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Eosinophils are major effector cells against parasites, fungi, bacteria, and viruses.

However, these cells also take part in local and systemic inflammation, which are central

to eczema, atopy, rhinitis, asthma, and autoimmune diseases. A role for eosinophils

has been also shown in vascular thrombotic disorders and in cancer. Many, if not all,

above-mentioned conditions involve the release of intracellular nucleotides (ATP, ADP,

UTP, etc.) and nucleosides (adenosine) in the extracellular environment. Simultaneously,

eosinophils further release ATP, which in autocrine and paracrine manners, stimulates P2

receptors. Purinergic signaling in eosinophils mediates a variety of responses including

CD11b induction, ROI production, release of granule contents and enzymes, as well as

cytokines. Exposure to extracellular ATP also modulates the expression of endothelial

adhesion molecules, thereby favoring eosinophil extravasation and accumulation. In

addition, eosinophils express the immunosuppressive adenosine P1 receptors, which

regulate degranulation and migration. However, pro-inflammatory responses induced by

extracellular ATP predominate. Due to their important role in innate immunity and tissue

damage, pharmacological targeting of nucleotide- and nucleoside-mediated signaling in

eosinophils could represent a novel approach to alleviate eosinophilic acute and chronic

inflammatory diseases. These innovative approaches might also have salutary effects,

particularly in host defense against parasites and in cancer.

Keywords: eosinophils, extracellular ATP, extracellular adenosine, CD39, CD73, P1 receptors, P2 receptors,

inflammation

INTRODUCTION

Nucleotides and nucleosides are present at high concentrations within the cell where they exert
multiple functions. However, they are not restricted to the intracellular compartments but they
serve as extracellular mediators to eukaryotic cells (1, 2). A growing body of evidence indicates
that released nucleotides represent important modulators to several cell and organ pathways under
both physiological and pathological conditions. Their role in the cardiocirculatory and the nervous
system, in tissue metabolism, respiration and immune function, as well as in gastrointestinal and
hepatic disease pathogenesis has been described recently (3–7).

Extracellular purines and pyrimidines have been implicated in the regulation of ciliary
beat frequency, chloride/liquid secretion, goblet cell degranulation, epithelial mucus secretion,
transmission of the respiratory nervous stimuli and modulation of the airway vascular tone (8–10).
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Accordingly, inhaled ATP is a powerful bronchoconstrictor
in both healthy and asthmatic individuals. Furthermore,
extracellular ATP can act as a damage-associated molecular
pattern molecule (DAMP, also known as alarmin or danger
molecule) to activate the inflammasome with subsequent
upregulation of IL-1β, IL-18, and release of other pro-mobilizing
mediators like high molecular group box 1 (Hmgb1) and S100
calcium-binding protein A9 (S100A9) (11).

Under homeostatic conditions extracellular ATP levels
are rather low. This is due to a moderate release and
rapid degradation by extracellular ATP-metabolizing enzymes
(ectonucleotidases) (12, 13). However, in the course of infection,
inflammation, hypoxic conditions due to ischemia as well
as necrotic and apoptotic cell death ATP is released from
intracellular storage pools and can reach a concentration high
enough to be sensed by surrounding cells expressing P2 receptors
(14–16). Besides the unregulated ATP release as a consequence of
cell damage, mediated secretion of this extracellular messenger
occurs through plasma membrane molecules such as connexins,
pannexins, and P2X7 receptors (17–20). Apart from ATP, uridine
nucleotides (UTP, UDP and UDP-glucose) can also be released in
the extracellular space (21).

Eosinophils are polymorphonuclear cells mainly involved
in the immune defense, tissue remodeling and inflammation.
Activation and migration of these cells to inflammatory sites are
crucial to tissue defense. In addition to the classical immune
activators (chemokines, cytokines, microbial products, allergens,
complement components) eosinophils are also capable to sense
nucleotides that can amplify responses induced by other stimuli
(22). Thus, extracellular nucleotides contribute to eosinophilic
inflammation and tissue damage both in human and animal
models (23, 24). Therefore, nucleotides and nucleosides are
under intense investigation for their capacity to activate and
recruit eosinophils. In this regard, high levels of ATP are present
in the bronchoalveolar lavage fluid of patients suffering from
eosinophilic pneumonia. This mediator also correlates with uric
acid and IL-33 concentration (24, 25).

P2 RECEPTORS

P2 receptors are plasma membrane receptors for extracellular
nucleotides. On the basis of cloning, functional and

Abbreviations: AC, adenylate cyclase; ADO, adenosine; ADP, adenosine

diphosphate; ATP, adenosine triphosphate; BALF, bronchoalveolar lavage fluid;

BzATP, 2’,3’-O-(4-benzoyl-benzoyl)ATP; C3a, complement factor 3a; C5a,

complement factor 5a; CCL11, (eotaxin-1); CCL24, (eotaxin-2); CCL26, (eotaxin-

3); CNS, central nervous system; COPD, chronic obstructive pulmonary

disease; CR, complement receptor; DAMP, damage-associated molecular pattern;

ECP, eosinophil cationic protein; EDN, eosinophil-derived neurotoxin; EPO,

eosinophil peroxidase; EPO, eosinophil peroxidase; GM-CSF, granulocyte

macrophage-colony stimulating factor; GTP, guanosine triphosphate; HDM, house

dust mite; ICAM-1, intercellular adhesion molecule-1; IL, interleukin; LPS,

lipopolysaccharides; LT, leukotriene; MBP, major basic protein; MCP, monocyte

chemoattractant protein; OVA, ovalbumin; PAF, platelet-activating factor;

PGD2, prostaglandin D2; MSCs, mesenchymal stromal cells; PSGL-1, P-selectin

Glycoprotein Ligand-1; ROIs, reactive oxygen intermediates; TGF-β, transforming

growth factor β; TNF-α, tumor necrosis factor α; UDP, uridine diphosphate; UTP,

uridine triphosphate; VCAM-1, vascular cell adhesion molecule 1.

pharmacological data, two P2 receptor subfamilies have
been described: P2X and P2Y receptors (2, 26). Differences in
nucleotide sensitivity and specificity of the P2 receptor subtypes,
allow the activation of distinct P2 receptor subsets depending on
the nucleotide concentration and kind.

The P2X receptor subfamily represents ligand-gated ion
channels selective for monovalent and divalent cations. These
ion channels are homo- or in some cases hetero-multimers
with carboxyl- and amino-terminal cytoplasmatic domains (27,
28). In mammals, seven different subunits have been identified
and named P2X1-P2X7. Extracellular ATP is an agonist for
all P2X subtypes and regulates their permeability to Na+,
K+, Ca2+, Mg2+. While the majority of P2X receptors is
rapidly desensitized (e.g., P2X1 and P2X3), the non-desensitizing
P2X7 represents a peculiar subtype having a long carboxyl-
terminal domain allowing the receptor to undergo a permeability
transition from a plasma membrane channel to a large plasma
membrane pore depending on ATP concentration and the way of
stimulation (26).

Stimulation of the P2X7 subtype by high ATP concentrations
is associated with a permeability transition due to the opening of
a membrane pore with a cut-off of 900 Da (27). Transmembrane
ion fluxes, driven by pore opening, induce transcription and
secretion of different inflammatory cytokines such as IL-1β, IL-
18, IL-6 (23). Pharmacological blocking, genetic ablation and
attenuation of P2X7 function resulted in reduced inflammatory
responses (29–31).

The P2Y receptors are seven transmembrane G-protein-
coupled receptors with an extracellular amino-terminus and
an intracellular carboxyl-terminus. Eight human P2Y subtypes
have been identified and named: P2Y1, P2Y2, P2Y4, P2Y6,
P2Y11, P2Y12, P2Y13 and P2Y14 (32). They differ in agonist
specificity, coupled G-protein and transduced intracellular
signaling. However, according to amino acid homology and
presence of conserved motifs in the transmembrane α-helix
7, two groups have been described. The first group includes
the P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11 subtypes, having 25–
52% amino acid identity and a Y-Q/K-X-X-R motif in the
transmembrane α-helix 7 (33).

To the second group belong P2Y12, P2Y13 and P2Y14, with
sequence homology of 47–48% and the presence of the K-E-
X-X-L motif (2). Some evidence suggests that the two P2Y
subgroups differ in G-protein coupling. Hence, the receptors
of the first group couple to Gq/G11proteins, contributing to
calcium release via phospholipase C/inositol-1,4,5-triphosphate
activation; while receptors of the second group couple to Gi/0
proteins, inhibiting adenylate cyclase (AC) (34). Different P2Y
agonists have been identified, among them both adenine and
uridine nucleotides (35). P2Y1, P2Y12, and P2Y13 subtypes are
preferentially activated by ADP (36), whereas UDP is an agonist
at P2Y6. While P2Y2 can be activated by both UTP and ATP,
P2Y4 and P2Y11 are selective for UTP and ATP, respectively. Last
but not least, P2Y14 is activated by UDP-glucose (35).

In the last two decades, P2 receptors gained attention
for their wide tissue distribution and number of modulated
pathophysiological responses. This has also prompted several P2-
based therapeutic approaches (37), as in the context of kidney
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disease, cardiovascular and metabolic disorders as well as central
nervous system (CNS) inflammation.

P1 RECEPTORS

Similar to the P2Y receptors, the P1 receptors are seven-
transmembrane G-protein-coupled receptors but their natural
agonist is adenosine (ADO) (38). ADO exerts ambiguous effects
in different tissues, depending on cell type and P1 receptor
subtypes predominantly expressed (39–41).

Four receptors subtypes have been identified and named:
A1 (ADORA1), A2A (ADORA2A), A2B (ADORA2B), and A3
(ADORA3), respectively. The main differences between the
subtypes concern the affinity to ADO, the coupled G-protein
families and effects on AC. While A1 and A3 inhibit AC, A2A
and A2B drive its activation (38). ADO concentration of the
extracellular milieu ranges from 100 to 500 nM and increases
to levels in the low micromolar range as a consequence of
inflammation, hypoxia and ischemia. Among the subtypes, A2B
shows the lowest affinity for ADO. Accordingly, A1, A2A and
A3 are activated by lower ADO concentrations (10–50 nM);
whereas A2B needs a rather high agonist concentration (1mM)
for stimulation.

Primarily, adenosine receptors have been associated with
dampening acute inflammation and tissue injury. On the one
hand the inhibition of pro-inflammatory cytokine production
and on the other hand the induction of suppressive cytokines
as well as regulatory immune cell differentiation are two known
effects of the anti-inflammatory responses driven by P1 receptors.
Nevertheless, in the context of rheumatoid arthritis or multiple
sclerosis P1 receptors have also been implicated in inflammatory
cell recruitment (42–44).

ECTONUCLEOTIDASES

Four main groups of plasma membrane enzymes are endowed
of the ability of hydrolyzing extracellular nucleotides,
transforming ATP and ADP to ADO thus shifting purinergic
receptor activation from P2 to P1 subtypes. Activity
of ectonucleotidases is fundamental to avoid excessive
accumulation of nucleotides in the extracellular milieu and
to terminate P2 signaling (45). The following families have been
described: ectonucleoside triphosphate diphosphohydrolases

(NTPDases), ecto-5
′

-nucleotidase (CD73), ectonucleotide
pyrophosphatase/phosphodiesterases (NPP) and alkaline
phosphatases (12). NTPDases (among which NTPDase1 or
CD39) catalyze the conversion of ATP or ADP to AMP and
are highly expressed by immune cells and the vasculature
(46–48). Extracellular AMP is further hydrolyzed to the anti-
inflammatory ADO by CD73 (49, 50). However, the CD73 driven
ADO generation has been associated with the potent suppression
of anti-cancer immune responses. Thus, inhibitors of CD73 for
the use in clinical practice are highly desired (51).

The proposed important immunoregulatory activities of
ectonucleotidases are to prevent the development of autoimmune
conditions. Accordingly, we recently observed that CD39

overexpression ameliorates experimental colitis and prevents
hypoxia-related damage in vivo in a dextran-sulfate-sodium-
induced colitis model. In addition, exogenous administration of
a recombinant form of human CD39L3 (APT102) boosted the
regulatory effects of endogenous CD39 in vivo and enhanced
in vitro Treg functions in Crohn’s disease (48). Likewise, the
administration of apyrase, which has ectoenzymatic activity
comparable to CD39, attenuated peribronchial eosinophilic
inflammation and reduced the levels of Th2 cytokines in
the bronchoalveolar lavage fluid of mice with allergic airway
inflammation (52).

EOSINOPHIL GRANULOCYTES

Eosinophils are granulocytes deriving fromCD34+ bonemarrow
precursors expressing CD38 and CD125. Thereby, IL-3, IL-5,
and GM-CSF exposure have been reported to induce eosinophil
differentiation (53, 54). The differentiation process occurs
in about 8 days and is mainly driven by the transcription
factors GATA-1, GATA-2, c/EBP, and XBP1 (55–58). Cytokines
(particularly IL-5) and chemokines (CCL11, CCL24, CCL26)
promote the release of eosinophils from the bone marrow (59).
After circulating in the peripheral blood for 8–12 h, mature
eosinophils home into tissues (mammary gland, adipose tissue,
uterus, gut, lung) where they contribute to maintaining organ
integrity and promote B and T cell immune function (60–64).

Under pathophysiological conditions such as atopic diseases,
rhinitis, eczema, asthma and parasitic infections, chemokine-
mediated CCR3 receptor activation on eosinophils as well as
the stimulation with cytokines such as IL-4, IL-5, IL-9, IL-
13, GM-CSF, RANTES, MCP-3, and MCP-4 have been linked
to the recruitment and accumulation of eosinophils in tissues
including nasal mucosa, lungs, heart, skin, liver and bile
ducts, gut and nerves (65–69). In addition, eotaxin, IL-4, and
IL-13 have been shown to induce the up-regulation of the
adhesion molecules VCAM-1 and PSGL-1 on epithelial cells
and fibroblasts thus further promoting eosinophil trafficking
and recruitment (70, 71). In contrast, IL-6, and IL-11 decrease
tissue infiltration by eosinophils through inhibiting VCAM-1
expression and decreasing production of type 2 cytokines. Pro-
inflammatory cytokines such as IL-1, IL-12, and TNF-α up-
regulate endothelium adhesion molecules, including VCAM-1,
thereby favoring eosinophil diapedesis (67, 72, 73).

Eosinophils themselves produce different cytokines including
IL-1, IL-3, IL-4, IL-5, IL-6, IL-8, TNF-α, TGF-β, GM-CSF and
pro-inflammatory mediators such as leukotriene C4 (LTC4),
platelet-activation factor (PAF) (71, 74), the granular cationic
proteins, major basic protein (MBP) 1, MBP 2, eosinophil
cationic protein (ECP), eosinophil-derived neurotoxin (EDN)
and eosinophil peroxidase (EPO). MBP which is present in the
crystal core of the specific granules has cytotoxic effects due
to interference with electrical properties and permeability of
the cell membrane. MBP also triggers degranulation of mast
cells and basophils (75). ECP favors the entry of cytotoxic
molecules by forming voltage-insensitive, non-selective pores in
the membrane of target cells (54, 68). ECP and EDN, that belong
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FIGURE 1 | Eosinophils play multiple roles within the organism. Eosinophils

are actively involved in the defense against multicellular parasites (e.g., worms)

as well as fungi, bacteria, and viruses. However, they also show detrimental

responses by damaging tissues and organs such as in rhinitis, asthma, atopy,

eczema, etc. Involvement of eosinophils in lung tumor progression and in

thrombosis have been also shown but their role has to be adequately

evaluated.

to the ribonuclease A superfamily, kill single-stranded RNA
pneumoviruses (76). In addition, eosinophils generate reactive
oxygen species, hypohalous acids and lysosomal hydrolases that
are toxic for bacteria and parasites but also for surrounding
tissues (77–80) (Figure 1).

P2 RECEPTORS EXPRESSED BY
EOSINOPHILS

There is currently no systematic study on the expression
of P2 receptor specific mRNAs and proteins in eosinophils.
Another source of uncertainty is represented by the fact that
the expression of individual P2 subtypes is not replicated in
all studies. This bias can be due to the presence (or absence)
of contaminating cells in different eosinophil preparations
and/or to sensitivity of the techniques used. Different studies
revealed that human, murine and rat eosinophils express
mRNAs for different P2X and P2Y receptors including P2X1,
P2X4, P2X5, P2X7, P2Y1, P2Y2, P2Y4, P2Y6, P2Y11 (81–85).
An RNASeq study confirmed expression of P2Y6 and P2X5
mRNAs (86). Proteomic studies have shed light on expression
of P2 receptor proteins, showing that human blood eosinophils
express P2Y2, P2Y4, P2Y13 and P2Y14 as well as P2X1,
P2X2 (87). Several pharmacologic studies performed with P2
receptor agonists and antagonists confirmed functionality of
the receptors on eosinophils. Interestingly, currents evoked
by the P2X agonist alpha, beta-methylene ATP were lower
in eosinophils derived from asthmatic subjects compared to
eosinophils derived from healthy donors, although P2X1 mRNA
and protein expression was comparable in both groups. However,

this effect in eosinophils isolated from asthmatics was negated by
pharmacological degradation of extracellular ATP using apyrase,
suggesting that P2X1 receptors were partially desensitized
due to ATP release by eosinophils and raising the question
why eosinophils from asthmatic subjects might release the
nucleotide (88).

NUCLEOTIDE MEDIATED RESPONSES IN
EOSINOPHILS

Eosinophils are activated by a plethora of soluble mediators
including cytokines such as IL-3, IL-5, IL-8, and GM-
CSF, CC- chemokines, complement factors C3a and C5a,
PAF, prostaglandin D2 (PGD2) and LPA, leukotriene B4
(LTB4) (59, 66, 89–91). Moreover, eosinophils respond to
alarmins released by damaged tissue during infection or
inflammation and stimulate immune responses and tissue
remodeling (92). Nucleotide stimulation of human eosinophils
was reported almost 30 years ago when it was shown that
extracellular ATP secreted by thrombin-stimulated platelets
exerted chemoattractant effects on human eosinophils (93, 94).
Of note, the interaction of platelets and eosinophils contributing
to tissue inflammation and remodeling was demonstrated in later
studies (95–97).

In addition, eosinophils are also capable of secreting ATP
which in turn autocrinally stimulates the release of different
pro-inflammatory mediators by activating P2Y2 receptors (98)
(Figure 2).

EOSINOPHILIC TISSUE INFILTRATION

Airway infiltration by eosinophils is driven by binding of the
cell surface molecule α4β1 integrin (VLA-4) on eosinophils
to VCAM-1. Accordingly, mice deficient for VCAM-1 fail
to develop pulmonary eosinophilia (99, 100). Extracellular
nucleotides (ATP, UTP) have been implicated in modulating
the expression and function of adhesion molecules including
VCAM-1 (101, 102). In this context, P2Y2 receptor signaling
might play an important role since it has been shown to
modulate both membrane-bound and soluble VCAM-1 in a
mouse model of OVA-induced lung inflammation. Furthermore,
P2Y2-deficiency in the samemodel was associated with a reduced
VCAM-1 up-regulation and lung eosinophilia compared to wild
type animals (84).

In addition to VCAM-1, eosinophils express the integrin
family member CD11b. CD11b interacts with CD18 to form
the complement receptor 3 (CR3) heterodimer, which also
contributes to eosinophil migration into inflamed tissue.
Endothelial cells release ATP in response to different stimuli
which might modulate the expression and function of CD11b
and other adhesion molecules in circulating granulocytes (103,
104). Hence, in vitro stimulation of human eosinophils with
ATP results in a fast (within seconds) and dose-dependent up-
regulation of CD11b (105). In line with this, exposure of human
eosinophils to pharmacological P2X and P2Y agonists induces
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FIGURE 2 | Responses induced by extracellular nucleotides and adenosine in eosinophils. Eosinophils express P1 and P2 receptor subtypes whose stimulation has

been linked to different responses. In particular, pro-inflammatory P2-mediated responses (left part) confer to eosinophils a pro-inflammatory behavior, while on the

contrary, anti-inflammatory P1-mediated responses (right part) induce anti-inflammatory effects.

CD11b expression (106). The fast kinetic suggests a nucleotide-
mediated plasma membrane trafficking by intracellularly stored
CD11b rather than an induced transcription of the cd11b gene
which would be delayed. The P2X1 receptor subtype seems to be
crucial in this context, since the P2X1 activation using alpha,beta-
methylene ATP promotes αMβ2 integrin–dependent eosinophil
adhesion. This effect was higher in eosinophils from healthy
individuals compared to patients suffering from asthma (88).

Apart from modulating the expression of adhesion molecules,
a direct chemotactic P2Y2-dependent effect of ATP on
eosinophils has been demonstrated. Of note, eosinophils derived
from asthmatic patients showed an up-regulation of P2Y2
receptor expression accompanied by an increased ATP-driven
migration (22, 106) (Figure 2).

RELEASE OF EFFECTOR
MOLECULES/PRO-INFLAMMATORY
MEDIATORS

Activated by different stimuli such as eotaxin and complement
proteins C3a and C5a, human eosinophils generate reactive
oxygen intermediates (ROIs). Extracellular nucleotides (ATP,
ADP, UTP, GTP, and BzATP) have also been implicated in the
production of ROIs via activating both P2X and P2Y receptors
(83, 106). In accordance, blood eosinophils isolated from

asthmatics showed an increased expression of P2X7 receptors
compared to healthy controls. Simultaneously, these eosinophils
produced higher amounts of ROIs after stimulation with the
P2X7 agonist BzATP (107).

Eosinophil granules contain different enzymatic and non-
enzymatic proteins promoting host defense but also the
pathogenesis of chronic diseases such as asthma, atopic
dermatitis, prurigo nodularis and vasculitis, where they cause
tissue damage associated with inappropriate release. Eosinophil
cationic protein (ECP) is a known marker of eosinophil
activation/participation under pathophysiological conditions
(108). Stimulation of eosinophils with ATP, UTP and UDP,
but not BzATP, ADP or alpha,beta-methylene ATP induces the
release of ECP in a dose-dependent and pertussis toxin sensitive
manner. This suggests the involvement of P2Y receptors,
potentially of the P2Y2 subtype, in purine-driven ECP release.
Similar observations have been made for the eosinophil derived
neurotoxin, a protein closely related to ECP with cytotoxic
properties, which is released following P2Y2 receptor activation
(83, 109). Human and mouse eosinophils also express the P2Y12
receptor. Accordingly, ADP stimulated secretion of eosinophil
peroxidase (EPO) in a P2Y12 dependent manner in human
eosinophils has been shown (85).

Interleukin-8 (IL-8) or CXCL8 is a human chemokine
produced by innate immune cells including eosinophils but
also by endothelial or epithelial cells. Augmented IL-8 secretion
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has been observed in eosinophils from patients with asthma or
atopic dermatitis (110, 111). Human eosinophils secrete IL-8
in response to stimulation with UDP, ATP, alpha,beta-meATP,
and BzATP, while UTP or ADP show no effect. From the
pharmacological profile of the response and use of P2 inhibitors,
both P2Y and P2X receptor subfamilies could be involved in IL-8
secretion. A participation of P2Y6, P2X1 and P2X7 subtypes has
been hypothesized (109). Moreover, a recent study demonstrated
that release of pro-inflammatory cytokines by human eosinophils
upon stimulation with the endogenous danger signal crystalline
uric acid is dependent on autocrine secretion of ATP in the
extracellular space and on the expression of purinergic receptors
(Figure 2) (98).

P1 RECEPTORS EXPRESSED BY
EOSINOPHILS AND THEIR RESPONSES

Adenosine P1 receptors have been shown to strongly suppress
eosinophil pro-inflammatory functions. In asthma, the anti-
inflammatory effects of the drug theophylline are enhanced
by A3 receptors expressed on eosinophils. Accordingly, ADO
administration boosts the beneficial effects of clinically relevant
theophylline concentrations, while administration of the selective
A3 antagonist MRS 1220 alleviates the anti-inflammatory effects
of theophylline. However, A1 and A2 antagonists fail to inhibit
theophylline treatment (112).

Furthermore, A3 activation in eosinophils triggers Ca2+

release from intracellular stores (113, 114). However, A3
activation does not appear to be a prime mechanism for free
radical generation by human peripheral blood eosinophils and
an inhibitory effect of A3 receptor subtypes on the degranulation
of human eosinophils and O2− release has been suggested (115,
116). The same adenosine receptor has been found to have
a regulatory function on the migration of eosinophils to the
site of inflammation. In vitro experiments revealed that the A3
receptor signaling inhibits the migration of human eosinophils in
response to PAF, RANTES, and LTB4 (117). This inhibitory effect
has been confirmed in vivo, where A3 activation significantly
reduces PAF-induced eosinophil migration to the lungs. This
suggests the use of A3 receptor agonists as a therapeutic approach
for asthma and rhinitis (118). Of note, an atypical form of the
A3 receptor found in human eosinophils is positively coupled
to AC and promotes anti-inflammatory responses by inducing
cAMP (113). In some of these human studies, expression of
A3 receptor in eosinophils was determined at the mRNA level
(113, 118) or by immune-labeling (116); while in most of these
earlier investigations presence of A3 receptor was indirectly
proven by functional or inhibition studies using selective agents
or antagonists (112, 115, 117), without the expression of the
receptor being proven per se. In recent studies, expression of
ADORA2B in human eosinophils was detected by RNA-seq
analysis that, however, did not detect presence of A3 receptor in
the same samples (86). Further, a subsequent proteomic study
by Wilkerson and colleagues, did not detect presence of P1
receptors in human eosinophils obtained from the peripheral
blood. These discrepancies might result from differences in

the eosinophil purification protocols or, alternatively, in the
specificity of the techniques used. Further studies are needed
to combine eosinophil RNA and proteomic profiling along with
functional investigations, to resolve these apparent incongruities.

Under certain circumstances, selected adenosine receptors
are also responsive to inosine, a purine formed by deamination
and breakdown of adenosine. It has been shown that inosine
contributes to lung recruitment of eosinophils in a murine model
of allergic OVA-induced respiratory inflammation in an A2A-
and A3-dependent manner (119) (Figure 2).

NUCLEOTIDE METABOLIZING ENZYMES
EXPRESSED BY EOSINOPHILS

Information on expression and function of ectonucleotidases in
human eosinophils are lacking.

Although expression of CD39 (ectonucleotidase-1) was
demonstrated in human leukocytes from sputum and BALF, and
its activity was shown to be modulated by smoking and increased
in chronic obstructive pulmonary disease (COPD) (120), no clear
attribution of CD39 protein to human eosinophil cells has been
done so far.

In the context of asthma, some studies suggest a protective
effect of global (or on regulatory T cells) CD39 expression in the
modulation of eosinophil functions.

In the settings of ovalbumin-induced allergic airway
inflammation, systemic CD39 inhibition by ARL67156 or
through genetic deletion in regulatory T cells, worsens animal
clinical conditions. Interestingly, control mice (i.e., mice
with normal CD39 expression levels), present milder airway
inflammation, associated with significantly lower eosinophil
counts in BALF (121).

A correlation between CD39 levels in the thymus and
eosinophil infiltration in the BALF has been recently observed
also in experimental house dust mite (HDM)-induced allergic
asthma. Results from this study suggest the beneficial effects of
multiple doses of adipose tissue-derived mesenchymal stromal
cells (MSCs). Notably, animals exposed to three doses of MSCs
present significantly reduced inflammation in the lungs, this
being associated to increased levels of CD39 in the thymus and
lower eosinophil counts in the BALF (122).

CONCLUSIONS

While in healthy subjects the number of eosinophils in
the peripheral blood is low, it can increase dramatically
under pathophysiological conditions such as atopic
dermatitis, bronchial asthma, eosinophilic esophagitis,
gastritis, gastroenteritis, colitis or hematological malignancies
(54, 62, 71, 80, 123). The large body of evidence supporting the
critical role of eosinophils in parasitic and inflammatory diseases
has prompted and intensified investigations on potential targets
to modulate cellular responses of eosinophils.

Inflammation is associated with the release of nucleotides in
the extracellular space, where they serve as ligands for purinergic
receptors. Purinergic signaling represents an ubiquitous signal
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transduction and regulatory system (7). Eosinophils express
a wide range of purinergic receptors and purinergic receptor
activation is associated with the recruitment of eosinophils
into inflamed tissue, ROIs production, the release of effector
molecules and the secretion of pro-inflammatory cytokines.
Thus, the inhibition of purinergic receptors on eosinophils would
be highly desirable for reducing detrimental immune responses
and tissue damage related to various disorders. In accordance,
blocking P2 receptors signaling using specific inhibitors or
P2 receptor deficiency could be associated with decreased
eosinophilic inflammation in diverse animal models. Given the
wide range of specific P2 receptor inhibitors available and
the successful application in clinical trials, further research in
P2 inhibition as therapeutic strategy for treating eosinophilic
diseases in humans is warranted.

Besides targeting eosinophil migration and activation, in
inflammation another potential approach is the modulation of
eosinophil-platelets interactions. In asthma patients it has been
demonstrated that platelets bind to eosinophils in the blood.
This event directly correlates with the occurrence of spontaneous
or clinically induced (e.g., allergen challenge) asthmatic attacks
(124). One randomized, placebo-controlled clinical study on the
use of the anti-P2Y12 platelet inhibitor “Prasugrel” in asthmatic
patients, has shown a slight, although not significant reduction,
in the bronchial inflammatory burden (125).

However, other P2Y12 inhibitors (used for the treatment
of thrombosis) have failed to control eosinophil recruitment
in animal models of allergic inflammation (126), suggesting
different levels in platelet activity in response to vascular
injury, when compared to allergic responses (127). Furthermore,
different studies confirmed the involvement of P2Y1 and P2Y14
receptors in platelet-dependent eosinophil recruitment in the
lungs (126, 128, 129).

New developments of effective treatments for eosinophilic
diseases, like asthma or allergy, are also important because
eosinophils are a major source of intravascular tissue factor, a
key initiator of blood coagulation (130). Disorders characterized
by eosinophil accumulation have been associated with an
increased risk of thrombosis. A study conducted on a cohort of
patients affected by hypereosinophilia confirmed the presence
of increased tissue factor expression in eosinophils from these
patients compared to healthy controls (131). However, further
investigation is needed to confirm whether this finding is truly

associated with an increased risk of thrombosis. A comprehensive
profiling of eosinophil P1 and P2 receptor expression pattern at
both mRNA and protein levels would shed light on the function
of these receptors in eosinophils, as well as on their biology
and contribution to the regulation of pathologically relevant
eosinophil responses.

Moreover, differences in the purinergic signaling of
different eosinophil subpopulations could exist and be
important for diseases where eosinophil participation is
predominant (132, 133). Therefore, isolation of eosinophils
subpopulations and analysis of their purinergic network would
be requested. Another prerequisite is the characterization
of the complete panel of cytokine/chemokines released by
eosinophils in response to nucleotide stimulation. In future
studies, it would be relevant to check the effect of ATP and
other nucleotides on production of eosinophil preeminent
cytokines and chemokines such as IL-5, eotaxin and RANTES.
Further efforts should be done to elucidate expression and
function of ectonucleotidases CD39 and CD73 in human
eosinophils; this would give a more complete picture of the
purinergic signaling of these cells and would help to interpret
relationships between purinergic signaling in eosinophils and
other cell types involved in the immune response and tissue
remodeling. Eosinophils are thought to play either positive
or negative roles in cancer, depending on type of tumor (59).
Since nucleosides and nucleotides are present in the tumor
microenvironment and heavily affect immune response against
cancer, it would be worthy to check whether stimulation of the
purinergic network of eosinophils modulate their responses
against tumors.
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