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Abstract: The study of the thermodynamic properties of topological defects is important not only
for understanding their magnetic properties but also for suggesting novel applications. In this
paper, the statistical and statistical thermodynamic properties of a population of Néel magnetic
skyrmion diameters hosted in an ultrathin cylindrical dot is determined within a two-dimensional
analytical approach. The statistical properties such as the skyrmion size are calculated in the region
of skyrmion metastability and are compared with the ones obtained using a recent three-dimensional
analytical approach based on the analogy with the Maxwell–Boltzmann distribution of dilute gas
molecules. The investigation of the statistical thermodynamic properties focus on the calculation of
the configurational entropy at thermodynamic equilibrium determined in the continuous limit from
the Boltzmann order function. While the statistical properties are quantitatively similar passing from
the two-dimensional to the three-dimensional approach, the configurational entropy calculated from
the two-dimensional skyrmions distribution is considerably lower than the one obtained from the
three-dimensional skyrmions distribution. Because of the strong resemblance between the statistical
configurational entropy and Jaynes’s information entropy, it is suggested to use magnetic skyrmions
as temperature and external field dependent information entropy carriers for a future potential
technological application in the field of low-dimensional magnetic systems and skyrmionics.

Keywords: topological defects; low-dimensional magnetic systems; magnetic skyrmions;
configurational entropy; two-dimensional skyrmion diameters distribution; three-dimensional
skyrmion diameters distribution; Shannon’s information entropy; information entropy carriers

1. Introduction

Magnetic skyrmions are axisymmetric topological solitons hosted in ferromagnetic materials
(see [1,2] and references therein) stabilized by the Dzyaloshinskii–Moriya interaction (DMI), a relativistic
exchange interaction [3,4]. Magnetic skyrmions are characterized by a skyrmion number (otherwise
called topological charge) S = 1/(4π)

∫
d2ρ m·(∂m/∂x × ∂m/∂y) where m(ρ) = M(ρ)/Ms is the unit

magnetization vector with M the magnetization, ρ = (x, y), and Ms the saturation magnetization, and
∂/∂x and ∂/∂y are first partial derivatives.

There are two types of DMI, the interfacial DMI (IDMI) stabilizing chiral Néel (hedgehog-like) and
the bulk DMI stabilizing Bloch (vortex-like) skyrmions. In early 2000, Bogdanov and Rößler developed
a phenomenological theory of chiral symmetry breaking in magnetic thin films and multilayers, and
they predicted the formation of skyrmions in magnetic thin films and multilayers stabilized by induced
DMI interactions [5]. Afterwards, it has been theoretically demonstrated that skyrmion structures can
be formed as spontaneous ground states in magnetic metals with DMI interactions without the need of
applying external fields or the presence of defects [6].
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Recently, several efforts were done to study static properties, such as skyrmion stability in
low-dimensional magnetic systems [7], and dynamic properties (see e.g., [8,9]). However, until recently,
not much attention has been paid to the investigation of statistical and statistical thermodynamic
properties of magnetic skyrmions. In particular, only during the last years the problem of entropy for
magnetic skyrmions was faced. The skyrmion entropy has been estimated from experimental data
and its thermodynamic meaning has been used in bulk B20 compounds to give a classification of the
magnetization phase transition at the transition temperature [10,11]. Its inclusion in the Arrhenius
law turned out to be determinant to explain the disagreement between the measurement and the
calculation of the lifetime of a skyrmion lattice [12]. In a recent paper, the configurational entropy of a
skyrmion diameters population was calculated within a three-dimensional (3D) approach showing that
the entropy can be expressed as a function of physical and geometrical parameters and temperature.
According to the 3D model, the distribution of the skyrmion diameters population represents the
analogous of the Maxwell–Boltzmann (MB) distribution of particles for a dilute ideal gas and, on this
basis, the configurational entropy, thermal fluctuations of energy and the statistical thermodynamics of
chiral skyrmions were investigated (see [13,14] and references therein). As observed in micromagnetic
simulations [13], configurational entropy can be regarded as the number of different skyrmions having
the same average energy resulting from the thermal fluctuations that enable the promotion of a number
of skyrmions possessing the same average energy. In the 3D analytical model, it was expressed
as a quantity proportional to <ln f 0> where < . . . > denotes the statistical average over the spatial
coordinates and f 0 is the Gaussian distribution of diameters at thermodynamic equilibrium depending
on the skyrmion diameter Dsky and on its average value.

Instead, in the present work the skyrmions population is regarded as a two-dimensional (2D)
distribution considering that skyrmions are planar structures. From this point of view, the analogy with
the ideal gas is not so strict because the 2D distribution is not, strictly speaking, the direct correspondent
of the ideal gas MB distribution. However, the analogy can be considered still valid because the 2D
skyrmion diameters distribution can be written in a form proportional to a Gaussian distribution in
turn depending on the skyrmion energy and, as a result, the configurational entropy can be expressed
as a quantity proportional to <ln f 0>.

The aim of this paper is to determine, by means of a simple analytical model, the statistical and
statistical thermodynamic properties of a 2D Néel skyrmion diameters distribution. The statistical
properties are related to the calculation of the 2D skyrmion diameters distributions, of the most
probable and average diameters and of standard deviations of the 2D distributions as a function of
temperature T. The average diameters and standard deviations, obtained within the 2D model, are
compared with the ones determined within the 3D model. Regarding the statistical thermodynamic
properties, the analysis focuses on the calculation of the configurational entropy as a function of the
temperature T and of the external bias field in a 2D framework. This is accomplished investigating
the static behavior of a skyrmions population hosted in a ferromagnetic material (e.g., Co) that has
the shape of an ultrathin cylindrical dot starting from the skyrmion energy evaluated as a function
of the skyrmion diameter in the region of skyrmion metastability [15]. The configurational entropy,
calculated according to the 2D model, is then compared with the one obtained via the 3D model and the
quantitative differences are discussed. Additionally, as in the 3D model, it is crucial, for characterizing
in a quantitative way the 2D distribution, the knowledge of the average diameter, a key quantity
appearing in the configurational entropy.

It is found that the properties related to the size of skyrmions and the statistical distribution of
skyrmion diameters do not essentially depend on the dimensionality of the problem (either 2D or
3D) and the results are very similar in the region of skyrmion metastability. On the other hand, while
qualitatively the behavior of the configurational entropy as a function of the temperature is similar, the
configurational entropy computed within the 2D approach is considerably smaller than that calculated
within the 3D approach. This discrepancy is attributed to the different dependence on the temperature
T of the configurational entropy passing from the 2D to the 3D description and to the role of the
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thickness of the magnetic skyrmions appearing in the 3D configurational entropy. Moreover, it is
found that, within the 2D model, the configurational entropy does not exhibit anymore a decreasing
monotonic behavior as a function of the external bias field. According to these results, even though
skyrmions are planar structures, the 3D description of a skyrmions population is preferable.

It is also given a qualitative description of an entropy data communication system that could
be used for a possible future application of the present thermodynamic analysis suggesting the use
of skyrmions as temperature and field dependent information entropy carriers. This is based on the
complete identification between the configurational entropy at thermodynamic equilibrium calculated
here and Jaynes continuous version of discrete Shannon’s information entropy [16–26].

In this respect, very recently, the configurational entropy in 2D skyrmion-like and vortex-like
configurations has been investigated for different forms of topological charge density [27] and as a
measure of ordering in field configuration space for nonlinear models with spatially-localized energy
solutions [28]. Finally, note also that, in the recent literature, there are several papers dealing with
the employment of magnetic skyrmions as information carriers but according to completely different
approaches based on the skyrmion state and not on the skyrmion entropy (see e.g., [29–32]).

The paper is organized as follows. In Section 2 the analytical model for the calculation of the
2D configurational entropy of a Néel skyrmion is outlined. In Section 3 the numerical results are
presented and discussed. Section 4 gives a qualitative description of an information system for a future
application. In Section 5 conclusions are drawn.

2. Analytical Model

In this section, the analytical model for the calculation of the configurational entropy for a 2D
Néel skyrmion diameters distribution is outlined. It is briefly recalled the computation of the skyrmion
energy and then the 2D distribution is introduced to calculate the most probable diameter, the average
diameter, the standard deviation and the 2D configurational entropy from the Boltzmann order function
at thermodynamic equilibrium.

2.1. Skyrmion Energy

It has been considered an outwardly directed radial Néel skyrmion with a magnetization pointing
along −z at the core center (skyrmion number S = −1) stabilized in an ultrathin magnetic cylindrical
dot of radius Rd in a cylindrical reference frame (ρ, ϕ, z) with ρ the radial coordinate, ϕ the azimuthal
coordinate and z the coordinate perpendicular to the dot plane. Néel skyrmion’s texture, expressing
the orientation of the magnetization, is m(x, y) = sin θ(ρ)ρ̂+ cos θ(ρ)ẑ with m = M/Ms, m = (mρ, mz)
and θ the polar angle. In Figure 1, a pictorial representation of the ferromagnetic cylindrical dot (e.g.,
Co) hosting the Néel magnetic skyrmion is shown together with the cylindrical reference frame. The
skyrmion has a cylindrical symmetry with respect to the out-of-plane direction (z-axis). The cylindrical
dot is assumed to be in contact with a thin layer of heavy metal (e.g., Pt) providing a consistent IDMI
interaction (not shown).
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The skyrmion energy E was numerically calculated as a volume integral of the skyrmion energy

density εtot, namely E
(
rsky

)
=

∫
εtot

(
r, rsky

)
dV =

t/2∫
−t/2

dz
2π∫
0

dϕ
Rd∫
0
εtot

(
r, rsky

)
ρdρ. Here, t is the dot

thickness, rsky = Rsky/lexch is the dimensionless skyrmion radius with Rsky the skyrmion radius
and lexch =

√
2A/(µ0Ms

2) the exchange length being µ0 the vacuum permeability. For the skyrmion
energy calculation it has been used as the ansatz distribution Θ0(r) = 2arctan[B

r e−ξ r] expressing
the magnetization at equilibrium in excellent agreement with the magnetization distribution of
micromagnetic simulations [15]. Here, B = rsky exp [ξ rsky] being ξ =

√
Q − 1 (Q = 2Ku/(µ0Ms

2) is the
quality factor with Ku the uniaxial anisotropy constant), rsky = Rsky/lexch is the dimensionless skyrmion
radius and r = ρ/lexch is the dimensionless radial coordinate. The skyrmion energy density ε = εexch +

εIDMI + εani + εext contains all the relevant contributions. In particular, εexch = A(∇m)2 is the exchange
energy density with A the material exchange stiffness constant, εIDMI = D [mz(∇ ·m) − (m · ∇)mz]

is IDMI energy density with D the DMI parameter, εani = Ku
(
1−m2

z

)
+ 1

2µ0M2
s m2

z is the anisotropy
energy density including the perpendicular uniaxial anisotropy energy density and the magnetostatic
energy density in the ultrathin approximation, and εext = −Ms Bext mz is the Zeeman energy density
with Bext = µ0Hext the amplitude of the external bias field parallel to the z-axis. The computation of
the 2D configurational entropy is based on the calculation of the skyrmion energy. Details about the
numerical calculation of the skyrmion energy can be found in [13,14].

As done for the 3D model, the main hypothesis allowing a simplification of the calculation of the
configurational entropy is the harmonic approximation. This approximation consists of modelling
the skyrmion energy via a parabolic potential E ≈ a (Dsky − D0 sky)2 + b. Here, the coefficient a is
proportional to the parabola curvature, a = 1

2 d2E/dDsky
2, with 0 ≤ Dsky ≤ 2Rd and D0 sky = D0 sky (T)

the equilibrium skyrmion diameter in correspondence of which the energy attains a minimum Emin for
every T, and the coefficient b = Emin gives the translation of the energy minimum with respect to the
zero energy and does not depend on Dsky. Note that the contribution of E depending on b is at least
three orders of magnitude larger than the average contribution proportional to a for the used magnetic
parameters but, because it does not depend explicitly on Dsky, it is not included in the calculation of
the configurational entropy. D0 sky depends on the temperature via the scaled values of the magnetic
parameters; therefore, both a and b are temperature-dependent coefficients, a (T) and b(T).

2.2. Statistical and Thermodynamic Properties of the Skyrmion Diameters Population

In this section, the statistical and statistical thermodynamic properties of the skyrmion diameters
population are described for the 2D model and compared to those of the 3D model. In particular, the
skyrmion size is determined by calculating skyrmion diameters and the standard deviations of the
distributions as a function of T. Regarding the thermodynamic properties, the configurational entropy
within the 2D model is computed as a function of T and, at fixed T, as a function of the external bias
field and compared to that of the 3D model.

2.2.1. Skyrmion Diameters Distribution

The 3D approach within which, as a first approximation, the skyrmion energy was well-described
by a quadratic function of the skyrmion diameter has led to the hypothesis that the skyrmion diameters
distribution can be treated as the particles of an ideal gas, at least from a statistical thermodynamics
viewpoint. Therefore, the population of the skyrmion diameters was supposed to follow a MB
distribution function.

Note that, strictly speaking, the MB distribution at thermodynamic equilibrium that describes the
statistical behavior of an ideal gas, obtained ignoring interactions and correlations among the particles,
is provided exactly by a canonical ensemble. A canonical ensemble is a statistical ensemble whose
corresponding system exchanges energy with a thermal bath leading to states having different energies
and thus subject to thermal fluctuations of energy varying with time. However, in the thermodynamic
limit (number of particles N→∞) implying volume V→∞ and realized for the case of an ideal gas for
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N = NA with NA = 6.02 × 1023 the Avogadro number, the MB distribution can be provided also by a
microcanonical ensemble. This statistical ensemble is characterized by microscopic states having a
well-defined energy whose thermal fluctuations are very small if compared to the average energy to be
considered negligible. For the present case the 3D MB distribution of skyrmion diameters, with no
interactions and correlations one with each other, can be written within a microcanonical ensemble,
analogously to the 3D MB of an ideal gas, as [13]:

dn3D

dDsky
= C3D

sky 0 D2
sky e

−
a

kBT (D sky−D 0 sky)
2

(1)

where dn is the number of times one gets a skyrmion diameter between Dsky and Dsky + dDsky, C3D
sky 0

is the normalization constant of the 3D distribution and kB = 1.38 × 10−23 J/K is the Boltzmann constant.
Passing from a 3D to a 2D description the analogy with the ideal gas becomes weaker because of
the different dimensionality. Nonetheless, without loss of generality, it is still possible to define the
corresponding 2D distribution of skyrmion diameters as proportional to the equilibrium Gaussian
distribution centered at the equilibrium skyrmion diameter D0 sky = D0sky(T) in the form:

dn2D

dDsky
= C2D

sky 0 D sky e
−

a
kBT (D sky−D 0 sky)

2

(2)

where C2D
sky 0 is the normalization constant of the 2D distribution. By comparing Equation (1) with

Equation (2), one notes that the equilibrium Gaussian distribution has the same form because it depends
on the skyrmion energy in the harmonic approximation. However, the 2D skyrmion distribution of
Equation (2) is proportional to Dsky and not to D2

sky as for the 3D distribution taking into account that
one deals with a planar structure depending on the in plane coordinates only. From the minimization of
Equation (1), it was found that the displacement law as a function of the temperature of the diameters
distribution in the 3D model reads [13]:

Dmp 3D
sky (T) =

1
2

D 0 sky

1 +

√
1 +

4kBT
a D2

0 sky

. (3)

Analogously, from the minimization of Equation (2), the corresponding displacement law as a
function of the temperature of the diameters distribution in the 2D model is:

Dmp 2D
sky (T) =

1
2

D 0 sky

1 +

√
1 +

2kBT
a D2

0 sky

. (4)

Here, the superscript “mp” stands for “most probable” and Dmp 2D
sky (T) is the most probable

value of the skyrmion diameter for the 2D model. This value represents the skyrmion diameter
corresponding to the maximum of the 2D skyrmion distribution. Equation (4) can be regarded as
the law of displacement of the maximum of the 2D skyrmions distribution. This law expresses the
displacement of the maximum of the distribution as a function of T. As for the 3D model, a displacement
effect of the maximum of the distribution occurs because the skyrmion energy is comparable with the
thermal energy.

The most probable diameter depends on the equilibrium diameter D0sky(T) at a given T but has
also a dependence on the ratio between the thermal energy kBT and the skyrmion energy a D2

0sky
in correspondence of the equilibrium diameter. As in the range of temperatures 50 ÷ 300 K kBT is
comparable to a D2

0skyD0sky
2 (indeed, kBT is on average one order of magnitude less than a D2

0sky and
not much smaller), there is a noticeable displacement of the maximum of the distribution as a function
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of T. At low temperatures, Dmp
sky(T) expanded to the first-order in T has a linear dependence on T

assuming that D0sky(T) = D0sky (T = 0 K) + d T with d a coefficient expressed in m/K.

2.2.2. Average Skyrmion Diameter

The average skyrmion diameter at a given temperature T for a skyrmion diameters population is
obtained by integrating Dsky over the 2D diameters distribution and normalizing:

< D2D
sky(T) > =

∫
∞

0 dDskyD2
skye

−
a

kBT (D sky−D 0 sky)
2

∫
∞

0 dDskyD skye
−

a
kBT (D sky−D 0 sky)

2 . (5)

The result of the integration is:

< D2D
sky(T) >' D0 sky

1 +
kBT

2a D2
0 sky

. (6)

In particular, in the limit for T→0 K it is < Dsky(T→ 0 K) > = D0 sky(T→ 0 K) as in the 3D
model. Equation (6) is different from the one found in [13] according to the 3D approach that reads:

< D3D
sky(T) >' D0 sky

3 kBT + 2a D 2
0 sky

kBT + 2a D 2
0 sky

 . (7)

2.2.3. Standard Deviation of the Skyrmion Diameters Distribution

In order to have a quantitative measure of the distribution it is crucial to compute the standard
deviation σ2D

<D2D
sky>

of the 2D diameters distribution. The standard deviation is expressed as a normalized

integral over the 2D diameters distribution at a given temperature and external bias field of the square
deviation from the average diameter:

σ2D
<D2D

sky>
=


∫
∞

0 dDsky

(
Dsky− < D2D

sky >
)2

D sky e
−

a
kBT (Dsky−<D2D

sky>)
2

∫
∞

0 dDskyDsky e
−

a
kBT (Dsky− <D2D

sky>)
2


1
2

(8)

The result of the integration is:

σ2D
<D2D

sky>
(T) =

√
kBT
2a

. (9)

This expression differs from the standard deviation determined according to the 3D approach
where there is, in addition, also an explicit dependence of σ3D

<Dsky>
(T) on the average skyrmion diameter.

For a comparison, σ3D
<Dsky>

(T) reads [13]:

σ3D
<D3D

sky>
(T) =

√√√√
kBT
2a

3kBT + 2 a < Dsky >
2

kBT + 2 a < D3D
sky >

2

. (10)

However, as shown in Section 3, this additional dependence does not essentially affect the trend
of the standard deviation within the 3D model that has values close to those exhibited according to the
2D model.

3D
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2.2.4. Configurational Entropy of Skyrmion Diameters Distribution

The average diameter of the skyrmion diameters distribution is a key quantity for the computation
of the corresponding skyrmion configurational entropy within the 2D approach analogously to what
occurred according to the 3D approach. Note that, also in this case, the source of entropy is mainly due
to the skyrmion internal deformations and thermal breathing mode.

Even though the analogy with the dilute ideal gas is not so strong as in the 3D approach due
to the different dimensionality, it is still reasonable to define the 2D Boltzmann order function H0

2D

at thermodynamic equilibrium recalling its 3D definition for a dilute ideal gas in the continuous
limit, exact solution of Boltzmann’s kinetic equation at thermodynamic equilibrium as defined by
Boltzmann’s H-theorem. The passage from the discrete to the continuous is justified by the fact
that the changes of the skyrmion size along the radial direction are very small as was observed in
micromagnetic simulations [15]. H0 represents a measure of order and, within the 2D approach, is
still proportional to the Gaussian skyrmion diameters distribution. Specifically, H0 is the opposite of
the entropy S at equilibrium, namely H0 = −S/kB, with H0 < 0. In the continuous case applied to this
framework, taking into account the 2D cylindrical symmetry, H2D

0 is written as a functional integral
over the in-plane cylindrical coordinates, viz:

H2D
0 = π

∞∫
0

dDskyDsky f0 ln f0. (11)

H2D
0 represents the statistical average <ln f 0> with f0 = Cav2D

sky e
−

a
kBT (Dsky−<D2D

sky>)
2

the Gaussian

distribution of the skyrmion diameters centered at the average diameter < D2D
sky > at thermodynamic

equilibrium or probability density function where Cav2D
sky is the normalization constant of the 2D

distribution (the superscript “av” denotes average). Here, the azimuthal angular dependence is given
by π instead of 2π because Dsky is considered in place of the skyrmion radius Rsky. This 2D distribution
has the meaning of a probability density at equilibrium in statistical mechanics as occurs for the 3D
distribution. The 3D equivalent is [13]:

H3D
0 = 2π

∞∫
0

dDskyD2
sky f0 ln f0 (12)

where f0 = Cav3D
sky e

−
a

kBT (Dsky−<D3D
sky>)

2

. The computation of the integral of Equation (11), via

the substitutions f0 = Cav2D
sky e

−
a

kBT (Dsky−<D2D
sky>)

2

and ln (Cav2D
sky )→ln (Cav2D

sky Asky) performed for

dimensional reasons with Asky ≈
1
4π <Dsky

2D>2 the average area of the skyrmion surface at a given
T, yields:

H2D
0 = Cav2D

sky π
3
2

(
kBT

a

) 1
2

< D2D
sky >

[
ln

(
C2D

skyAs

)
−

1
2

]
. (13)

Cav2D
sky has the dimension of an inverse of an area and is determined by means of the normalization

condition Cav2D
sky = 1

π

∞∫
0

dDskyDsky e
−

a
kBT (Dsky−<D2D

sky>)
2
−1

(note that the definition of Cav2D
sky depends

on < D2D
sky > and is slightly different from the one of C2D

sky 0 that depends on D0 sky). This condition
is obtained via the normalization to unity (in place of the normalization to the particles density
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n = N/V for ideal gas) resulting in Cav2D
sky = 1

π
3
2

(
a

kBT

) 1
2 1
<D2D

sky>
. Substituting Cav2D

sky and As into H2D
0 of

Equation (13) yields:

H2D
0 = −

1
2

ln

 16πkBT
a < D2D

sky >
2

+ 1

. (14)

The configurational skyrmion entropy of the 2D skyrmions population at thermodynamic
equilibrium is calculated as S = −kB H0:

S2D(T) =
1
2

kB ln

 16π kBT
a < D2D

sky >
2

+ S0 (15)

with S0 = 1/2kB and < D2D
sky > calculated by means of Equation (6). S2D exhibits a logarithmic

dependence and the logarithm argument depends on the ratio between the thermal energy kBT and the
average skyrmion energy a < D2D

sky >
2. For a comparison, the corresponding configurational entropy

computed in [13] for the 3D skyrmion diameters population reads:

S3D(T) = kB

ln

(kBT)

3
2 + 2(kBT)

1
2 a < D3D

sky >
2

a
3
2 < D3D

sky >
2 t

+ 1
2

3kBT + 2a < D3D
sky >

2

kBT + 2a < D3D
sky >

2


+ S0 (16)

with S0 = kB (2 ln 2 + 1/2 ln π). Looking at Equation (15) one notes that, as within the 3D model
(Equation (16)), the configurational entropy has a geometric, thermal, and magnetic parameters
dependence. However, while S3D includes a logarithmic contribution and a fractional contribution
having different dependences on T, S2D is proportional only to a logarithmic contribution and has
no explicit dependence on the thickness t of the ferromagnetic material hosting the skyrmion. This
results in a configurational entropy that is much smaller than the one calculated according to the 3D
model. This difference highlights also the role played by the thickness t of the magnetic skyrmion
(see Equation (16)) in the 3D model. In both cases, the configurational entropy depends on the size
of the skyrmion via the average skyrmion diameter, has a dependence on the thermal energy even
though with different functional forms decreasing with decreasing temperature, and is affected by
the magnetic parameters by means of the coefficient a. The dependence on the skyrmion size in both
the 2D and 3D frameworks confirms the link with the skyrmion breathing mode independently of
the considered dimensionality. As for S3D the thermal dependence becomes critical below T = 1 K
because S2D diverges negatively violating Nernst’s third principle of thermodynamics (see the next
subsection for more details). Finally, also S2D expressed in Equation (15) can be considered a general
result because other skyrmion textures would lead to energy profiles that can be approximated via the
harmonic approximation in the vicinity of their minimum.

2.2.5. Behavior of <Dsky
2D>, σDsky

2D, and S2D at Low Temperatures

It is interesting to derive the low-temperature behavior (0÷ 50 K) of the average skyrmion diameter,
the standard deviation and the configurational entropy [13]. The low-temperature relations obtained
are still classical because they are based on relations derived within the classical 2D distribution of
diameters at equilibrium. For the whole range of temperatures studied (0 ÷ 300 K) and for each external
bias field, a(T) = a0 +c T with a0 = a (T =0 K) and c < 0 a coefficient expressed in J/(m2K) [13]. Moreover,
at low temperatures, D0sky (T) = D0sky (T = 0 K) + d T. It has been found from numerical calculations
that <Dsky (T→0 K)> = D0sky (T→0 K) as occurred for the 3D distribution (strictly speaking, it is indeed
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not possible to define an average diameter for T = 0 K). Hence, at low temperatures, the expansion of
Equation (6) to the first-order yields:

< D2D
sky(T) >T→ 0 K' D 0

0 sky

1 +
kBT

2 a0

(
D 0

0 sky

)2

 (17)

with D0
0 sky = D0sky (T = 0 K) for every amplitude of the external bias field. This expression is similar

to Equation (6) but note that a(T) is replaced by a0 and D0sky by D0
0 sky. This leads to a purely linear

dependence of the skyrmion average diameter on T at low temperatures at fixed a0 and D0
0 sky.

At low temperatures (T→0 K), via a series expansion to the first-order of Equation (9), writing
a = a0 + c T, the standard deviation turns out to be:

σ2D
<D2D

sky>
(T)(T→0 K) '

√
kBT
2a0

. (18)

Hence, at low temperatures, the standard deviation has a square root proportionality on
temperature. In the same way, the configurational entropy S2D of Equation (15) expanded to the
first-order at low temperatures (for T→0 K), via Equation (17), reads:

S2D(T)(T→0 K) '
1
2

kB

ln

 16π kBT

a0

(
D 0

0 sky

)2

− c T
a0

+ S0 (19)

neglecting the small term −
1
2

k2
B T

a0

(
D 0

0sky

)2 resulting from the low-temperature expansion of the

average diameter.
The first term on the second member has a logarithmic dependence on T, hence giving the

divergence of S for T = 0 K. On the other hand, the second term expresses the linear dependence of S on
T and vanishes for T = 0 K. As occurred for S3D, at low temperatures there is a deviation from the linear
behavior due to the logarithmic dependence on T of the first term. The passage from the 3D to the 2D
description does not avoid the unphysical divergent result as T→0 K. This confirms that this result
does not depend on the dimensionality but on the fact that the configurational entropy was computed
according to a classical approach showing the same limits of the Sackur–Tetrode entropy equation for the
ideal gas and that, as T→0 K, a quantum approach would be necessary to remove the divergent behavior.
Numerically, analogously to the 3D model, the calculations performed according to Equations (6), (9) and
(15) for the average diameter, the standard deviation and the configurational entropy, respectively, within
the 2D model are well reproduced by the corresponding low-temperature expansions to the first-order
of Equations (17)–(19), respectively for 1 K ≤ T ≤ 50 K. The curve of < D2D

sky(T) >T→ 0 K is almost

superimposed to that of< D3D
sky(T) >T→ 0 K≈ D 0

0 sky

1 + kBT

a0

(
D 0

0 sky

)2

 [13], while that of σ2D
<D2D

sky>
(T)(T→0 K)

is exactly superimposed to that of σ3D
<D3D

sky>
(T)(T→0 K) because σ2D

<D2D
sky>

(T→0 K) = σ3D
<D3D

sky>
(T→0 K). Instead,

as occurs at higher temperatures, S2D is consistently downshifted with respect to S3D. Since these
numerical calculations do not add further physical information to the discussion, they are not shown
in Section 3.
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3. Results and Discussion

In this section, the main results of this work applied to an outwardly Néel skyrmion hosted in a
Co dot of radius Rd = 200 nm and t = 0.8 nm having the core magnetization mz (r = 0) = −1 (S = −1)
and Hext applied along + z are discussed. The magnetic parameters are the ones used in the analytical
and numerical calculations in [13,14]. In particular, the following magnetic parameters at T = 0 K
were used: saturation magnetization Ms = 600 KA/m, exchange stiffness constant A = 20 pJ/m, IDMI
parameter D = 3.0 mJ/m2, Ku = 0.6 MJ/m3 (for example, Co). The magnetic parameters A, D and Ku at
non-zero temperature are scaled from their zero temperature values, by using the scaling laws A(m) = A
(T = 0 K) m (T)3/2, D (T) = D(T = 0 K) m(T)3/2, and Ku (T) = Ku (T = 0 K) m(T)3.6 [15]. In Table 1 are
summarized the values of a and of D0sky used in the numerical calculations [13,14]. Table 1 does not
contain the values of a and D0sky at T = 0 K since the shown calculations are for T ≥ 50 K.

Table 1. Calculated a and D0 sky used in the numerical calculations [13,14].

T (K) a (×10−5 J/m2)
µ0H = 0 mT

D0sky (nm)
µ0H = 0 mT

a (×10−5 J/m2)
µ0H = 25 mT

D0sky (nm)
µ0H = 25

mT

a (×10−5 J/m2)
µ0H = 50 mT

D0sky (nm)
µ0H = 50

mT

50 6.42 30.83 11.15 24.42 15.03 21.22
100 5.15 34.43 9.67 26.83 13.85 22.42
150 3.86 39.64 8.46 29.23 12.57 24.02
200 2.69 46.85 7.33 32.03 11.28 26.03
250 1.62 58.46 6.33 35.24 10.04 28.43
300 0.71 81.28 5.32 39.64 9.02 30.83

In Figure 2, the 2D skyrmion diameters distribution calculated via Equation (2) (solid black lines)
is compared to the 3D distribution (dashed red lines) [13] obtained by means of Equation (1) for three
different temperatures, T = 100 K, 200 K and 300 K, respectively and, at fixed T, for three values of the
external bias field, µ0 Hext = 0 mT, 25 mT and 50 mT, respectively.
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Figure 2. Comparisons between the 2D (solid black lines) and 3D (dashed red lines) skyrmion diameters
distributions at: (a) T = 100 K and µ0Hext = 0 mT; (b) T = 100 K and µ0Hext = 25 mT; (c) T = 100 K and
µ0Hext = 50 mT; (d) T = 200 K and µ0Hext = 0 mT; (e) T = 200 K and µ0Hext = 25 mT; (f) T = 200 K and
µ0Hext = 50 mT; (g) T = 300 K and µ0Hext = 0 mT; (h) T = 300 K and µ0Hext = 25 mT; (i) T = 300 K
and µ0Hext = 50 mT. (The 3D skyrmion diameters distributions at T = 100 K, 200 K and 300 K and
µ0Hext = 25 mT are the analytical distributions shown in Figure 3 of [13]).
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One notes that the 2D and 3D distributions are almost superimposed at low temperature
(T = 100 K) for any amplitudes of the external bias field, while at higher temperatures (T = 200 K,
300 K) there is a shift of the 3D distribution towards higher values together with a broadening of the
distribution itself marked by an increase of the full width at half maximum (FWHM). The shift and
the broadening of the 3D distributions are attenuated with increasing the amplitude of the external
bias field. Therefore, Hext partially masks the effect due to the increase of the dimensionality on the
skyrmion diameters distribution.

The displacement of the maximum passing from the 2D to the 3D skyrmions distribution shown
in Figure 2 is highlighted in Figure 3 displaying the most probable skyrmion diameters of the 2D and
3D distributions. The calculation of the most probable diameters for the 2D (3D) case was performed
according to Equation (4) (Equation (3)). The general trend is a monotonic increase of the most probable
diameter vs. T according to both approaches with a strong deviation from linearity for T > 200 K
and especially in the absence of an external field. However, while for T < 150 K the most probable
diameters of the 2D and 3D distributions are almost superimposed, at higher temperatures D mp 3D

sky

values are larger than D mp 2D
sky ones especially in the absence of an external bias field.
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Similar conclusions can be drawn from the comparison of < D 3D
sky > and < D 2D

sky > vs. T for the
2D and 3D distributions calculated by means of Equations (6) and (7), respectively as illustrated in
Figure 4a (note that the numerical values of < D 3D

sky > and < D 2D
sky > are not coincident with those of

D mp 3D
sky and D mp 2D

sky , respectively but are very close to them).
Instead, the broadening of the distributions of the skyrmion diameters is highlighted in Figure 4b

that shows the comparison between σ2D
<Dsky>

(T) (continuous line) calculated by means of Equation (9)

and σ3D
<Dsky>

(T) (dashed lines) obtained via Equation (10). The general trend of the standard deviation

is a monotonic increase as a function of T with a deviation from the linear behavior especially in the
absence of an external bias field. It is evident that, especially in the range 200 K ≤ T ≤ 300 K, σ3D

<Dsky>
(T)

has higher values confirming the broadening of the distributions passing from a 2D to a 3D model
marked by the increase of the FWHM.

In Figure 5a the configurational entropy vs. T calculated within the 2D model (continuous lines)
according to Equation (15) is compared to the one determined within the 3D model (dashed lines) by
means of Equation (16) using the values of a and D0sky summarized in Table 1 and Equations (6) and
(7), respectively. The increasing monotonic trend as a function of T of the configurational entropy
is similar in the two cases becoming more pronounced in the absence of an external magnetic field
and especially within the 3D model. The increase of the configurational entropy with increasing T
marks the increase of the disorder due to the temperature that is enhanced within a 3D description.
This disorder is partially attenuated by the perturbation effect of an external applied field and this is
confirmed also by the results of the 2D model. However, within the 2D model the curves of S2D in
the presence of an applied field are almost superimposed showing that the perturbation effect on the
configurational entropy of the external bias field is weaker with respect to that occurring within the
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3D model. Remarkably, the passage from a 3D to a 2D description leads to a consistent lowering of
the configurational entropy that in the 2D model is almost one order of magnitude less than in the
3D model. This occurs also in the presence of an external bias field. The reason of this quantitative
difference can be attributed to the different power dependence on the temperature T and to the key
role played by the skyrmion thickness in the 3D description as inferred comparing Equation (15) with
Equation (16). Figure 5b shows the comparison between the calculated 2D and 3D configurational
entropy, S2D and S3D, respectively as a function of the external bias field at fixed T for T = 300 K. While
the ordering effect of the external bias field is rather pronounced in the 3D model, as evidenced by
the reduction of the configurational entropy with increasing the external magnetic field, in the 2D
model, surprisingly the configurational entropy exhibits a minimum and, for µ0Hext > 50 mT, increases
breaking the typical decreasing monotonic behavior with increasing Hext that marks the ordering
effect of the external magnetic field. The breaking of the monotonic behavior occurs also at other
temperatures (not shown). This effect on S2D could be only numerical taking into account that S2D

is approximated because its calculation is based on the skyrmion energy harmonic approximation.
Therefore, it could depend on some numerical errors arising from the approximation of the real
skyrmion energy that are enhanced with increasing the amplitude of the external bias field and that can
result more effective in the calculation of S2D. Actually, a simple physical consideration can be done.
For this type of thermodynamic systems the entropic contribution TS to the Helmholtz free energy
F = <E> − T S, with <E> ≈ a <Dsky

2> the average skyrmion energy, should be of the same order of <E>

(on average about 10−20 J) resulting in F at least one order of magnitude less than each of the energetic
and entropic contributions. Nevertheless, this occurs only within the 3D description. Finally, note that
the 3D description was also supported by micromagnetic simulations that accounted for the thickness
t of the ferromagnetic material [13]. According to those considerations, one concludes that, albeit
skyrmions are planar structures, a 3D theoretical description to discuss the statistical thermodynamic
properties including also a dependence on the thickness t of the magnetic skyrmion is preferable. A
final confirmation of which of the two descriptions is the more realistic one could come, for example,
from calorimetric measurements able to determine in an accurate way the entropy of a magnetic
skyrmions population.
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Figure 4. (a) 2D (solid lines) and 3D (from Table 1 of [14]) (dashed lines) average skyrmion diameters
as a function of T for µ0Hext = 0 mT (blue lines); µ0Hext = 25 mT (green lines) and µ0Hext = 50 mT (red
lines); (b) standard deviation of the 2D (continuous lines) and 3D (dashed lines) distribution (from
Figure 4 of [13]) as a function of T for µ0Hext = 0 mT (black lines); µ0Hext = 25 mT (red lines) and
µ0Hext = 50 mT (blue lines).
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4. Statistical Thermodynamic Entropy and Information Entropy 

In this section, firstly the close resemblance of Boltzmann’s statistical thermodynamic entropy 
definition at equilibrium used to calculate the configurational entropy for a 2D skyrmions population 
with information entropy [16–26] is discussed. Secondly, a qualitative description that can be used 
for a possible future application is given. 

Let us define a discrete random variable X = {x1, x2,…xN} where xi are its possible values. 
According to Shannon’s definition in information theory [18,19], the information entropy written in 
compact form is the dimensionless quantity H(X) = E(I(X)). Specifically, E(I(X)) is the expectation 
value of I(X) with I(X) = −logb(P(X)) = logb(1/P(X)) the information content (otherwise called 
“surprisal”), being b the basis of the logarithm and 0 ≤ P(X) ≤ 1 the probability mass function or 
discrete density function giving the probability that the discrete random variable X is exactly equal 
to some value. In explicit form, the information entropy written, for example, in units of bits, b = 2 

with log22 = 1 bit, takes the form ( ) ( ) ( )( )1 2logN
i= i iH X = - P x P x  where −log2(P(xi)) is the information 
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Figure 5. (a) Configurational entropy as a function of T for a 2D skyrmions distribution (solid lines)
and for a 3D skyrmions distribution (from Figure 5 of [13]) (dashed lines) for µ0Hext = 0 mT (black
lines); µ0Hext = 25 mT (red lines) and µ0Hext = 50 mT (blue lines); (b) configurational entropy as a
function of the external bias field at T = 300 K for a 2D and for a 3D skyrmions population distribution
(from Figure 5 of [13]). The meaning of the blue lines (solid and dashed) is the same as in panel (a).
For the calculation of S2D at µ0Hext = 75 mT (µ0Hext = 100 mT) the following parameters were used:
a = 12.45 × 10−5 J/m2 (a = 15.71 × 10−5 J/m2) and D0sky = 25.87 nm (D0sky = 22.51 nm).

4. Statistical Thermodynamic Entropy and Information Entropy

In this section, firstly the close resemblance of Boltzmann’s statistical thermodynamic entropy
definition at equilibrium used to calculate the configurational entropy for a 2D skyrmions population
with information entropy [16–26] is discussed. Secondly, a qualitative description that can be used for
a possible future application is given.

Let us define a discrete random variable X = {x1, x2, . . . xN} where xi are its possible values.
According to Shannon’s definition in information theory [18,19], the information entropy written in
compact form is the dimensionless quantity H(X) = E(I(X)). Specifically, E(I(X)) is the expectation value
of I(X) with I(X) = −logb(P(X)) = logb(1/P(X)) the information content (otherwise called “surprisal”),
being b the basis of the logarithm and 0 ≤ P(X) ≤ 1 the probability mass function or discrete density
function giving the probability that the discrete random variable X is exactly equal to some value.
In explicit form, the information entropy written, for example, in units of bits, b = 2 with log22 = 1
bit, takes the form H(X) = −

∑N
i = 1 P(xi) log2(P(xi)) where −log2(P(xi)) is the information content

associated to the value xi having probability P(xi). Hence, the information entropy can be regarded as
the average value E of the information or information content produced by a stochastic source of data
measuring the unpredictability of the state. The more the probability is lower, the more the information
content is higher and the more the information entropy is higher.
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Similarly, because of the strict analogy between information and physics [20,21] and,
more specifically, between information and statistical mechanics [22,23], Boltzmann’s statistical
thermodynamic entropy at equilibrium S = −kB <lnf 0> is proportional to the equilibrium Boltzmann
order function H0 = <lnf 0> that is expressed as the statistical average of lnf 0 (Equations (11) and (12)),
being f 0 the Gaussian probability distribution.

According to the above definitions, both the information and the statistical thermodynamic
entropy are non-negative quantities. Therefore, entropy is a measure of disorder or uncertainty in
information theory as in statistical thermodynamics. However, note that, within the present analytical
framework, S is calculated in the continuous limit while Shannon’s entropy is calculated in the discrete
case. This means that there is only an analogy between the two definitions but not a complete
identification. To get a complete identification of Boltzmann’s statistical thermodynamic entropy at
equilibrium with Shannon’s entropy one should consider the recently obtained micromagnetic results
whose simulated Néel skyrmion distributions of diameters are discrete (see e.g., [13,15]). Instead, the
statistical configurational entropy calculated analytically has a complete identification with Jaynes’s
continuous information entropy based on the concept of the limiting density of a set of discrete
points [24–26]. Jaynes’s definition of information entropy is the correct continuous limit of discrete
Shannon’s information entropy. Indeed, continuous Shannon’s information entropy, otherwise called
differential entropy, suffers from the limitations that it can assume also negative values, is not invariant
under a change of variable and is not dimensionally correct. Jaynes’s continuous information entropy
can be written in the dimensionless form for the one-dimensional case as:

H(X) = −

∫
X

p(x) log2

(
p(x)
m(x)

)
dx (20)

where p(x) is the probability density function referred to the continuous variable x and the function
m(x), called the “invariant measure”, makes part of the definition of the limit of the density of a set

of N discrete points {xi} as N→∞ such that lim
N→∞

1
N =

b∫
a

m(x) dx with a and b the extremes of the

interval of integration. Both p(x) and m(x) have the dimension of the inverse of a length to make
H(X) dimensionless.

The key message contained in Shannon’s information entropy and in its continuous Jaynes’s
version (Equation (20)) is the following: a low-probability event carries more information than a high
probability event. In other words, if an event is less probable, due to its high degree of unpredictability,
is more interesting than a high-probability event.

If this concept is transferred to the configurational statistical entropy of a skyrmion diameters
population, the information is contained in lnf 0 regarded as a Gaussian probability distribution
appearing in the expression of the equilibrium Boltzmann order function (Equations (11) and (12)). As
for the case of Shannon’s and Jaynes’s information entropy, the amount of information carried out by
each of the different events is a random variable represented by the skyrmion size at a given T and
instant of time whose expectation value is the information entropy determined at each temperature. Let
us suppose having a distribution of skyrmion diameters obtained taking pictures of the skyrmions at
different instants of time having the same average energy, as observed in micromagnetic simulations [13],
no matter if it is analytically modelled via a 2D or 3D distribution. The event (message) occurring
at the instant of time t1 when the skyrmion area is Asky

mp = 1
4π (Dsky

mp)2 corresponding to the most
probable skyrmion diameter carries less information than all the events occurring in different instants
of time corresponding to skyrmion diameters Dsky such that Asky , Asky

mp. Taking into account the
information entropy concept, the more Dsky is far away from Dsky

mp, the less is its probability and the
more the corresponding event carries information. In other words, the more the area Asky differs from
Asky

mp, the more the event is unpredictable and the more it encodes information. It has been found
that the effect of temperature is the broadening of the distributions of the skyrmion diameters at every
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external bias field (see Figure 2). With increasing temperature the interval of diameters belonging to the
distribution increases leading to a higher number of events carrying more information and to a higher
entropy encapsulating more information (see Figure 5a). On the other hand, the effect of the external
bias field is opposite: at fixed temperature there is the narrowing of the distributions of diameters
with increasing Hext leading to a lower number of events carrying more information and to a lower
entropy encapsulating less information (see Figure 5b). Hence, via the analogy between Shannon’s and
Jaynes’s entropy and the configurational thermodynamic entropy, the following arguments have been
demonstrated: (1) room temperature magnetic skyrmions carry more information entropy than the
ones at low temperature; (2) at fixed temperature, in the region of metastability, magnetic skyrmions
that are not perturbed by an external bias field encapsulate more information entropy than the ones
subject to Hext. These conclusions could be drawn already looking at Figure 5 but only within a
statistical thermodynamic framework.

Finally, a simple example of entropy data communication system using ferromagnetic materials
hosting magnetic skyrmions is suggested. In information theory for data communication systems one
should distinguish among: (1) a data source, (2) a communication channel and (3) a receiver. The
receiver should interpret the data that come from the source observing and collecting them. For the
ferromagnetic system studied, the data source of entropy information can be regarded as a thermal
bath at a given T in contact with the ferromagnetic material (e.g., cylindrical dot) hosting the magnetic
skyrmion exciting the thermal breathing mode that acts as a source of entropy. The communication
channel can be thought of the ferromagnetic material itself where the magnetic skyrmion forms that is
able to collect the entropy information bits coming from the magnetic skyrmion. The receiver could be a
special device able to identify and collect the bits of entropy. It can be ideally supposed that the amount
of entropy is less than the capacity of the communication channel leading to the communication of all
the data to the receiver.

5. Conclusions

In summary, it has been shown that it is possible to determine the statistical properties and the
configurational entropy related to the size changes of a population of magnetic skyrmions according to
a 2D model basing on the fact that magnetic skyrmions are planar structures. The analogy with the 3D
MB distribution for the ideal gas is not anymore so stringent as occurred within the 3D model of a
population of skyrmions but it can still be applied, without loss of generality, in the region of skyrmion
metastability studied in this work. The analysis was carried out discussing the comparison of the results
obtained according to the 2D model with the ones derived within the 3D model. It has been shown
that both the 2D and 3D models lead to similar quantitative results related to skyrmions distribution
statistical properties such as the skyrmion average size as a function of the temperature. Instead, some
quantitative discrepancies regarding the configurational entropy calculation have been found being
S2D almost one order of magnitude less than S3D. These discrepancies are not surprising because the
two models lead to a different power dependence of S2D and S3D on the thermal energy. In addition,
within the 3D description, there is also an explicit dependence on the thickness of the ferromagnetic
material that gives a further contribution to the entropy. According to some physical arguments related
to the estimation of the average energy and the entropy contribution to the Helmholtz free energy that
should be comparable in a thermodynamic system such as the one studied, and taking into account
some micromagnetic observations, the results regarding the thermodynamic properties of the 3D
model are preferable. However, a final confirmation could come from the measurement of the entropy
and the heat exchanged using, for example, calorimetric techniques.

Finally, a qualitative description of an entropy data communication system has been given for
a future possible application of magnetic skyrmions as temperature and magnetic field dependent
information entropy carriers. This was proposed exploiting the strong analogy between Boltzmann’s
statistical entropy and Jaynes continuous version of Shannon’s information entropy. It has been
shown that the magnetic skyrmion at room temperature carries more entropy information than at low
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temperature and that, under an external bias field, at fixed temperature the encapsulated information
entropy reduces with increasing the magnetic field amplitude.
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