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Abstract

We present an extension of recent relativistic Lattice Boltzmann methods

based on Gaussian quadratures for the study of fluids in (2 + 1) dimensions.

The new method is applied to the analysis of electron flow in graphene samples

subject to electrostatic drive; we show that the flow displays hydro-electronic

whirlpools in accordance with recent analytical calculations as well as experi-

mental results.

Keywords: Relativistic Lattice Boltzmann Method, numerical relativistic

hydrodynamics, electron flow in graphene.

1. Introduction

Relativistic fluid dynamics has so far been generally confined to the study

of astrophysical phenomena, and mostly for ideal non-viscous fluids. However,
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it has been remarked recently that a fluid dynamics approach may be able to

capture interesting aspects of the behavior of systems at much smaller scales. A

pioneering example is the study of the behavior of the ultra-relativistic quark-

gluon plasma formed in the collision of high-energy heavy ions in particle ac-

celerators [1, 2, 3]. More recently, it has been suggested that relativistic fluid

dynamics is relevant to understand the behavior of quantum states that can

now be studied in several condensed matter experimental setups [4], within the

context of so-called AdS-CFT holographic fluids [5, 6, 7, 8].

Recent experimental studies have shown that certain features of the flow of

electrons in graphene can be explained through a pseudo-relativistic hydrody-

namic approach[9], confirming earlier theoretical predictions [10, 11].

In this paper, we present preliminary results on the development and val-

idation of computationally efficient numerical approaches aimed at capturing

details of the electron behavior in these systems, addressing the specific case of

graphene.

In brief, electrons in graphene follow an “ultra-relativistic” dispersion rela-

tion, so they can be considered as a fluid of massless (quasi-)particles whose

energy depends on the momentum as E = vfp, with vf ∼ 106 m/s the Fermi

speed, mimicking the role of the speed of light in true relativistic systems.

The observation of hydrodynamic regimes is predicted to be simpler in doped

graphene sheets [12], which are characterized by large viscosities.

The Lattice Boltzmann Method (LBM) is a class of computational fluid dy-

namics solver which has attracted much interest in the past three decades for

the solution of the Navier-Stokes equations. The method stems from the kinetic

level and consists of a quadrature-based discretization of the Boltzmann equa-

tion, allowing the use of a regular grid of points to exactly match the moments of

an equilibrium distribution function up to a desired order. Rigorous mathemat-

ical analyses based on the Chapman Enskog expansion are typically employed

to bridge between the kinetic and the macroscopic level for near equilibrium

fluids. Recently, new formulations have been introduced to extend the method

to the study of relativistic hydrodynamics. The relativistic Lattice Boltzmann
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Method (RLBM) [13, 14] offers an appealing solution for the study of dissipative

relativistic hydrodynamics, since viscosity is naturally included in its formula-

tion and, furthermore, it does not involve second order derivatives in space,

preserving relativistic invariance and causality by construction [15].

The interest towards the numerical study of electrons flow in graphene has

motivated the development of two-dimensional RLBM solvers [16, 17, 18, 19].

Most of these numerical methods are based on a second order expansion of an

equilibrium distribution function following the Fermi-Dirac statistics, and they

have been applied to study e.g. low-viscosity pre-turbulent regimes.

In [20], working in three dimensions, we have shown that third order expan-

sions of the equilibrium distribution function are the minimum requirement to

correctly handle dissipative effects in simulations of the relativistic regime.

In this paper, we present a new RLBM in two dimensions, based on a third

order expansion of the equilibrium Maxwell-Jüttner distribution. Quantum ef-

fects are not described in this model, a choice which simplifies the algorithmic

derivation allowing us to retain one of the main LBM features, namely perfect

streaming. This could be regarded as the first step in the derivation of a truly

accurate model for the fluid dynamics descriptions of electrons in graphene,

but we also expect that quantum effects should have a limited impact on the

averages involved in hydrodynamical bulk observables. As a result, we expect

that the present model should be able to provide new useful insights into the

physics of relativistic electron flow in graphene devices. We provide a first val-

idation test of our approach simulating a doped single layer graphene sheet in

the so-called ”vicinity-geometry”, which was considered in a series of papers

[21, 12, 22] to outline phenomena such as negative nonlocal resistance and cur-

rent whirlpools. The numerical method is tested in a steady-state regime, for

which semi-analytical solutions are available, showing satisfactory agreement

with previous works; we wish to emphasize that the present numerical method

allows to describe time-dependent, nonlinear flows which escape analytical treat-

ments. Hence, the future plan is to address electron flows of experimental in-

terest.
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This paper is organized as follows. In Section 2 we describe our new RLBM

model, summarizing the general procedure used in its derivation and providing

details of the quadrature and of the external forcing scheme. In Section 3 we

carry out simulations of the ”vicinity-geometry” replicating the formation of

current whirlpools and providing quantitative comparisons of the electrochemi-

cal potential against analytical approximations available in the literature.

2. Model Description

This section briefly describes our RLBM model, which is a ”downsizing” to

two spatial dimensions of a similar model handling relativistic flows in 3D; for

a more detailed description, the reader is referred to [23, 20].

2.1. Relativistic Boltzmann equation

We consider an ideal non-degenerate relativistic fluid, consisting at the

kinetic level of a system of interacting particles of rest mass m. The par-

ticle distribution function f((xα), (pα)), depending on space-time coordinates

(xα) = (ct,x) and momenta (pα) =
(
p0,p

)
=
(√

p2 +m2,p
)

(c is the speed of

light, x, p ∈ R2), describes the probability of finding a particle with momentum

p at a given time t and position x. We adopt Einstein’s summation convention

over repeated indexes, and use Greek indexes to denote (2 + 1) space-time co-

ordinates and Latin indexes for 2 dimensional spatial coordinates. The particle

distribution function obeys the relativistic Boltzmann equation, here taken in

the Anderson-Witting [24, 25] relaxation-time approximation:

pα
∂f

∂xα
+Kα ∂f

∂pα
=
pαUα
c2 τ

(f − feq) , (1)

with τ the relaxation (proper-)time, (Uα) = γ · (c,u) the macroscopic (2 + 1)-

velocity (γ = 1/
√

1− u2/c2), Kα the external forces acting on the system (for

simplicity we assume they do not depend on the momentum), and feq the local

equilibrium. In this work feq will follow a Maxwell-Jüttner distribution:

feq =
1

A
exp

(
−p

αUα
kBT

)
, (2)
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where A is a normalization constant and kB the Boltzmann constant.

At the macroscopic level the Anderson-Witting model correctly reproduce

the conservation equations, i.e. ∂αN
α = 0 and ∂βT

αβ = 0, with Nα the particle

(2+1)-flow and Tαβ the energy-momentum tensor. At equilibrium Nα and Tαβ

can be described by the moments of the equilibrium distribution function:

Nα
E =

∫
feqpα

dp

p0
= nUα , (3)

TαβE =

∫
feqpαpβ

dp

p0
= (ε+ P )UαUβ − Pηαβ , (4)

where n is the particle number-density, ε the energy density, P the pressure and

ηαβ the Minkowski metric tensor. To be noted that the normalization constant

in Eq. 2 has to be chosen in such a way to satisfy the relation with the fluid

particle density in Eq. 3. In the following we will use ηαβ = diag(1,−1,−1),

and adopt natural units for which c = kB = 1 .

2.2. Lattice discretization

In this section we revise the general procedure, used in the derivation of

previous non-relativistic [26, 27, 28, 29] and relativistic LBMs [30, 31, 23], for

the discretization of the Boltzmann equation on a lattice.

We start from an expansion of the equilibrium distribution function feq

in a basis of polynomials, orthogonal with respect to a weighting function ω

corresponding to feq in the fluid rest frame (where u = 0). It is simple to verify

that in the rest frame Eq. 2 reduces to

ω(p0) =
1

NR
exp

(
−p0/T

)
, (5)

where the normalization factor NR is taken such that
∫
ω(p0) dp/p0 = 1. Start-

ing from the basis V = {1, pα, pαpβ , . . . } one derives the set of orthogonal poly-

nomials {J (i), i = 1, 2 . . . } by following a Gram-Schmidt procedure, with the

inner product defined using the weighting function in Eq. 5. In Appendix A

we provide an example of polynomials up to the third order for m = 0. The

polynomials are then used to build the expansion:

feq ((pµ), (Uµ), T ) = ω(p0)
∞∑
k=0

a(k)((Uµ), T )J (k)((pµ)) , (6)
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where a(k) are the projection coefficients defined as

a(k)((Uµ), T ) =

∫
feq((pµ), (Uµ), T )J (k)((pµ))

dp

p0
. (7)

Observe that by construction the coefficients a(k) coincide with the moments

of the distribution function; this is a crucial aspect since it follows that feqN ,

obtained truncating the summation in Eq. 6 such to include only the terms of

order up to N , correctly preserves the moments of the distribution up to the

N − th order.

The next step consists in determining a Gauss-type quadrature on a Carte-

sian grid, with the aim of i) ensuring exact streaming by requiring that all

quadrature points lie on lattice sites ii) preserving the moments of the distri-

bution up to a desired order N . The discretized version of the equilibrium

distribution can be then written as follows:

feqiN ((pµ), (Uµ), T ) = wi

N∑
k=0

a(k)((Uµ), T )J (k)((pµi )) . (8)

where wi and pµi are the weights and the nodes of the quadrature, respectively.

The analytic expression of feqiN for N = 3 and m = 0 is given in Appendix C.

At this stage it is possible to formulate the discrete Boltzmann equation,

which in the relativistic case reads as

fi(x + vi∆t, t+ ∆t)− fi(x, t) = −∆t
pµi Uµ
p0τ

(fi − feqiN ) + F exti . (9)

A detailed description of the algorithmic derivation for the 3-dimensional

case is given in [23]. The algebraic complexities in the calculation of the poly-

nomials and the expansion of the equilibrium distribution significantly simplify

in 2-D. The full details will be described at length in a future expanded version

of this work.

2.3. Quadrature with prescribed nodes

As discussed in the introduction, here we focus our attention on solving

Eq. 10 using polynomials up to the third order.
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The lattice discretization of the Boltzmann equation can be reduced to a

quadrature problem. In practice, one needs to find the weights and the abscissas

of a quadrature able to satisfy the orthonormal conditions up to a desired order

[32]: ∫
ω(p0)Jl((p

µ))Jk((pµ))
dp

p0
=
∑
i

wiJl((p
µ
i ))Jk((pµi )) = δlk ; (10)

here pµi are the discrete quadri-momentum vectors. A convenient parametriza-

tion of pµi was given in [23] and writes as follows:

(pµi ) = p0i (1, v0ni) , (11)

where ni ∈ Z2 are the vectors forming the stencil G = {ni | i = 1, 2, . . . , imax}
defined by the (on-lattice) quadrature points, v0 is a free parameter that can be

freely chosen such that vi = v0||ni|| ≤ 1,∀i, and p0i is defined as

p0i = mγi = m
1√

1− v2i
. (12)

In order to determine a quadrature we proceed as follows: i) select a value for

the rest mass m̄ = m/T0 (with T0 a reference temperature on the lattice), ii)

choose a set of velocity vectors G, formed by a sufficient number of elements

such that the left hand side of Eq. 10 is a full ranked matrix, iii) look for a

solution of Eq. 10 formed by non-negative weights (wi ≥ 0,∀i).
We point out that the parametrization in Eq. 11 is general and can be used

to determine quadratures for wide ranges of values of m̄.

As an example we show in Figure 1a a set of vectors that can be used to

build a quadrature for m̄ = 5. In the remainder of this paper we are interested

in particular in the case of massless particles, all traveling at the same speed

vi = c = 1,∀i. Since for m = 0 Eq. 12 is not well defined, we let p0i be free

parameters (as already suggested in [31]) to be determined such as to satisfy

Eq. 10. We can have several energy shells associated to each vector and therefore

we add a second index to Eq. 11:

(pµi,j) = p0j (1,
ni
||ni||

) , (13)
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Figure 1: Examples of stencils for a third-order approximation. Left: m̄ = 5. G = {(0, 0) ,

(±1, 0)FS , (±1,±1)FS , (±2, 0)FS , (±2,±1)FS , (±2,±2)FS , (±3, 0)FS , (±3,±2)FS ,

(±3,±3)FS , (±4, 0)FS } (45 components). Right: m̄ = 0. G = {(±3,±4)FS , (±5, 0)FS}
with 4 energy shells (48 components).

where the index j labels different energy shells.

The minimal stencil structure, supporting a third order expansion of the

equilibrium distribution function, has radius R = ||ni|| = 5 (Figure 1b); it is

formed by the following set of velocity vectors G = {(±3,±4)FS , (±5, 0)FS} (FS

stands for full symmetric), with four energy shells and the following weights:

w11 = 0.003930503244 . . . w21 = 0.054642060984 . . . p01 = 0.000016359462 . . .

w12 = 0.008026424774 . . . w22 = 0.013535762740 . . . p02 = 3.305423649330 . . .

w13 = 0.000175706060 . . . w23 = 0.000296310700 . . . p03 = 7.758786843141 . . .

w14 = 0.042659667266 . . . w24 = 0.071941262878 . . . p04 = 0.935838587521 . . .

w1j and w2j , j = 1, . . . , 4 are respectively the weights associated to the stencil

components (±3,±4)FS and (±5, 0)FS . This lattice will be used in Section 3

for the numerical part of this work; in Appendix A and Appendix B we list the

polynomials and the projections used for the derivation of the method.
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2.4. Forcing Scheme

The definition of force in relativity is subject to a certain degree of arbitrari-

ness due to the lack of certain general properties such as, for example, Newton’s

third law [33]. In the following we will use the definition of the Minkowski force:

Kα = m
dUα

dτ
, (14)

subject to the condition

Kαpα = K0p0 −K · p = 0 , (15)

and

K = γ F . (16)

To introduce a forcing term in our numerical scheme we make the following

two assumptions: i) the force does not depend on the momentum three vector

( ∂Kα

∂pα = 0 ) ii) the distribution function in not far from the equilibrium, such

that we can approximate the term Kα ∂f
∂pα in Eq. 1 with an expansion that uses

the same polynomials used for the equilibrium distribution function:

∂f

∂pα
≈ ∂feq

∂pα
= ω(p0)

∞∑
k=0

b(k)((Uµ), T )J (k)((pµ)) (17)

with the projection coefficients defined as

b(k)((Uµ), T ) =

∫
∂

∂pα
feq((pµ), (Uµ), T )J (k)((pµ))

dp

p0
. (18)

3. Numerical Tests

We now apply the model described in the previous section to the simulation

of the (pseudo)-relativistic dynamics of electrons in graphene sheets; as already

remarked, in this case the Fermi velocity vf of the simulated system plays the

role of the speed of light. We consider an experimental setup consisting of an

ultraclean single layer graphene encapsulated between boron nitride crystals in

which it has been shown that electrons exhibit a hydrodynamic flow [12]. This
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FLUID INLETWALL OUTLET

Figure 2: Geometry used for the validation of the code. Bounce back boundary conditions

are imposed at the wall. Sites representing the inlet and the outlet do not evolve in time.

setup has been used in a series of works [21, 12, 22] to highlight peculiar proper-

ties such as negative nonlocal resistance and current whirlpools. The geometry

is sketched in Figure 2. The total force acting on the system is given by the

vector sum of the force due to the electric field FE and the force due to the

pressure gradient FP . While FP is naturally described by our RLBM solver, FE

is included in the form of an external force. Therefore, in the simulations the

external force F (Eq. 16) is given by a self-consistent electric field E = −ρe∇φ,

with ρe = ne being the electron charge density. For our initial validation tests

on this specific setup, we follow [34] and do not solve explicitly the Poisson equa-

tion for the electric potential, but rather use a local capacitance approximation

defined as:

φ(x) = −en(x)/Cg , (19)

where Cg is the capacitance per unit area.

Using this setup, we simulate a system similar to the one considered in [21,

12], where analytical results are obtained in the approximation of an infinitely

long channel; we use a lattice with an aspect ratio L/W = 4, that we simulate

on a lattice of 2000 × 500 grid points. The translation between physical units

and adimensional lattice units is based on the definition of a length-unit on the

lattice such that the width of the channel corresponds to the physical value and

on an energy unit that we chose as the Fermi-energy of the simulated system.

In Figure 3 we show a snapshot of a simulation, using a constant initial density

and a large value for the shear viscosity. As we can see, results are qualitatively
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comparable with those presented in [21, 12]. In particular one can appreciate

the (symmetric) formation of electron back-flows in the proximity of the gates,

so called current whirlpools. For a more quantitative comparison, we take into

Figure 3: Snapshot of a simulation on a 2000 × 500 lattice, taken after 100000 time steps,

with an initial uniform density n = 1.5, initial T = 1.25, a fixed velocity at inlet vin =

10−5, τ = 1.0, Cg = 10. The color map describes the electrochemical potential (red colors

positive potential, blue colors negative potential). Ticked lines represent the electrons velocity

streamlines.

consideration the electrochemical potential in the proximity of the injector, for

which the following approximate analytic expression was derived in [21]:

Φ(r, θ) ≈ 2Iη

πn̄2e2
cos(2θ)

r2
; (20)

I is the driving current at the inlet, η is the shear viscosity, n̄ is the equilibrium

density, e is the electron charge, r and θ are used to parametrize in polar co-

ordinates the space in the proximity of the inlet. In Figure 4 we compare the

prediction of Eq. 20 with the results of our simulations by plotting the electro-

chemical potential as a function of the polar angle for several lattice points at

several distances r from the center of the injector. In particular we show that

for different setups, the quantity r2 φ(r, θ) does not depend on r as predicted

by Equation 20: to a good approximation, all curves collapse on the top of each

other, as expected.

As a further benchmark we evaluate how the steady state solution reported

in Figure 3 varies when tuning the magnitude of the driving forces FE and FP .

To this purpose, we perform simulations with different values of the parameter

Cg (see Eq. 19) to evaluate the role of the electric potential. Following [35]
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Figure 4: Electric potential measured at several fixed distances r from the current injector.

Plots present the quantity r2 Φ(r, θ) normalized to Φ(40, 0), showing that simulated data

points collapse onto a single line, as predicted by Eq. 20. Results taken from a simulation on

a 2000 × 500 lattice, with an initial uniform density n = 1.5, T = 1.25, Cg = 10 and a fixed

velocity at inlet vin = 10−5 (all quantities in dimensionless units). Left: τ = 0.8. Right:

τ = 1.2.

one would not expect to observe the effect of Coulomb interactions for static

flows. In Figure 5 we show that this is indeed the case; in fact varying Cg over

several different orders of magnitude does not yield any appreciable effect on

the solution. Moreover the results are the same even in the case when FE is

neglected (CG =∞), proving that the model gives a self-consistent description

of hydrodynamic theory on long length scales. On the other hand, the electric

potential is expected to play a major role on the dynamics of non-linear, time-

dependent flows, which will make the object of forthcoming studies.

4. Conclusions

In this work we have described a new solver for the study of (2+1)-dimensional

relativistic hydrodynamics based on the Lattice Boltzmann Method. The model

is applied to the specific study case of the analysis of the electrons flow in

graphene. We have presented results of simulations of a doped single graphene

layer sheet in the so-called ”vicinity-geometry”. From a qualitative point of
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(a) Cg = 10 (b) Cg = 104 (c) Cg = ∞
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x
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−0.5
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1.5

Φ
(x
,y
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×10−7
Φ(x, y = 30, Cg = 10)

Φ(x, y = 50, Cg = 10)

Φ(x, y = 30, Cg = 103)

Φ(x, y = 50, Cg = 103)

Φ(x, y = 30, Cg =∞)

Φ(x, y = 50, Cg =∞)

(d)

Figure 5: Qualitative (top) and quantitative (bottom) comparison of the electrochemical

potential obtained by varying the intensity of the electric field FE . Results taken from a

simulation on a 2000× 500 lattice, with an initial uniform density n = 1.5, T = 1.25, τ = 1.0

and a fixed velocity at inlet vin = 10−5 (all quantities in dimensionless units).

view we have successfully reproduced the current whirlpools highlighted by re-

cent experimental works [12]. Besides, we have provided a more quantitative

validation, with a comparison of the electrochemical potential in the proximity

of the current injector against previous analytic predictions [21]. We consider

this to be a first step in the derivation of an accurate model for the study of the

hydrodynamics behavior of electrons flow in graphene. Future works will deal

with more robust comparisons of simulations against experimental data and

more detailed simulations of actual experimental setups. This work will allow a

proper evaluation of the loss of accuracy due to the neglect of quantum effects,

alongside with further parameters that should be taken into account (such as

electrons collisions with impurities and phonons) to expand the capabilities of

the present model.
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A. Third order 2D Relativistic Orthonormal Polynomials

In this appendix we provide the analytic expressions of the relativistic or-

thogonal polynomials for the ultra-relativistic case up to the third order. The

notation J
(n)
m1...mn , mi ∈ 0, x, y is used to label the polynomial of order n with

the subscript µ referring to the corresponding element of the generating basis

V = {1, pα, pαpβ . . . } (α, β ∈ {0, x, y}):

J (0) = 1

J
(1)
0 = p0 − 1

J (1)
x = px

J (1)
y = py

J
(2)
00 =

1

2
(p0)2 − 2p0 + 1

J
(2)
0x =

1√
3
p0px −

√
3px

J
(2)
0y =

1√
3
p0py −

√
3py

J (2)
xx =

1√
3

(px)2 − 1

2
√

3
(p0)2

J (2)
xy =

1√
3
pxpy

J
(3)
000 =

1

6
(p0)3 − 3

2
(p0)2 + 3p0 − 1

J (3)
xxx = −p0px +

1

6
(px)3 +

3

2
px

J
(3)
00x =

1√
15

(p0)2px −
√

5

3
p0px − 1

2
√

15
(px)3 +

√
15

2
px

J
(3)
0xx = − 1

2
√

15
(p0)3 +

1

2

√
5

3
(p0)2 +

1√
15
p0(px)2 −

√
5

3
(px)2

J
(3)
00y =

1

2
√

6
(p0)2py − 2

√
2

3
p0py +

√
6py

J (3)
xxy =

1

3

√
2

5
(px)2py − 1

6
√

10
(p0)2py

J
(3)
0xy =

1√
15
p0pxpy −

√
5

3
pxpy
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B. Third order 2D Orthogonal Projections

In this appendix we provide the analytic expressions of the orthogonal pro-

jections a(k), up to the third order, for the ultra-relativistic case. The notation

follows the one introduced in Appendix A for the orthogonal polynomials. All

the projections are scaled with the particle density n, thereby ensuring the cor-

rect normalization of the equilibrium distribution function (Eq. 2).

a(0) = 1

a
(1)
0 = Tu0 − 1

a(1)x = Tux

a(1)y = Tuy

a
(2)
00 =

1

2
T 2
(
3(u0)2 − 1

)
− 2Tu0 + 1

a
(2)
0x =

√
3Tux(Tu0 − 1)

a
(2)
0y =

√
3Tuy(Tu0 − 1)

a(2)xx = −1

2

√
3T 2

(
(u0)2 − 2(ux)2 − 1

)
a(2)xy =

√
3T 2uxuy

a
(3)
000 =

1

2
(Tu0 − 1)

(
T 2
(
5(u0)2 − 3

)
− 4T (u0) + 2

)
a(3)xxx =

1

2
Tux

(
T 2
(
5(ux)2 + 3

)
− 6Tu0 + 3

)
a
(3)
00x = −1

2

√
15Tux

(
T 2
(
−2(u0)2 + (ux)2 + 1

)
+ 2Tu0 − 1

)
a
(3)
0xx = −1

2

√
15T 2(Tu0 − 1)

(
(u0)2 − 2(ux)2 − 1

)
a
(3)
00y =

1

2

√
3

2
Tuy

(
T 2
(
5(u0)2 − 1

)
− 8Tu0 + 4

)
a(3)xxy = −1

2

√
5

2
T 3uy

(
(u0)2 − 4(ux)2 − 1

)
a
(3)
0xy =

√
15T 2uxuy(Tu0 − 1)
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C. Third order expansion of the equilibrium distribution function

The third order expansion of the Maxwell-Jüttner distribution in two di-

mension and for m = 0, which allows to recover the first, the second and the

third order moments of Eq. 2, was derived using the polynomials defined in

Appendix A and projections in Appendix B. It reads as follow:

feqi =
wi n

T

(
1

6
T 3ux

(
(pxi )3 − 3(p0i )

2pxi
4

)(
−3(u0)2 + 4(ux)2 + 3

)
+

1

24
pyi T

3uy
(
(p0i )

2 − 4(pxi )2
) (

(u0)2 − 4(ux)2 − 1
)

+
1

4
T 2
(
(p0i )

2 − 2(pxi )2
) (

(u0)2 − 2(ux)2 − 1
)

+
1

8

(
−2(p0i )

2 + (p0i − 5)(pxi )2

+9p0i − 3
)

(Tu0 − 1)
(
T
(
5T (ux)2 + T − 2u0

)
+ 1
)

+
1

24

(
4(p0i )

3 − 30(p0i )
2

−3(p0i − 5)(pxi )2 + 45p0i − 15
)

(Tu0 − 1)
(
T 2
(
4(u0)2 − 3

(
(ux)2 + 1

))
−2Tu0 + 1

)
+ (p0i − 5)pxi p

y
i T

2uxuy(Tu0 − 1)

+
1

8
(p0i − 6)(p0i − 2)pxi Tu

x
(
T 2
(
5(u0)2 − 1

)
− 8Tu0 + 4

)
+(p0i − 3)pxi Tu

x(Tu0 − 1) +
1

8
(p0i − 6)(p0i − 2)pyi T (uy)

(
T 2
(
5(u0)2 − 1

)
−8Tu0 + 4

)
+ (p0i − 3)pyi Tu

y(Tu0 − 1) +
1

4
((p0i − 4)p0i + 2)

(
T 2
(
3(u0)2

−1)− 4Tu0 + 2
)

+ (p0i − 1)(Tu0 − 1) + pxi p
y
i T

2uxuy + pxi Tu
x + pyi Tu

y + 1
)
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