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Abstract: In order to refine the research on the impact of environmental factors on the concentration 
of pollutants in the air, in this paper, we present a mathematical model that allows the possibility of 
taking into account the past values of factors (explanatory variables) when modeling the current 
concentration of pollution. We conducted numerical analyzes based on hourly data from 
meteorological, traffic and air quality monitoring stations in Wrocław (Poland, Central Europe) 
from 2015–2017. In order to determine the optimal delay of each explanatory variable, we used a 
multi-objective optimization model (MO). It turned out that for the concentration of nitrogen oxides, 
delayed traffic flow, wind speed and sunshine duration time are more important than current ones. 
Then we built two random forest models: an actual model of current values of explanatory variables 
and a lag model with delayed variables determined by the MO method. Taking into account 
variables with an optimal delay (lag model) results in an increase in model accuracy for NO2 with 
R2 = 0.51 to 0.56 and for NOx from 0.46 to 0.52. We deduced that in pollutant concentrations 
modeling, the possibility of greater influence of variables with delay should always be considered 
because it can significantly increase the accuracy of the model and indicate additional relationships 
or dependencies. 
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1. Introduction 

The relationship between air pollutant concentrations and environmental factors is widely 
studied. The quantitative and qualitative recognition of the impact of factors makes it possible to 
undertake actions aimed at preventing, reducing or limiting the spread of pollution. Pollution models 
can support urban managers in taking actions to improve air quality in the city [1–3]. The growing 
population of cities and increasing motorization are the reasons for the increasing number of moving 
vehicles and consequently, increasing exhaust gas emission. The expansion and density of city 
buildings reduces the phenomenon of city ventilation, which results in a decrease in the impact of 
low wind speeds on the evacuation of pollution. Wrocław currently has 641,600 of residents [4]. It is 
estimated that about 15,000 vehicles in the rush hours to below 1000 vehicles at night are moving 
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around the city. That means that approximately 40,000 vehicles make journeys in the city during one 
hour [5]. One of the main air pollutants emitted by car combustion engines is nitrogen oxides: NO2 
and NOx = NO + NO2. In the literature there exist many different air pollution concentration models, 
e.g., multidimensional regression models [6–8], polynomial functions [9,10], artificial neural 
networks [11], single random trees [12], random forest (RF) [13–15] and boosted regression trees 
[16,17]. These models take into account, in addition to the current values, the past values of the 
explanatory variables, which have been used mainly to study the impact of pollution concentration 
on human health and life. Lag variables are then used to take account of the exposure duration to 
harmful conditions [18,19].  

The intensity of chemical reactions in the atmosphere depends on the duration of certain 
favorable conditions. Therefore, it can be assumed that the current concentration values are 
significantly affected not only by the current values of the explanatory variables (t), but also by 
previous moments (t − 1, t − 2, t − 3, …). Classically, this issue is described by adding to the predictor 
set new variables with a delay (lag variables) 1, 2, 3, … This method has two main disadvantages: 
first, it is not known how far back the delay variables should be created, and second, creating a set of 
variables for each delay significantly multiplies the number of explanatory variables, extending the 
time of calculations and deteriorating the quality and even the possibility of interpretation. In [20,21], 
it was proposed to use the multi-purpose optimization (MO) algorithm to determine the delay of 
each predictor that ensures maximum model fit. To be precise, a three-object optimization was 
developed: power (maximum 3), delay and regression coefficients for each of the variables were 
ultimately optimized by matching the model. To assess the influence of the variables delay, we used 
a random forest (RF) algorithm with lagged variables (Lag model) designated in the MO process and 
compared it with RF developed with original variables without delay (Actual model).  

2. Data Source 

We performed numerical analyzes using data from Wrocław (51.086 N, 17.012 E). Data covered 
the full 3 years of 2015–2017 in hourly intervals. Traffic data are provided by the Traffic and Public 
Transport Management Department of the Roads and City Maintenance Board in Wrocław. The data 
contain the number of all vehicles passing through the measurement intersection (51.08637 N, 
17.01202 E) during a period of one hour. Traffic flow shows a clear, bimodal daily variability [15] 
with two peaks: in the morning and in the afternoon. Meteorological hourly data are provided by the 
Institute of Meteorology and Water Management (IMGW) at only one station in Wrocław, located on 
the outskirts of the city (51.10319 N, 16.89985 E; 9 km from the intersection in a straight line). One can 
observe clear seasonal variation in temperature, characteristic of transitional climate type subject to 
both oceanic and continental influences. Air pollution data are collected by the Provincial 
Environment Protection Inspectorate and measured at hourly intervals. The measuring station is 
located in the direct vicinity of the intersection with traffic measurement (30 m from the middle of 
intersection). 

3. Results and Discussion 

Using the MO, we determined the function describing the dependence of NO2 and NOx 
concentration on meteorological factors and traffic flow. We determined the delay, regression 
coefficient and power (maximum 3) of each variable to maximize the fit of the model to real data. 
Based on the 10-fold cross-validation process and on the selection of the most appropriate in terms 
of occurring in the atmosphere phenomena interpretation, we obtained linear functions with the 
delays given in Table 1. The fact of obtaining a linear function proves that the relationship is indeed 
linear and not of a higher degree. 

Table 1. Delays [h] of variable received in multi-objective optimization process. 

 Traffic Flow Wind Speed Air Temp. Sunshine Duration Relative Humidity Air Pressure 
NO2 1 3 0 2 7 0 
NOx 1 2 0 10 0 0 
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For both NO2 and NOx, one hour of traffic flow have the major influence on actual concentration. 
This results from the emission and accumulation phenomenon of air pollutants.  

Wind speed has an impact on the evacuation of pollution. The stronger wind speed is, the more 
intense evacuation and lower pollution concentration is. Due to the distance of the meteorological 
station (9 km in a straight line), the effect of wind speed is delayed by 2–3 h. This is a consequence of 
the time needed for the air masses to reach the air quality measurement station. In Wrocław, West 
and North-West winds prevail, therefore blowing from the meteorological station to the city center; 
at an average wind speed of 3.1 m s−1 and covering a distance of 9 km, the time this takes, taking into 
account the porosity of urban buildings, ranges from 2 to 3 h.  

In the next step, we built two random forest models: using actual predictor values and using 
lagged values (predictor values with delay) for NO2 and NOx.  

Due to the greater variation in NOx values (coefficient of variation is equal to 46% for NO2 and 
73% for NOx), it is more difficult to predict its values effectively. This is generally indicated by lower 
goodness of fit measure values than in NO2 (Table 2). However, for both pollutants, including lag 
variables has improved the models fit. 

Table 2. Goodness of fit coefficient for NO2 and NOx modeling. 

 NO2 NOx 
 Actual Lag Actual Lag 

R2 0.51 0.56 0.46 0.52 
MADE 12.2 11.6 47.9 45.3 
MAPE 0.26 0.24 0.35 0.33 
RMSE 16.2 15.4 76.3 72.2 

r 0.72 0.75 0.68 0.72 
r—Pearson correlation coefficient, MADE-Mean Absolute Devation Error, MAPE-Mean Absolute 
Percentage Error, RMSE-Root Mean Square Error. 

In full generality, it can be concluded that determining the optimal delay of environment 
variables and including such lag variables as a predictor increases the accuracy of the model. The 
method of determining optimal delay for each independent variable and inputting this lag variable 
into modeling is an absolutely general method and may be utilized in every air pollution modeling 
notwithstanding considered factors and type of pollution. Detailed conclusions depend on local 
meteorological, topographical and traffic conditions.  
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