to contact surface edge and corner are 1 

highlighted in Fig. 8b and d, respectively, by adopting n = 64 elements for each side. It is worth 2 

noting that the estimates of the exponent of the edge and corner singularity are equal to 0.5 and 0.7, 3 

respectively, in good agreement with the estimates reported in [62, 63, 64]. In Fig. 9, dimensionless 4 

normal tractions are shown by adopting a three-dimensional representation. It is clear that normal 5 

tractions assume quite constant value close to the origin, whereas they increase rapidly in proximity 6 

of edges and corners. Results obtained with the uniform mesh are not able to represent correctly the 7 

behavior at surface edges and corners, whereas increasing β, the values near edges and corners 8 

increase rapidly. 9 

(a)     (b) 10 

(c)     (d) 11 

 12 

Fig. 8. Dimensionless normal traction due to a vertical force (a) along x-axis, (b) at the midpoint of 13 

the edge parallel to y-axis, (c) along the diagonal and (d) at the corner. 14 

 15 
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r(
x
,0

)/
(P

/L
2
)

 1 

 2 

Fig. 9. Dimensionless normal traction due to a vertical force. Square surface is subdivided with a 3 

power graded mesh having 16 elements for each side and β = 3. 4 

 5 

Applying Rayleigh considerations [65], it is worth noting that the vertical stiffness kv of a rigid 6 

square foundation may be delimited by an upper and lower bound: 7 

4142.12
2

1284.1 =<<
π

=
LE

k

s

v , (63) 8 

where the lower bound represents the stiffness of a circle having the same area of the square and the 9 

upper bound is the stiffness of the circle circumscribed to the square area, see also [1] for bounds on 10 

rectangular plates. The above bounds are also in agreement with the expressions obtained in [66, 67, 11 

68] for circular punch resting on a transversely isotropic elastic half-space. 12 

The vertical stiffness for the rigid square foundation obtained with β = 4 and n = 2
7
 is considered 13 

as reference solution: 14 

LEk s

REF

v 1523.1=  (64) 15 

Table 2 shows values of kv obtained by different researchers and by adopting various methods of 16 

solution. The vertical stiffness obtained with the present model is close to the results proposed by 17 

[24, 29, 59], In particular, Dempsey and Li [24] used numerical integration with Gauss quadrature 18 
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adopting a graded discretization of the surface, whereas [29] made use of GBEM with graded mesh 1 

and [59, 60] adopted BEM with singular elements. 2 

Tab. 2. Dimensionless vertical stiffness values for rigid square foundation. 3 

Author Method kv /(Es L) 

Present analysis GBEM with graded mesh 1.1523 

Eskandari-Ghadi et al. 2017 [60] BEM with singular elements 1.152 

Guzina et al. 2006 [59] BEM with singular elements 1.152 

Bosakov 2003 [25] Orthogonal polynomials 1.146 

Erwin et al. 1990 [29] GBEM with graded mesh 1.1523 

Dempsey and Li 1989 [24] BEM with graded mesh 1.1523 

Pais and Kausel 1988 [28] Review existing solutions 1.175 

Conway and Farnham 1968 [20] BEM with uniform mesh 1.114 

Whitman and Richart 1967 [27] - 1.080 

Gorbunov and Posadov 1961 [1] Power series 1.095 

 4 

The errors REF

vv

REF

vv kkkk /)( −=δ  are evaluated varying β and increasing the number of 5 

subdivisions along each side of the surface. Relative errors are shown in Figs. 10a and 10b varying 6 

n and nTOT = n
2
, respectively. 7 

(a) (b) 8 

 9 

Fig. 10. Relative errors for kv varying (a) the number of subdivisions along each surface side and (b) 10 

the total number of boundary elements. 11 

 12 

Fig. 10b clearly shows that vertical stiffness converges with different converge rates varying β. 13 

In particular, the results obtained with the uniform mesh converge to the reference solution with 14 
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rates close to n
−1

 and 5.0−
TOTn , whereas rates are close to n

−2
 and 0.1−

TOTn  for β equal to 2. Convergence 1 

rates obtained with β equal to 3 (n
−2.7

 and 35.1−
TOTn ) turn out to be quite close to those obtained with β 2 

equal to 4. Moreover, for β = 3 and n = 2
6
, relative error is less than 10

-4
 (10

-2
 %). Considering 3 

convergence tests shown in Figs. 10a and 10b, the soil surface discretization obtained with β = 3 4 

can be considered the most effective with respect to other cases. In particular, the case β = 4 does 5 

not increase significantly the results accuracy, but generates larger boundary elements close to the 6 

origin of the surface. Hence, even if Selvadurai and co-workers have shown that the singular fields 7 

of contact tractions have no significant contributions when the overall stiffness of the indenter is 8 

evaluated [55, 56], here the use of sufficiently refined power-graded meshes with small surface 9 

portions close to the boundary increases significantly the results accuracy. It is worth noting that 10 

convergence problems due to the increasing mesh refinement close to the borders of the domain did 11 

not appear during the tests shown in Fig. 10. 12 

7.2 Rotational stiffness for a rigid square foundation with applied moment Mx 13 

For a rigid foundation with applied moment Mx, the rotational stiffness can be derived by Eq. 14 

(62b). Considering a square foundation (L1 = L2 = L) with the same number of elements in x and y 15 

directions (nx = ny = n), the rotational stiffness obtained adopting β = 4 and nx = ny = 2
7
 is 16 

considered as the reference solution: 17 

32601.0 LEk s

REF

x =ϕ , (65) 18 

This estimate is close to the results proposed in [26].  19 

The errors REF

xx

REF

xx kkkk ϕϕϕϕ −=δ /)(  are evaluated varying β and increasing the number of 20 

subdivisions along each side of the surface. Relative errors are shown in Fig. 11a and 11b varying n 21 

and nTOT = n
2
, respectively. Fig. 11b clearly shows that rotational stiffness converge with different 22 

rates varying β, In particular, the results obtained with the uniform mesh converge to the reference 23 

solution with rates close to n
−1

 and 5.0−
TOTn  for β equal to 1, whereas rates are close to n

−2
 and 1−

TOTn , for 24 



 

26 

β equal to 2. Convergence ratios obtained with β equal to 3 (n
−2.8

 and 4.1−
TOTn ,) turn out to be 1 

coincident with the one obtained with β equal to 4. Moreover, for β = 3 and nx = nx = 2
6
, relative 2 

error is less than 5×10
−5

. Therefore, in this case, similarly to the previous example, the power 3 

graded mesh with β = 3 represents the best choice for the surface discretization. 4 

(a) (b) 5 

 6 

Fig. 11. Relative errors for kϕx varying (a) the number of subdivisions along each surface side and 7 

(b) the total number of boundary elements. 8 

7.3 Stiffnesses of rigid rectangular foundation 9 

Adopting a power graded mesh having β = 3 and nx = ny = 2
6
, the dimensionless vertical stiffness 10 

( )21LLEkc svvr =  and rotational stiffness ( )2

21LLEkc sxx ϕϕ =  are shown with continuous lines in 11 

Fig. 12 versus L1/L2 ratio, where cross symbols represent data reported in [24]. In particular, the 12 

following estimates can be obtained: 13 

1 21.113 0.039 /
vr

c L L= + , (66) 14 

2 3

1 2 1 2 1 20.21 / 0.05( / ) 0.0005( / )xc L L L L L Lϕ = + − . (67) 15 

Therefore, the present model turns out to be effective also for rigid rectangular foundations and 16 

the power graded mesh with β = 3 is sufficient to obtain accurate values.  17 
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 1 

Fig. 12. Dimensionless vertical stiffness cvf, cvr and rotational stiffness cϕx of a rigid rectangular 2 

foundation varying L1/L2 ratio. (continuous lines for present analysis, cross symbol for Dempsey 3 

and Li [24] data). 4 

 5 

8. L-SHAPED RIGID FOUNDATIONS 6 

In this section, three type of L-shaped rigid foundations are considered (Fig. 13). In particular, a 7 

symmetrical L-shaped rigid foundation is reported in Fig. 13a and was analysed by Erwin and 8 

Stephan [30]. The contact surface is formed from a square of side length 2L out of which a corner 9 

square of side length L was removed. The two unsymmetrical cases reported in Figs. 13b and 13c 10 

were considered by Conway and Farnham [20]. 11 

(a) (b)  (c)  12 

Fig. 13. L-shaped rigid foundations proposed by (a) Erwin and Stephan [30], (b) Conway and 13 

Farnham  #1 [20] and (c) Conway and Farnham #2 [20]. 14 
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8.1 Stiffness parameters of L-shaped rigid foundations 1 

Translational and rotational stiffness parameters of the rigid footing are evaluated with the 2 

proposed numerical model, together with the position of the center of stiffness K with respect to the 3 

geometric center of area C, and the orientation of the principal axis of stiffness with respect to the 4 

principal axis of inertia. Particular attention is also given to the contact surface discretization and 5 

several convergence tests are performed. For this purpose, on one hand, a refined contact surface 6 

discretization characterized by the same power-graded mesh with β = 3 for each quadrilateral 7 

portion of the L-shaped punch is adopted (Fig. 14a), in order to work with a model with smaller 8 

surface FEs both close to the external edges and close to the inner corner of the punch. On the other 9 

hand, a simpler power-graded mesh with β = 3 characterized by small surface FEs only close to the 10 

external edges of the punch is considered (Fig. 14b). Furthermore, the simplest case of a regular 11 

contact surface discretization, namely a power graded mesh with β = 1, is adopted (Fig. 14c). 12 
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a    

b    

c    
 1 

Fig. 14. L-shaped rigid foundations having 8 subdivisions along x and y directions, and with (a) 2 

refined power-graded mesh with β = 3 for each quadrilateral portion of the surface, (b) simple 3 

power-graded mesh with β = 3 for the whole surface, (c) regular contact surface discretization. 4 

 5 

Fig. 15 shows the position of area centroid C (plus symbol), of the center of stiffness K (cross 6 

symbol), and the orientation of both inertia and stiffness principal axis of the three case studies 7 

considered (continuous and dashed lines, respectively), obtained with a refined power-graded mesh 8 

with β = 3, n = 32 subdivisions along each side of the foundation, and, consequently, nel = 768 9 

subdivisions of the contact surface. Tab. 3 collects numerical results in terms of area centroid 10 

position, center of stiffness position, translational and rotational stiffness for the three case studies, 11 

obtained with the refined power-graded mesh with β = 3 and n = 256 subdivisions along each side 12 
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of the foundation. As expected, the center of stiffness K does not coincide with area centroid C, and 1 

the numerical results obtained in the second and third cases are in excellent agreement with the 2 

original results obtained by Conway and Farnham [20], both in terms of C and K positions, and in 3 

terms of translational stiffness values. 4 

 5 

Tab. 3. Numerical results in terms of area centroid position (xC/L, yC/L), center of stiffness position 6 

(xK/L, yK/L), translational (kv/(EsL)) and rotational (kφx/(EsL
3
), kφy/(EsL

3
)) stiffnesses for the three L-7 

shaped foundations. 8 

 xC/L yC/L xK/L yK/L kv/(EsL) kφx/(EsL
3
) kφy/(EsL

3
) 

Erwin & Stephan [30]     2.067   

Present analysis  −0.167 −0.167 −0.147 −0.147 2.071 1.638 1.638 

Conway & Farnham [20] #1 0.87 1.73 0.87 1.69 2.505   

Present analysis #1 0.868 1.730 0.867 1.681 2.603 4.250 11.468 

Conway & Farnham [20] #2 0.83 1.75 0.84 1.70 2.461   

Present analysis #2 0.833 1.750 0.839 1.697 2.561 3.955 11.446 

 9 
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a  1 

b  2 
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 3 

Fig. 15. L-shaped rigid foundations proposed by (a) Erwin and Stephan [30] and (b, c) Conway and 4 

Farnham [20] with n = 32 subdivisions along each side of the foundation and refined power-graded 5 

mesh with β = 3. Centroid position (plus symbol), center of stiffness position (cross symbol), 6 

together with principal inertia and stiffness axis orientation. 7 

 8 



 

32 

Although Selvadurai and co-workers have shown that the singular fields of contact tractions have 1 

no significant contributions when the overall stiffness of a rigid indenter is evaluated [55, 56], here 2 

the use contact surface discretizations able to account for traction singularities close to surface 3 

boundaries is fundamental, since the center of stiffness position turns out to be mesh-dependent. 4 

Hence, the use of a not refined surface discretization should give misleading results in terms of 5 

centre of stiffness position, and the distance between K and C should appear as an error due to the 6 

coarse refinement. For this reason, an accurate refinement also accounting for singular fields is still 7 

necessary in the determination of stiffness parameters, hence a set of convergence tests is performed 8 

by considering the three different mesh refinements of Fig. 14 and varying the number of 9 

subdivisions along foundation sides. Results are showed in Fig. 16 in terms of the relative 10 

difference between the coordinates of the center of stiffness and area centroid, namely 11 

δx = (xK − xC)/xC, δy =  (yK − yC)/yC, with respect to the overall number of contact surface 12 

subdivisions nel. As expected, such differences do not tend to zero, since center of stiffness does not 13 

coincide with area centroid, and the more accurate power-graded mesh refinement with β = 3 for 14 

each quadrilateral portion of the area (Fig. 14a) turns out to be the most effective choice for 15 

determining center of stiffness position. The less refined power graded mesh with β = 3 (Fig. 14b) 16 

turns out to have a very limited accuracy in the determination of center of stiffness position, 17 

especially with a small number of subdivisions. The results obtained with regular surface 18 

discretization (Fig. 14c) turn out to be quite close to the most accurate ones, highlighting the 19 

importance of adopting a refined surface discretization along the entire border of the area and close 20 

to area centroid. 21 
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          Erwin and Stephan [30] 1 

(a)   2 

Conway and Farnham #1 [20]         Conway and Farnham #2 [20] 3 

(b) (c) 4 

Fig. 16. Relative percentage difference between the coordinates of the center of stiffness K and area 5 

centroid C with respect to the overall number of contact surface subdivisions nel for (a) Erwin and 6 

Stephan [30], (b) Conway and Farnham  #1 [20] and (c) Conway and Farnham #2 [20]. 7 

8.2 L-shaped rigid foundations subjected to forces and couples 8 

Finally, the symmetrical L-shaped rigid foundation proposed by Erwin and Stephan [30] is 9 

subjected to four different loading conditions: a vertical force P applied at foundation centroid, a 10 

concentrated vertical force P referred to the Cartesian coordinate system (K; x~ , y~ , z) defined by 11 

the center of stiffness K and the principal axes of stiffness, and couples MI and MII. For the first 12 

case, contact tractions r and displacement q0 specified at the origin are determined for first by 13 

means of the system of equations (38) assuming as external load resultants f = [P, P xC, P yC]
T
, then 14 

the corresponding vertical surface displacements w over the entire contact surface are calculated 15 

with Eq. (29). Alternatively, for the external load resultants referred to the Cartesian coordinate 16 
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system (K; x~ , y~ , z), vertical displacement and rotations can be determined for first by means of 1 

Eq. (54), then the distribution of vertical displacement underlying the rigid foundation are 2 

prescribed by 3 

xywyxw K
~~)0,,( III ϕ+ϕ+= . (68) 4 

Making use of Eq. (51), contact tractions r are determined by means of Eq. (53) and Eq. (23) can be 5 

used as cross checking with the displacement field given by Eq. (68). 6 

In the second loading condition, the external load resultant is f = [P, P xK, P yK]
T
, whereas 7 

couples MI and MII are defined by Eq. 52a and b, respectively. 8 

Vertical displacements and contact tractions are shown in Fig. 17 with colour maps, assuming a 9 

refined surface power-graded discretization having β = 3 and n = 32 subdivisions along each side of 10 

the foundation, and setting 2L equal to the overall width and height of the foundation. Focusing on 11 

contact tractions r, large magnitudes are obtained along the edges of the contact surface with the 12 

four load cases considered. It is worth mentioning that the concentrated force P applied at 13 

foundation centroid generates non uniform vertical displacements (Fig. 17 b), which turn out to be 14 

smaller close to the upper-right sides of the contact surface, and larger close to the lower-left corner. 15 

The second loading condition, given by the vertical force P applied at foundation center of stiffness, 16 

is of particular interest, since it generates a uniform vertical displacement, equal to w = 17 

0.482P/(EsL) (Fig. 17 d) according to the considerations done in the previous sub-section and to 18 

those of Conway and Farnham [20]. However, contact tractions generated by P applied at 19 

foundation center of stiffness are very close to those obtained with P applied at foundation centroid 20 

(Fig. 17 a, d). Finally, contact tractions (Fig. 17 e, g) and displacements (Fig. 17 f, h) generated by 21 

the couples MI and MII turn out to be linearly varying along y%  and x%  directions, respectively. 22 
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a b 1 

c d 2 

e f 3 
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g h 1 

 2 

Fig. 17. L-shaped rigid foundation subjected to: (a, b) a vertical force P acting on area centroid and 3 

(c, d) and at the center of stiffness K, couples (e, f) MI and (g, h) MII, referred to the Cartesian 4 

coordinate system (K; x~ , y~ , z). Half-space reactions (a, c, e, g) and surface vertical displacements 5 

(b, d, f, h). 6 

CONCLUSIONS 7 

In this work, a simple and effective Galerkin Boundary Element Method is introduced for 8 

studying flexible and rigid foundations resting on a three-dimensional elastic half-space or soil. The 9 

relationship between vertical displacements and half-space reactions is given by the Melan solution 10 

for transversely isotropic soil, reducing to Boussinesq solution for the isotropic case. The proposed 11 

numerical model discretizes both surface vertical displacements and half-space tractions by means 12 

of a piecewise constant function and by subdividing the contact surface into rectangular portions. 13 

The effectiveness of the model is demonstrated by performing several numerical tests dedicated to 14 

the determination of vertical displacements of flexible rectangular foundations subjected to vertical 15 

pressures, and to determining the translational and rotational stiffness of rigid rectangular and L-16 

shaped foundations. Results in terms of vertical displacements and stiffness parameters turn out to 17 

be in excellent agreement with existing solutions. Furthermore, several convergence tests show that 18 

the power-graded discretization of the contact surface, characterized by small subdivisions close to 19 
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the foundation edges, is more effective than a regular discretization, and in case of a L-shaped 1 

foundation, small subdivisions should be placed along the whole border of the contact area. The 2 

determination of the center of stiffness in case of unsymmetrical foundations shows that it is 3 

generally not coincident with contact surface centroid, and a concentrated vertical force has to be 4 

applied at center of stiffness in order to obtain a uniform vertical displacement of the contact 5 

surface. 6 

Hence, the proposed GBEM to study the static behavior of a foundation resting on a half-space 7 

can be considered effective and can be coupled with traditional finite elements modelling the 8 

structure attached to the foundation. Further developments of this work will focus on the use of Eq. 9 

(38) to study the structure-footing-soil interaction problem adopting the FE-BIE coupling method, 10 

as shown in [37] for beams and frames resting on two-dimensional substrate. 11 

In civil engineering the shallow foundations are built as rigid as possible. Nonetheless, the 12 

foundation may be regarded as being flexible according to some assumed plate theory [69, 70]. 13 

Further advances of this work will focus on the development of plate models on 3D half-space, in 14 

order to simulate the behavior of plane shallow foundations on elastic soil or coatings on elastic 15 

substrates. 16 
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APPENDIX 20 

Considering the surface Ω of the foundation subdivided into rectangular elements and adopting a 21 

piecewise constant substrate reaction, the components of the flexibility matrix G of the half-space 22 

are: 23 
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FIGURE CAPTIONS 1 

Fig. 1. Flat foundation resting on an elastic half-space. 2 

Fig. 2. Examples of power-graded meshes for a square with unitary side length varying the number 3 

of element n and grading exponent β. 4 

Fig. 3. Elastic half-space loaded by a constant pressure p over a rectangular surface. 5 

Fig. 4. Relative errors δw for displacements evaluated at points (a) O, (b) C and (c, d) M, N. 6 

Fig. 5. Dimensionless vertical displacements w* (a) along the x-axis and (b) along the diagonal due 7 

to a uniform pressure over a square surface. 8 

Fig. 6. Dimensionless vertical displacements w* beneath a rectangular area due to a uniform 9 

pressure (continuous lines for present analysis, cross symbols for Love’s solution). 10 

Fig. 7. Rigid rectangular foundation resting on an elastic half-space. 11 

Fig. 8. Dimensionless normal traction due to a vertical force (a) along x-axis, (b) at the midpoint of 12 

the edge parallel to y-axis, (c) along the diagonal and (d) at the corner. 13 

Fig. 9. Dimensionless normal traction due to a vertical force. Square surface is subdivided with a 14 

power graded mesh having 16 elements for each side and β = 3. 15 

Fig. 10. Relative errors for kv varying (a) the number of subdivisions along each surface side and (b) 16 

the total number of boundary elements.  17 

Fig. 11. Relative errors for kϕx varying (a) the number of subdivisions along each surface side and 18 

(b) the total number of boundary elements.  19 

Fig. 12. Dimensionless vertical stiffness cvf, cvr and rotational stiffness cϕx of a rigid rectangular 20 

foundation varying L1/L2 ratio. (continuous lines for present analysis, cross symbol for Whitman 21 

and Richart (1967) data). 22 

Fig. 13. L-shaped rigid foundations proposed by (a) Erwin and Stephan [30] and (b, c) Conway and 23 

Farnham [20]. 24 
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Fig. 14. L-shaped rigid foundations having 8 subdivisions along x and y directions, and with (a) 1 

refined power-graded mesh with β = 3 for each quadrilateral portion of the surface, (b) simple 2 

power-graded mesh with β = 3 for the whole surface, (c) regular contact surface discretization. 3 

Fig. 15. L-shaped rigid foundations proposed by (a) Erwin and Stephan [30] and (b, c) Conway and 4 

Farnham [20] with n = 32 subdivisions along each side of the foundation and refined power-graded 5 

mesh with β = 3. Centroid position (plus symbol), center of stiffness position (cross symbol), 6 

together with principal inertia and stiffness axis orientation. 7 

Fig. 16. Relative percentage difference between the coordinates of the center of stiffness K and area 8 

centroid C with respect to the overall number of contact surface subdivisions nel for (a) Erwin and 9 

Stephan [30], (b) Conway and Farnham  #1 [20] and (c) Conway and Farnham #2 [20]. 10 

Fig. 17. L-shaped rigid foundation subjected to: (a, b) a vertical force P acting on area centroid and 11 

(c, d) and at the center of stiffness K, couples (e, f) MI and (g, h) MII, referred to the Cartesian 12 

coordinate system (K; x~ , y~ , z). Half-space reactions (a, c, e, g) and surface vertical displacements 13 

(b, d, f, h). 14 
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TABLE CAPTIONS 1 

Tab. 1. Dimensionless vertical stiffness cvf for flexible rectangular foundation. 2 

Tab. 2. Dimensionless vertical stiffness values for rigid square foundation. 3 

Tab. 3. Numerical results in terms of area centroid position (xC/L, yC/L), center of stiffness position 4 

(xK/L, yK/L), translational (kv/(EsL)) and rotational (kφx/(EsL
3
), kφy/(EsL

3
)) stiffnesses for the three L-5 

shaped foundations. 6 


