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Via Saragat 1, 44122, Ferrara, Italy

(e-mail: firstname.surname@unife.it)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

In Probabilistic Logic Programming (PLP) the most commonly studied inference task is to
compute the marginal probability of a query given a program. In this paper, we consider two
other important tasks in the PLP setting: the Maximum-A-Posteriori (MAP) inference task,
which determines the most likely values for a subset of the random variables given evidence on
other variables, and the Most Probable Explanation (MPE) task, the instance of MAP where
the query variables are the complement of the evidence variables. We present a novel algorithm,
included in the PITA reasoner, which tackles these tasks by representing each problem as a
Binary Decision Diagram and applying a dynamic programming procedure on it. We compare our
algorithm with the version of ProbLog that admits annotated disjunctions and can perform MAP
and MPE inference. Experiments on several synthetic datasets show that PITA outperforms
ProbLog in many cases. This paper is under consideration for acceptance in Theory and Practice
of Logic Programming.

1 Introduction

Probabilistic Logic Programming (PLP) (De Raedt et al. 2008; Riguzzi 2018) has emerged

as one of the most prominent approaches for modeling complex domains containing many

uncertain relationships among their entities. In this field, many languages are equipped

with the distribution semantics (Sato 1995). Examples of such languages are Indepen-

dent Choice Logic (Poole 1997), PRISM (Sato 1995), Logic Programs with Annotated

Disjunctions (LPADs) (Vennekens et al. 2004a) and ProbLog (De Raedt et al. 2007).

All these languages have the same expressive power, as a theory in one language can be

translated into each of the others (De Raedt et al. 2008). LPADs offer a general syntax

as the constructs of all the other languages can be directly encoded in this language. Un-

der the distribution semantics, an LPAD defines a probability distribution over a set of

normal logic programs called worlds, by associating to each disjunctive clause a random

variable, whose value determines the selection of one of the atoms in the head.

The inference task that has received most attention from the PLP community is com-

puting the marginal probability of a ground query atom q given evidence e on a subset of

the other atoms, P (q|e). In the absence of e, this is also known as the success probability

of a query P (q), defined as the sum of the probabilities of all the worlds that entail q.

Other important inference tasks are the maximum a posteriori (MAP) and the most

probable explanation (MPE) tasks. In general terms, given a joint probability distribution

over a set of random variables, values for a subset of the variables (evidence), and another
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disjoint subset of the variables (query), the MAP problem consists of finding the most

probable values for the query variables given the evidence. The MPE problem is the

MAP problem where the set of query variables is the complement of the set of evidence

variables. In PLP, the MPE problem can be expressed as taking the truth of some atoms

as evidence, and finding the world of an LPAD that has the highest probability among

those that entail the evidence. Solving the MAP problem, given evidence and a subset of

the random variables, consists of finding the assignment to those variables that maximizes

the probability of the assignment given the evidence, i.e., the sum of the probabilities of

the worlds compatible with the assignment and the evidence.

The PITA algorithm (for “Probabilistic Inference with Tabling and Answer subsump-

tion”) (Riguzzi and Swift 2010; Riguzzi and Swift 2011; Riguzzi and Swift 2013) takes as

input an LPAD and computes the probability of success of a query by building Binary

Decision Diagrams (BDDs) for every subgoal encountered during the derivation of the

query. In this paper, we present and evaluate experimentally an extension of PITA to

perform the MPE and MAP tasks. We compare PITA to the version of ProbLog pre-

sented by Shterionov et al. (2015), which supports Annotated Disjunctions in the head of

clauses (such as LPADs), allowing to perform the MPE (and MAP) task as well. ProbLog

answers MPE queries by converting each annotated disjunction into a set of probabilistic

facts with appropriate probability values and a Prolog rule for each of its head atoms hav-

ing mutually exclusive bodies, then it generates the grounding of the resulting program.

Then, the program is converted into a Conjunctive Normal Form (CNF) Boolean for-

mula and knoweldge compilation is applied. As done by Shterionov et al. (2015) the CNF

formula is compiled into a d-DNNF instead of a BDD. d-DNNF are more succinct than

BDDs, which means that, given a formula, its d-DNNF version is smaller than its BDD

version. However, software packages for the manipulation of BDDs are highly optimized

and the experiments show that the use of BDDs is sometimes advantageous. For an-

swering MAP queries ProbLog uses a different strategy resorting to Decision Theoretic

ProbLog (DTProbLog) (Van den Broeck et al. 2010) that exploits Algebraic Decision

Diagrams.

We ran experiments on several synthetic datasets; the results show that PITA performs

better than ProbLog on the MAP and MPE tasks in many cases.

The paper is structured as follows: in Section 2 we summarize the necessary background

notions, in Section 3 we define the MAP and MPE problems for LPADs, in Section 4

we present their implementation in PITA, in Section 5 we assess the scalability of our

system and compare it with the same techniques implemented in ProbLog (Shterionov

et al. 2015), and in Section 6 we conclude the article.

2 Background

2.1 Logic Programs with Annotated Disjunctions

LPADs (Vennekens et al. 2004b) consist of a finite set of annotated disjunctive clauses

ri of the form hi1 : Πi1; . . . ;hini : Πini ← bi1, . . . , bimi , where bi1, . . . , bimi are logical

literals that form the body of ri, denoted by body(ri), while hi1, . . . hini are logical atoms

and {Πi1, . . . ,Πini} are real numbers in the interval [0, 1] such that
∑ni
k=1 Πik ≤ 1.

If ni = 1 and Πi1 = 1 the clause is a non-disjunctive and non-probabilistic clause.
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If
∑ni
k=1 Πik < 1, the head of the annotated disjunctive clause implicitly contains an

extra atom null that does not appear in the body of any clause and whose annotation

is 1 −
∑ni
k=1 Πik. ground(P) denotes the grounding of an LPAD P. We do not allow

function symbols, so ground(P) is finite.

Definition 1 (Variable associated to a clause’s grounding)

To each grounding substitution θj of each clause ri, a discrete random variable Xij is

associated, whose range is 0, . . . , ni and whose probability distribution is given by

P (Xij = k) =

{
Πik if 1 ≤ k ≤ ni
1−

∑ni
k=1 Πik if k = 0

Xij = k means that the k-th head atom, or the null atom if k = 0, is chosen for

grounding θj of clause ri.

We now present the distribution semantics for the case in which the program does not

contain function symbols so that its Herbrand base is finite1.

An atomic choice is an equation Xij = k. A set of atomic choices κ is consistent if

Xij = k ∈ κ,Xij = m ∈ κ implies k = m, i.e., only one head is selected for a ground

clause. A composite choice κ is a consistent set of atomic choices. The probability of a

composite choice κ is P (κ) =
∏
Xij=k∈κ P (Xij = k). A selection σ is a total composite

choice (one atomic choice for every grounding of each probabilistic clause). Let us call ST
the set of all selections. A selection σ identifies a normal logic program wσ called a world.

The probability of wσ is P (wσ) = P (σ). Since the program does not contain function

symbols, the set of worlds WT = {w1, . . . , wm} is finite and P (w) is a distribution over

worlds:
∑
w∈WT

P (w) = 1. The conditional probability of a query Q given a world w

can be defined as: P (Q|w) = 1 if Q is true in w and 0 otherwise. We can obtain the

probability of the query by marginalizing over the query:

P (Q) =
∑
w

P (Q,w) =
∑
w

P (Q|w)P (w) =
∑
w|=Q

P (w) (1)

Example 1
Given the LPAD

red(b1):0.6; green(b1):0.3; blue(b1):0.1 :- pick(b1).

pick(b1):0.6; no_pick(b1):0.4.

ev:- \+ blue(b1).

the query ev is true in five worlds so its probability is P (ev) = 0.6 · 0.6 + 0.6 · 0.3 +

0.4 · 0.6 + 0.4 · 0.3 + 0.4 · 0.1 = 0.94.

A composite choice κ identifies a set ωκ that contains all the worlds associated with a

selection that is a superset of κ: i.e., ωκ = {wσ|σ ∈ ST , σ ⊇ κ}. We define the set of worlds

identified by a set of composite choices K as ωK =
⋃
κ∈K ωκ. Given a ground literal Q,

a composite choice κ is an explanation for Q if Q is true in every world of ωκ. A set of

composite choices K is covering with respect to Q if every world wσ in which Q is true

is such that wσ ∈ ωK . Given a covering set of explanations for a query, we can obtain a

1 For the distribution semantics with function symbols see (Sato 1995; Poole 2000; Riguzzi and Swift
2013; Riguzzi 2016).
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Boolean formula f(X) in Disjunctive Normal Form (DNF) where: (1) each atomic choice

yields an equation Xij = k, (2) we replace an explanation with the conjunction of the

equations of its atomic choices and the set of explanations with the disjunction of the

formulas for all explanations. If we consider a world as the specification of a truth value

for each equation Xij = k, the formula evaluates to true exactly on the worlds where

the query is true (Poole 2000). Since the disjuncts in the formula are not necessarily

mutually exclusive, the probability of the query can not be computed by a summation

as in Formula (1). The problem of computing the probability of a Boolean formula in

DNF, known as disjoint sum, is #P-complete (Valiant 1979). One of the most effective

ways of solving the problem makes use of Decision Diagrams.

2.2 Binary Decision Diagrams

We can apply knowledge compilation (Darwiche and Marquis 2002) to the Boolean for-

mula f(X) in order to translate it into a “target language” that allows the computation

of its probability in polynomial time. We can use Decision Diagrams (DD) as a target

language. A DD has one level for each variable and two leaves, one associated with the 1

Boolean function and the other with the 0 Boolean function. Each variable node has as

many children as its values. A DD can be used to compute the value of a Boolean function

given the values of the variables by starting at the root and following the path according

to the variable values until a leaf is reached. The label of the leaf is the value of the

Boolean function. Most packages for the manipulation of DDs are however restricted to

work on Binary Decision Diagrams (BDD), i.e., decision diagrams where all the variables

are Boolean. These packages offer Boolean operators among BDDs and apply simplifica-

tion rules to the results of operations in order to reduce as much as possible the size of

the diagram, producing a reduced BDD.

A node n in a BDD has two children: the 1-child and the 0-child. To work with a

BDD package we must represent multi-valued variables by means of binary variables.

We use the following encoding, called order encoding : for a multi-valued variable Xij ,

corresponding to a ground clause Ciθj , having ni values, we use ni− 1 Boolean variables

Xij1, . . . , Xijni−1 and we represent the equation Xij = k for k = 1, . . . ni − 1 by means

of the conjunction Xij1 ∧ . . . ∧ Xijk−1 ∧ Xijk, and the equation Xij = ni by means

of the conjunction Xij1 ∧ . . . ∧ Xijni . Note that dlog2 nie binary variables would be

sufficient to represent an ni-valued variable, but the encoding that we use allows for

faster BDD processing. A parameter πik is associated with each Boolean variable Xijk.

The parameters are obtained from those of multi-valued variables in this way: πi1 = Πi1,

. . ., πik = Πik∏k−1
j=1 (1−πij)

, up to k = ni− 1. In order to manage BDD we exploit the CUDD

(Colorado University Decision Diagram)2 library, a library written in C that provides

functions to manipulate different types of Decision Diagrams. In CUDD, BDD nodes are

described by two fields: pointer, a pointer to the node, and comp, a Boolean indicating

whether the node is complemented. In fact three types of edges are admitted: an edge

to a 1-child, an edge to a 0-child and a complemented edge to a 0-child, meaning that

the function encoded by the child must be complemented. Moreover, the root node can

2 https://github.com/ivmai/cudd

https://github.com/ivmai/cudd
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be complemented. For these types of BDD, only the 1 leaf is needed. Once a BDD for

a query has been built, it is possible to compute the probability of the query using a

dynamic programming algorithm (Raedt et al. 2007), which is shown in Algorithm 1.

Algorithm 1 Function Prob: computation of the prob-

ability of a BDD.
1: function Prob(node)
2: if node is a terminal then
3: return 1
4: else
5: if TableProb(node.pointer) 6= null then
6: return TableProb(node)
7: else
8: p0←Prob(child0(node))
9: p1←Prob(child1(node))
10: if child0(node).comp then
11: p0← (1− p0)
12: end if
13: Let π be the probability of being true of var(node)
14: Res← p1 · π + p0 · (1− π)
15: Add node.pointer → Res to TableProb
16: return Res
17: end if
18: end if
19: end function

X0_0

X1_0

X1_1

Out

0x75

0x74

1

0x73

Fig. 1. BDD for Example 1.

The BDD for the query ev from Example 1 is shown in Figure 1, where edges going to

the 1-child are solid, edges going to the 0-child are dashed and complemented edges going

to the 0-child are dotted. Variables X1 0 and X1 1 encode the first rule and variable X0 0

the second rule. Node labels are just identifiers.

3 MAP and MPE Inference for LPADs Programs

Definition 2 (MAP Problem)

Given an LPAD P, a conjunction of ground atoms e, the evidence, and a set of random

variables X (query random variables), associated to some ground rules of P, the MAP

problem is to find an assignment x of values to X such that P (x|e) is maximized, i.e.,

solve

arg max
x

P (x|e)

The MPE problem is a MAP problem where X includes all the random variables associ-

ated with all ground clauses of P.

In the following, we indicate the query random variables in the program by prepending

the functor map_query to the rules.

Shterionov et al. (2015) showed that the encoding presented in Section 2.2 using ni−1

Boolean variables for a clause with ni heads does not work, as configurations of the vari-

ables exist that do not correspond to any value for the rule random variable. The problem

is that the order encoding is redundant and a value for the random variable associated

with a rule may be encoded by multiple tuples of values of the Boolean variables besides

the intended one. One of those unintended encodings may get chosen because it has a

higher probability but this does not reflect on the correct choice of the multivalued vari-

able. Shterionov et al. (2015) proposed a different encoding, where ni Boolean variables
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Xijk for a clause with ni heads are used and constraints are imposed, namely that one

and only one Xijk must be true. This is achieved by building the constraint formula

(

ni∨
k=1

Xijk) ∧
ni∧
k=1

ni∧
m=k+1

(¬Xijk ∨ ¬Xijm)

for each multi-valued variable Xij , translating it into a BDD and conjoining it with the

BDD built for the query.

Example 2
Given the program of Example 1

map_query red(b1):0.6; green(b1):0.3; blue(b1):0.1 :- pick(b1).

map_query pick(b1):0.6; no_pick(b1):0.4.

ev:- \+ blue(b1).

where all the random variables are query, evidence ev has the MPE assignment x:

[rule(1, pick(b1), [pick(b1):0.6, no_pick(b1):0.4], true),

rule(0, red(b1), [red(b1):0.6, green(b1):0.3, blue(b1):0.1], pick(b1))],

where predicate rule/4 specifies clause number (zero-based), selected head, clause

head, clause body, in that order. For this assignment, P (x|ev) = 0.36, meaning that the

most probable explanation x has a probability of 0.36. The corresponding BDD is shown

in Figure 2, where variables X0 k are associated with the second clause and X1 k with

the first clause.

Fig. 2. BDD for the MPE problem of

Example 2.

Fig. 3. BDD for the MAP problem of

Example 3.

Example 3
Given the program

red(b1):0.6; green(b1):0.3; blue(b1):0.1 :- pick(b1).

map_query pick(b1):0.6; no_pick(b1):0.4.

ev:- \+ blue(b1).

The evidence ev has the MAP assignment:
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[rule(1, pick(b1), [pick(b1):0.6, no_pick(b1):0.4], true)].

For this assignment, P (x|ev) = 0.54. The corresponding BDD is shown in Figure 3,

where variables X0 k are associated to the second rule and X1 k to the first rule.

Example 4

Consider the following LPAD:

map_query disease:0.05.

map_query malfunction:0.05.

positive :- malfunction.

map_query positive:0.999 :- disease.

map_query positive:0.0001 :- \+(malfunction), \+(disease).

The LPAD models the diagnosis of a disease by means of a lab test. The disease

probability is 0.05, and, in case of disease, the test result will be positive with probability

0.999. However, there is a 5% chance of an equipment malfunction; in this case, the

test will always be positive. Additionally, even in absence of disease or malfunction,

the test result will be positive with probability 0.0001. The LPAD has 16 worlds, each

corresponding to selecting, or not, the head of each annotated disjunctive clause.

Let us suppose for the test result to be positive: is the patient ill? Given evidence

ev = positive, the MPE assignment is

[rule(1, ’’, [malfunction:0.05, ’’ :0.95], true),

rule(0, disease, [disease:0.05, ’’ :0.95], true),

rule(2, positive, [positive:0.999, ’’ :0.001], disease),

rule(3, ’’, [positive:0.0001, ’’ :0.9999], (\+malfunction,\+disease))]

where ’’ indicates the null head. The most probable world is the one where an actual

disease caused the positive result, and its probability is P (x|e) = 0.04702.

Likewise, if we perform a MAP inference taking only the choice of the first clause as

query variable, the result is [rule(0, disease, [disease:0.05, ’’ : 0.95], true)],

so the patient is ill. However, if we take the choices for the first two clauses as query

variables, i.e., if we look for the most likely combination of disease and malfunction

given positive, the MAP task produces

[rule(1, malfunction, [malfunction:0.05, ’’ : 0.95], true),

rule(0, ’’, [disease:0.05, ’’ : 0.95], true)]

meaning that the patient is not ill and the positive test is explained by an equipment

malfunction. This examples shows that the value assigned to a query variable in a MAP

task can be affected by the presence of other variables in the set of query variables; in

particular, MPE and MAP inference over X may assign different values to the same

variable given the same evidence.

4 Integration of MAP and MPE Inference into the PITA System

PITA (Probabilistic Inference with Tabling and Answer subsumption) (Riguzzi and Swift

2010; Riguzzi and Swift 2013) computes the probability of a query from a probabilistic

program in the form of an LPAD by first transforming the LPAD into a normal pro-

gram containing calls for manipulating BDDs. The idea is to add an extra argument to
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a

α β

(a) Node for variable
a in a BDD.

∨

∧ ∧

a α′ ¬a β′

(b) d-DNNF equivalent por-
tion.

max

× ×

a α ¬a β

(c) Arithmetic circuit.

Fig. 4. Translation from BDDs to d-DNNF.

each subgoal to store a BDD encoding the explanations for the answers of the subgoal.

The values of the subgoals’ extra argument are combined using a set of general library

functions:

• init, end: initialize and terminate the data structures for manipulating BDDs;

• zero(-D),one(-D): return the BDD D representing the Boolean constants 0, 1;

• and(+D1,+D2,-DO), or(+D1,+D2,-DO), not(+D1,-DO): Boolean operations among

BDDs;

• equality(+Var,+Value,-D): D is the BDD representing Var=Value, i.e. the multi-

valued random variable Var is assigned Value;

• ret prob(+D,-P): returns the probability P of the BDD D.

These functions are implemented in C as an interface to the CUDD library for manipu-

lating BDDs. A BDD is represented in Prolog as an integer that is a pointer in memory

to its root node.

Let us first consider the MPE task. PITA solves it using the dynamic programming al-

gorithm proposed by Darwiche (2004, Section 12.3.2) for computing MPE over d-DNNFs,

which define a propositional language that generalizes BDDs. In fact, a BDD can be seen

as a d-DNNF by using the translation shown in Figure 4: a BDD node (Figure 4a)

for variable a with children α and β is translated into the d-DNNF portion shown in

Figure 4b, where α′ and β′ are the translations of the BDD α and β respectively. The

algorithm proposed by Darwiche (2004) computes the probability of the MPE by replac-

ing ∧-nodes with product nodes and ∨-nodes with max-nodes: the result is an arithmetic

circuit (Figure 4c) that, when evaluated bottom-up, gives the probability of the MPE

and can be used to identify the MPE assignment. The equivalent algorithm operating

on BDDs - Function MAPInt in Algorithm 2 - modifies Algorithm 1 and returns both

a probability and a set of assignments to random variables. At each node, instead of

computing Res← p1 ·π+p0 · (1−π) as in Algorithm 1 line 14, it returns the assignment

of the children having the maximum probability. This is computed in lines 39-43 in Al-

gorithm 2. In MPE there are no non-query variables, so the test in line 24 succeeds only

for the BDD leaf. MAPInt in practice computes the probability of paths from the root

to the 1 leaf and returns the probability and the assignment corresponding to the most

probable path. In a MAP task, i.e., when we have non-query variables, function MAP-

Int cannot be used because when a node for a non-query variable is reached, it must be

summed out instead of maximized out, and maximization and summation operations are

not commutative. However, if its children are nodes for query variables, which of the two

assignments for the children should be propagated towards the root? If query variables

are mixed with non-query variables in the BDD variable ordering, function MAPInt
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does not work. In case that the non-query variables appear last in the ordering, when

MAPInt reaches a node for a non-query variable, it can sum out all non-query variables

using function Prob from Algorithm 1. This assigns a probability to the node that can

be used by MAPInt to identify the most probable path from the root. So PITA solves

MAP by reordering variables in the BDD, putting first the query variables.

With CUDD we can either create BDDs from scratch with a given variable order or

modify BDDs according to a new variable order. Changing the position of a variable

is made by successive swapping of adjacent variables (Somenzi 2001): the swap can be

performed in a time proportional to the number of nodes associated with the two swapped

variables. Changing the order of two adjacent variables does not affect the other levels

of the BDD, so changes can be applied directly to the current BDD saving memory. To

further reduce the cost of the swapping, the CUDD library keeps in memory an interaction

matrix specifying which variables directly interact with others. This matrix is updated

only when a new variable is inserted into the BDD, is symmetric and can be stored by

using a single bit for each pair, making it very small. Moreover, the cost of building it is

negligible compared to the cost of manipulating the BDD without checking it. Jiang et

al. empirically demonstrated that changing the order of variables by means of sequential

swapping is usually much more time efficient than rebuilding the BDD following a fixed

variable order (Jiang et al. 2017).

PITA differs from ProbLog in both tasks. For MPE inference, ProbLog applies the

algorithm of (Darwiche 2014) to d-DNNF. For MAP, ProbLog uses DTProbLog, an al-

gorithm for maximizing an utility function by making decisions. In DTProbLog utility

values are assigned to some ground literals, some ground atoms are probabilistic and

some are decision. The aim is to find an assignment to decision variables that maximizes

utility, given by the sum of the utility for the literals that are made true by the decisions.

DTProbLog uses Algebraic Decision Diagrams (ADDs) as a target compilation language.

ADDs are BDDs where leaves are associated with real numbers instead of Boolean val-

ues. ADDs built by DTProbLog contain only decision variables, probabilistic variables

are compiled away. We differ from DTProbLog because we do not compile away non-

query variables but we simply rearrange the BDD. As shown by the experiments, this is

sometimes advantageous.

5 Experimental Results

Experiments aim at analyzing how PITA scales when doing MAP and MPE inference

w.r.t. the data size, and at comparing their performance with the same tasks performed

by ProbLog2.1 (Fierens et al. 2015) in terms of inference time.

Experiments were performed on GNU/Linux machines with Intel Xeon E5-2697 v4

(Broadwell) at 2.30 GHz and 128 GB of RAM available and were set to a maximum execu-

tion time of 24h. Four artificially generated datasets were used: growing head (gh), growing

negated body (gnb), blood (Shterionov et al. 2015), and probabilistic graphs. Growing head

is a set of 15 programs with annotated disjunctions with an increasing number of head

atoms; growing negated body is a set of 50 programs with an increasing number of negated

body atoms; blood is a set of 100 programs regarding the inheritance of blood type with

an increasing number of ancestors (mother+father for each person); probabilistic graphs

is a set of N ×M programs, where N = {50, 100, 150, 200, 250, 300, 400, 450, 500} is the
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Algorithm 2 Function MAP: computation of the maximum a posterior state of a set of

query variables and of its probability
1: function MAP(root)
2: for all query variables var do
3: AtLeastOne← BDD Zero
4: AtMostOne← BDD One
5: for i← 1 to values(var) do
6: AtLeastOne← BDD Or(AtLeastOne, bV ar(var, i))
7: for j ← i+ 1 to values(var) do
8: NotBoth← BDD Not(BDD And(bV ar(var, i), bV ar(var, j)))
9: AtMostOne← BDD And(AtMostOne,NotBoth)
10: end for
11: end for
12: const← BDD And(AtLeastOne,AtMostOne)
13: root← BDD And(root, const)
14: end for
15: Reorder BDD root so that variables associated to query variables come first in the order
16: Let root′ be the new root
17: TableMAP ← ∅
18: TableProb ← ∅
19: (Prob,MAP)←MAPInt(root, false) . MAPBV: map assignment for Boolean random variables
20: return (Prob,MAP)
21: end function
22: function MAPInt(node, comp) . Internal function implementing the dynamic programming algorithm
23: comp← node.comp⊕ comp
24: if var(node) is not associated to a query var then
25: p←Prob(node) . Algorithm 1
26: if comp then
27: return (1− p, [])
28: else
29: return (p, [])
30: end if
31: else
32: if TableMAP(node.pointer) 6= null then
33: return TableMAP(node.pointer)
34: else
35: (p0,MAP0)←MAPInt(child0(node), comp)
36: (p1,MAP1)←MAPInt(child1(node), comp)
37: Let π be the probability of being true of the variable at level level
38: p1← p1 · π
39: if p1 > p0 then
40: Res← (p1, [var(node) = 1|MAP1])
41: else
42: Res← (p0,MAP0)
43: end if
44: Add (node.pointer)→ Res to TableMAP
45: return Res
46: end if
47: end if
48: end function

number of nodes of the graphs and M = 10 is the number of different probabilistic edge

configurations for each graph size. The graphs have been randomly generated according

to the Barabási-Albert model (Barabasi and Albert 1999) with parameters mo = m = 2.

These benchmarks can be found at http://ml.unife.it/material/. In the following,

results are commented separately for MAP and MPE inference.

5.1 MPE Results

For these experiments we ran PITA and ProbLog 2.1 on all datasets, except for blood on

which only PITA could be applied due to Problog2.1 execution timing out. ProbLog2.1

was run with the command problog-cli.py mpe program.pl. This system requires to

specify evidence in program.pl with the evidence/1 fact. For gh and gnb, evidence cor-

responds to a0, for blood to bloodtype(p,a), for probabilistic graphs to path(0,N-1)

http://ml.unife.it/material/
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(e.g. path(0,49) when N = 50). Inference times are compared in Figures 5, 6, 7, 8; for

probabilistic graphs the average time over the 10 configurations for each N was computed.

PITA outperforms ProbLog on gh and blood, where the latter times out starting from

program size 13 or from the beginning, respectively; on gnb and probabilistic graphs the

systems are comparable for small program sizes, then PITA is slower. This shows that, in

some cases, BDDs are competitive with d-DNNF thanks to the use of highly optimized

packages.
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Fig. 5. MPE results on the growing head

dataset (log scale on Y axis).
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Fig. 6. MPE results on the growing

negated body dataset.
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Fig. 7. MPE results on the blood dataset.
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Fig. 8. MPE results on the probabilistic

graphs dataset (log scale on Y axis).

5.2 MAP Results

For these experiments we ran PITA and ProbLog2.1 with the command problog-cli.py

map program.pl. As MAP assignments of ground atoms must be explicitly queried, PITA

requires the specification of the keyword map_query in front of the desired clauses. Anal-

ogously, ProbLog2.1 uses the keyword query that however can only be applied to prob-

abilistic facts; so, for the datasets containing clauses with multiple probabilistic heads, a

syntactical transformation was applied before specifying the query ground atoms.
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For gh we used the program of size 11, containing 19 probabilistic clauses, and queried

the 10%, 20%,...,90% of them. For gnb we used the program of size 10, containing 46

probabilistic clauses, and for blood the program of size 1, having 31 probabilistic clauses.

For probabilistic graphs, for each of the 10 edge configurations for each graph size N , we

queried 20%, 50% and 80% of the clauses: the 50-node graphs contain 96 probabilistic

edge facts, the 100-node graphs contain 196 edge facts, until the 500-node graphs which

contain 996 edge facts. We could not use the maximum size LPADs for gh, gnb and blood

due to memory errors or time-outs (> 24h), hence we chose a program size for which

we could get results in a reasonable time. Evidence is the one specified in Section 5.1.

Inference times are compared in Table 1 for gh, gnb, blood and in Table 2 for probabilistic

graphs with N = 50; for N ≥ 100 only PITA gave a result (almost always < 1min,

maximum time = 10min with N = 500), while ProbLog2.1 always gave memory error or

an error from the program. As expected, MAP inference takes more time, especially on gh

and blood ; PITA performs better than ProbLog on all datasets except blood, indicating

that BDD reordering is advantageous with respect to the use of ADDs.

6 Conclusions

In this paper, we presented an algorithm to solve the Maximum-A-Posteriori (MAP) and

the Most-Probable-Explanation (MPE) problems on Logic Programs with Annotated

Disjunctions. We integrated the algorithm into the PITA solver, which is available as a

SWI-Prolog package and in the cplint on SWISH web application (Alberti et al. 2016;

Alberti et al. 2017) at http://cplint.eu. We experimentally compared the algorithm

with the ProbLog version (2.1) that supports annotated disjunctions and can perform the

MAP and MPE tasks. The results on several synthetic datasets show that PITA performs

better than ProbLog in many cases. From our experimentation, we can conclude that

since d-DNNF are theoretically better than BDD, one should first try ProbLog. In case

the running time is high, however, using BDDs with PITA is an option to be considered

because we demonstrated that in some cases the performance may be better.

In the future we plan to investigate the algorithm for finding Viterbi proofs (Shterionov

et al. 2015), i.e., partial truth value assignments (or partial possible worlds) such that

for all full assignments extending the proof, the query holds.
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