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ABSTRACT
Aberrations in mitochondrial Ca2+ homeostasis have been associated with different patho-
logical conditions, including neurological defects, cardiovascular diseases, and, in the last
years, cancer. With the recent molecular identification of the mitochondrial calcium uni-
porter (MCU) complex, the channel that allows Ca2+ accumulation into the mitochondrial
matrix, alterations in the expression levels or functioning in one or more MCU complex
members have been linked to different cancers and cancer-related phenotypes. In this
review, we will analyze the role of the uniporter and mitochondrial Ca2+ derangements in
modulating cancer cell sensitivity to death, invasiveness, and migratory capacity, as well as
cancer progression in vivo. We will also discuss some critical points and contradictory results
to highlight the consequence of MCU complex modulation in tumor development.
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Mitochondrial calcium and cancer

In the last century, Otto Warburg postulated that
a tumorigenic event initiates when a non-cancerous
cell adopts an anaerobic metabolism as a consequence
of damaged respiration, thus depicting a metabolic
profile of the neoplastic condition [1,2]. The so-
called “Warburg effect” de facto revolutionized the
field of oncology, to the extent that the high rate of
glucose uptake by tumors provided the rationale
behind the development of the 2-[18F]fluoro-
2-deoxy-D-glucose (18F-FDG) positron emission
tomography (PET) imaging technique,which is nowa-
days used in clinics for the detection and monitoring
of neoplastic formations. However, it is now clear that
(i) elevated glycolytic rates of cancers do not originate
from defects in oxidative respiration and (ii) mito-
chondria are essential for tumor cell viability and
proliferation [3]. Indeed, mitochondria contribute to
malignant transformation at multiple levels, which
included generation of radical oxygen species (ROS),
accumulation of specific mitochondrial metabolites,
or alterations in programmed cell death response
[4–6]. Most (if not all) of these processes are tightly
regulated by calcium (Ca2+) ions.

Historically, the first evidence that connected
cancer-related molecular mechanisms to mito-
chondrial Ca2+ aberrations dates back to the
early 2000s, when the activities of the oncopro-
tein Bcl-2 and the pro-apoptotic factors Bax and
Bak were associated with a drastic alteration of
the endoplasmic reticulum (ER)-mitochondria
Ca2+ connection [7–9]. These observations
demonstrated that (i) Ca2+ transfer from the
ER to mitochondria is required for initiation of
the cell death program by specific pro-apoptotic
agents, and (ii) proteins with oncosuppressive or
pro-oncogenic properties could exert their pro-
or anti-apoptotic functions by altering Ca2+

homeostasis. The ER is the major store of Ca2+

inside the cell [10], and mitochondria can accu-
mulate large amounts of Ca2+ through the for-
mation of transient contacts with the ER
membranes. Numerous apoptotic stimuli or
chemotherapies promote a slow but continuous
ER Ca2+ discharge, followed by Ca2+ entry inside
mitochondria, which in turn decode Ca2+ sig-
nals, such as death messages, favoring the release
of cytochrome c and other apoptotic factors
[10]. Thus, the general idea is that a reduced
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ER-mitochondria Ca2+ transfer could help the
tumorigenic cells evade apoptosis and resist can-
cer therapeutics [11,12]. The Ca2+-dependent
regulation of apoptosis is mainly related to the
opening of the mitochondrial permeability tran-
sition pore (mPTP), a complex of proteins
located in the inner mitochondrial membrane
(IMM) [13,14]. Ca2+ entering the mitochondrial
matrix enhances mPTP opening due to the pre-
sence of Ca2+-binding sites, triggering a series of
events that lead to IMM permeabilization and
culminating with the release of pro-apoptotic
factors and execution of programmed cell
death [15].

In recent years, several oncogenes, including
H-RAS12V [16], fetal and adult testis expressed
1 (FATE1) [17], the signal transducer and acti-
vator of transcription 3 (STAT3) [18],and AKT
[19–21], or tumor-suppressors, such as the pro-
myelocytic leukemia protein PML [22,23], p53
[24], the redox-sensitive oxidoreductase TMX1
[25,26] and phosphatase and tensin homolog
deleted on chromosome 10 (PTEN) [27], have
been described as modulators of ER-mitochon-
dria Ca2+ interplay and cell death through their
localization at the mitochondria-associated
membranes (MAMs), a specialized area formed
by the close apposition between the ER and
mitochondrial membranes (for reviews on this
topic, see [28–30]). These observations, although
they validate the pivotal role played by the ER-
mitochondria interface in cancer cells, lack
direct evidence on the mechanistic relevance of
mitochondrial Ca2+ uptake in tumor progres-
sion. Some cancer-related proteins, such as Bcl-
XL or the fragile histidine triad (FHIT), have
been described as modulating mitochondrial
Ca2+ entry without affecting ER Ca2+ release
[31–33]. However, aside from their effect on
mitochondrial Ca2+, additional Bcl-XL/FHIT tar-
gets also contributed to their pro-/anti-malig-
nant activities. The identification of the
molecular nature of the mitochondrial calcium
uniporter (MCU) complex, the channel that
allows Ca2+ entry inside mitochondria [34], has
led to better characterization of the role of mito-
chondrial Ca2+ in a wide range of pathological
conditions, including cancer [35]. Aberrations in
the composition of the MCU complex, with

consequent Ca2+ derangements, affect not only
the apoptotic response but also other features
ascribed to a malignant phenotype, such as
uncontrolled proliferation, migration, invasion,
and capacity to metastasize.

The mitochondrial calcium uniporter (MCU)
complex

The Ca2+ derived from the extracellular milieu or
released by the intracellular stores (ER, Golgi or
lysosomes) passes across the outer mitochondrial
membrane (OMM) through the voltage-dependent
anion channel (VDAC) and reaches the internal
matrix by the MCU complex, located at the IMM
[36]. The entire uniporter structure (480 kDa) is
composed of nuclear-encoded channel-forming ele-
ments (MCU, EMRE, MCUb) and regulatory com-
ponents (MICUs) [34,35] (Figure 1). The MCU
complex is a highly Ca2+-selective channel, displays
a relative conductance to divalent cations (Ca2+ ≈
Sr2+ ≫Mn2+ ≈ Ba2+) [37], and is inhibited by Mg2+

[38]. Due to the lack of amino acidic sequence
analogies with other Ca2+ channels, MCU can be
conceived as a new class of Ca2+ transporters [39].
X-ray and electron microscopy structures showed
that the pore-forming subunit MCU (previously
known as CCDC109a) [40,41], similarly to other
classical Ca2+ channels, assembles as a tetramer
[42–45]. The uniporter functions are pharmacologi-
cally inhibited by the polycationic dye Ruthenium
Red (RuR) and its derivatives (such as the oxygen-
bridged dinuclear amine complex Ru360), which
abolish Ca2+ uptake in isolated mitochondria
through direct binding with the intermembrane
space (IMS)-exposed region of MCU, known as
DIME motif [41]. The proper architecture of the
complex is ensured by the essential MCU regulator
(EMRE), a single-pass membrane protein that is
necessary for MCU activity [46], whereas MCUb,
a paralog of MCU, acts as a dominant negative
subunit and its expression largely varies among
different tissues [47]. The fine regulation of the
channel occurs in the IMS, where the components
of the MICU family are located [48,49]. Through
their EF-hand motifs, which are typical domains
found in different calcium-binding proteins, MICU
members sense the cytoplasmatic Ca2+ and regulate
the gating of the pore [50,51]. Loss-of-function
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Figure 1. The MCU complex.
Schematic representation of the Mitochondrial Calcium Uniporter (MCU) complex. Ca2+ entry into the mitochondrial matrix is
mediated by the pore-forming subunit MCU, the negative regulator MCUb, and the essential MCU regulator EMRE. All these
components, located at the inner mitochondrial membrane (IMM), represent the core of the channel. In the intermembrane space
(IMS) resides the MICU (Mitochondrial Calcium Uptake) family members (MICU1-2–3), which regulate the closure/opening of the
channel depending on the cytosolic [Ca2+]. The effects on both basal Ca2+ levels and [Ca2+] upon agonist stimulation caused by the
genetic loss of the indicated subunit have been listed.
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studies revealed that they control both the threshold
and cooperative activation of the uniporter.
Specifically, when the Ca2+ concentration ([Ca2+])
in the IMS is low, MICU1-2 help to preserve the
closure of the channel, avoiding detrimental Ca2+

entry and maintaining an extremely low [Ca2+]
inside the matrix [52–54]. However, when the Ca2
+ increases, MICU1-2 control the channel’s opening,
with MICU1 acting as a positive regulator [55,56]
and MICU2 limiting the activation of the channel
and downregulating the mitochondrial Ca2+ uptake
[52,56]. MICU1 also contributes to the Ca2+ selec-
tivity of the uniporter, since it helps to discriminate
between Ca2+ and Mn2+ [57,58]. MICU3 is mainly
expressed in the brain [49,59] and does not display
gatekeeping functions but works as a genuine acti-
vator of the uniporter, facilitating Ca2+ entry more
efficiently compared to MICU1 [59]. Structurally,
MICU1 can bind MICU2 or MICU3 through the
formation of disulfide bonds [56,59,60], and the
resulting MICU dimers are anchored to the channel
core by the interaction of MICU1 with EMRE [61]
and the IMS-spanning portion of MCU [62]
(Figure 1). This sophisticated regulation ensures
low mitochondrial Ca2+ levels at resting conditions
and prompt Ca2+ responses upon agonist stimula-
tion. Importantly, large and transient mitochondrial
Ca2+ increases, generated by ER Ca2+-mobilizing
agents (histamine, carbachol, etc.) are associated
with activation of the metabolic machinery, result-
ing in a fast synthesis of ATP [63]. Low concentra-
tion of calcium ions activates four Ca2+-sensitive
mitochondrial enzymes, including the FAD-glycerol
phosphate dehydrogenase (FAD-GPDH), located on
the cytosolic surface of the IMM, and the mitochon-
drial matrix-resident pyruvate dehydrogenase phos-
phatase (PDHP), NAD-isocitrate dehydrogenase
(NAD-ICDH) and oxoglutarate dehydrogenase
(OGDH), which in turn furnish an increased supply
of reducing equivalents and boost ATP synthesis
[64]. Therefore, cancer cells can strategically take
advantage of increased mitochondrial Ca2+ to sup-
ply the energy demand required for faster prolifera-
tion. Alternatively, a lower Ca2+ uptake may help
them to overcome cell death and resist a multitude
of apoptotic stimuli. In the sections below, we will
discuss this dual, and apparently antithetic, role of
mitochondrial Ca2+ in the context of cancer as well

as how the different members of the MCU complex
can affect such cancer-related features and tumor
growth.

MCU complex and cell death

The first observations that directly linked the activity
of the MCU complex to increased sensitivity to cell
death were obtained in HeLa cells overexpressing the
pore-forming subunit MCU. The cells displayed
higher levels of apoptosis once treated with Ca2
+-dependent apoptotic stimuli, such as C2-ceramide
or hydrogen peroxide [40]. The concept of mito-
chondrial Ca2+ overload as a key factor of cell
death has been confirmed in noncancerous cell
lines [65–67]. Accordingly, genetic MCU downregu-
lation [65,66,68,69] or MCU-targeted pharmacolo-
gical interventions [70,71] protect from apoptosis by
reducing mPTP opening and release of pro-apopto-
tic factors. These findings have been extended to
a specific form of cell death, called paraptosis,
induced by Celastrol, an active compound extracted
from the Chinese medical plant “Thunder of God
Vine” [72]. Of note, our group first demonstrated
that MCU is a target of miRNA-25, which decreased
the sensitivity of both prostate and colon cancer cells
to multiple Ca2+-dependent apoptotic stimuli by
reducing MCU protein levels and mitochondrial
Ca2+ uptake [73]. These data have been confirmed
in the process of pulmonary arterial hypertension
(PAH) cancer-like phenotypes, characterized by
excessive proliferation and apoptosis resistance
[74]. In this context, high MCU levels decrease cell
migration, proliferation, and apoptosis resistance,
whereas MCU silencing has the opposite effects.
However, other observations suggested a more mar-
ginal role for MCU in the control of cell survival
[75], or an augmented, rather than inhibited, cas-
pase-independent cell death in the MCU-silenced
MDA-MB-231 breast cancer cell line [76].
Nonetheless, by comparing mouse embryonic fibro-
blasts (MEFs) derived from MCU-null and WT
mice, no difference in the sensitivity to multiple
Ca2+-related pro-apoptotic and necrotic stimuli was
detected, althoughMCU knock-out (KO)mitochon-
dria exhibited a permanent mPTP closure upon
exposure to high levels of calcium [77].
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Additional information on the role of mitochon-
drial Ca2+ in cell viability originates from studies on
the regulatory components of the MCU complex.
Loss of MICU1 increases basal mitochondrial Ca2+

content and predisposes cancer and noncancer cells
to apoptosis, which is strictly related to a high Ca2
+-dependent ROS generation inside the matrix
[50,62]. The molecular mechanisms linking mito-
chondrial Ca2+ entry and ROS production have not
been fully understood, although the general idea is
that the high mitochondrial Ca2+ stimulating
respiratory chain activity could lead to increased
amounts of ROS [78]. MICU1-loss promotes hepa-
tocytic death, which is prevented by pharmacologi-
cal inhibition of mPTP opening [79], and
significantly aggravated cardiomyocyte death dur-
ing ischemia/reperfusion injury [80]. Interestingly,

reducing the protein expression of both the enhan-
cer of zeste homolog 2 (EZH2) [81] or Homeobox
(HOX) transcript antisense RNA (HOTAIR) [82] in
head and neck squamous cell carcinoma cells, as
well as ribosomal protein S3 (RPS3) in melanoma
[83], contributes to apoptosis, at least in part, by
decreasing MICU1 levels. Moreover, histidine triad
nucleotide-binding (HINT2) increases the suscept-
ibility of pancreatic cancer cells to death by decreas-
ing MICU1 and upregulating the MCU associate
subunit EMRE [84] (Figure 2). Thus, higher mito-
chondrial [Ca2+] at resting conditions, induced by
either MICU1-silencing or MCU-overexpression
(which increase the quota of unregulated/hyperac-
tive MCU complexes) sensitizes cancer cells to
apoptosis [85]. However, for MICU1 functions,
some contradictory findings have been described.

Figure 2. Oncogenic regulation of the MCU complex.
Representation of the different molecular pathways that converge on the MCU complex to exert their pro- or anti-neoplastic
functions. Some factors accumulate into mitochondria and directly target the MCU complex, whereas other oncogenic proteins
reasonably affect cancer-related features by regulating the expression of uniporter’s subunits at the transcriptional level. MCU-
targeting cancer-related miRNAs have been also reported. See text for further details. ROS: Radical Oxygen Species; Prolif.:
Proliferation; CI: Cell Invasion; CM: Cell Migration; CD: Cell Death
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In MDA-MB-231 cells, MICU1 silencing does not
affect apoptosis [75], whereas in ovarian cancer cells
MICU1 downregulation indeed potentiates gold
nanoparticle-induced cytotoxicity, but this effect is
related to higher cytosolic [Ca2+] and ER stress, not
to an augmented mitochondrial Ca2+ entry [86].
Similar results have been obtained using the potent
MCU inhibitor Ru360, thus confounding the inter-
pretation of the data [86].

Other observations that strongly questioned the
link between high mitochondrial Ca2+ entry and cell
death induction can be found in the role ofmitochon-
drial calcium uniporter regulator 1 (MCUR1) in
hepatocellular carcinoma (HCC). MCUR1 has been
proposed as a key interactor of theMCU channel and
to promotemassivemitochondrial Ca2+ entry [87], by
ensuring the correct assembly of the entire uniporter
complex [88]. In HCC cells, MCUR1 silencing
induces high levels of apoptosis, whereas its overex-
pression has the opposite effects. The molecular
mechanism includes a Ca2+- and ROS-dependent
degradation of p53 and modulation of other intrinsic
apoptotic pathways [89] (Figure 2).However, a role of
MCUR1 outside the uniporter has also been pro-
posed, suggesting that the mitochondrial Ca2+ uptake
aberrations ascribed to modulation of MCU function
is secondary to themitochondria membrane depolar-
ization caused by the respiratory chain defects [90].
Thus, multiple factors should be evaluated before
drawing conclusions on the putative role of mito-
chondrial Ca2+ inmodulating the cell death response.
In particular, it should be taken into consideration
that (i) not all death stimuli exert their toxic effects by
inducing mitochondrial Ca2+ overload, (ii) if MCU
loss reduces mitochondrial Ca2+ both at the basal
state and after agonist stimulations, MICU1 down-
regulation increases the organelle Ca2+ uptake at low
cytosolic [Ca2+], but decreases it when cytosolic Ca2+

rises, (iii) loss of a specific subunit could affect the
expression of other MCU complex members, and iv)
the composition of the MCU complex may greatly
vary among different cancer cell lines.

MCU complex and cancer cell migration

If mitochondrial Ca2+ overload has been generally
associated with cell death induction, numerous
observations reported that inhibition of mitochon-
drial Ca2+ entry through downregulation of the

MCU channel subunit could delay cancer cell
migration. Indeed, in vitro studies showed that
MCU silencing in HeLa and Hs578T breast cancer
cells drastically inhibits cell motility, migration,
and invasion without affecting basal apoptosis
levels or proliferation rates [91]. Similar data
have been obtained in triple-negative breast cancer
and HCC cells [92–95]. Other evidence arises from
the inhibition of MCU functions through chemical
compounds [93,94], although these data should be
taken with caution, as RuR is mainly impermeable
and cannot be used in intact cells.

Different molecular mechanisms have been pro-
posed to justify the positive role of mitochondrial
Ca2+ accumulation in cell migration, including
increased ATP production and regulation of cytoso-
lic Ca2+ levels through store-operated Ca2+ entry
(SOCE). However, MCU loss does not seem to affect
global ATP levels [91], and the contribution of MCU
in the control of SOCE and SOCE-dependent cell
motility is highly debated (for a review on this topic,
see [96]). Conversely, a greater consensus has been
reached for the mechanisms that link cancer cell
migration to Ca2+-dependent mitochondrial ROS
generation. Indeed, higher, but subtoxic, levels of
ROS (particularly hydrogen peroxide) have been
associated with increased migration, invasion, and
metastatic potential [97]. Several indirect observa-
tions demonstrate the positive link between elevated
mitochondrial Ca2+ uptake, ROS and cell migration,
including the mechanism of action of the induced
myeloid leukemia cell differentiation protein Mcl-1,
which promotes mitochondrial Ca2+ entry [98] and
favors cell migration in a ROS-dependent manner
[99]. Accordingly, loss of MCUminimizes ROS gen-
eration, which in turn leads to a reduction of the
amount of the hypoxia-induced factor 1a (HIF1a)
transcription factor and an attenuated hypoxic
response [92]. Similar results have been obtained in
HCC, where MCU depletion increased superoxide
dismutase 2 (SOD2) activity by upregulating the
NAD+/NADH ratio and deacetylase activity of
SIRT3 [95] (Figure 2). Importantly, treatment with
mitoTEMPO, a mitochondrial ROS scavenger, pro-
duces the same effects as MCU silencing [92,95].

When ROS levels drastically increase and the anti-
oxidant systems are unable to maintain them below
a cytotoxic threshold,multiple cell death pathways can
be triggered in response to oxidative damage. This
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series of events may explain the impaired cell migra-
tion observed in MICU1 knock-down HeLa cells,
which displayed high levels of apoptosis at resting
conditions [50]. Moreover, MICU1 silencing in ovar-
ian cancer cells predisposes the cells to cisplatin-
driven cell death and impairs cell migration and inva-
sion [100]. Thus, when increased mitochondrial [Ca2
+] does not result in cell death induction, for example,
when a concomitant pro-survival pathway is activated,
a key advantage for the proliferation of cancer cells
may arise. To test this hypothesis, we analyzed the
effect of high basal mitochondrial Ca2+ levels, either
by overexpressing MCU in prostate cancer cells or
silencing MICU1 in HeLa, on cancer phenotypes,
and we observed that upon pharmacological inhibi-
tion ofmPTP functions, increasedmitochondrial Ca2+

entry strongly activates cancer cell proliferation,
migration, invasion and colony formation [85].
Overall, these data suggest that increased mitochon-
drial [Ca2+] could drastically boost the aggressiveness
of cancer cells upon inhibition of key effectors of cell
death. Moreover, a careful analysis of other signaling
pathways is necessary before establishing whether
mitochondrial Ca2+ accumulation could be a toxic or
tumor-promoting agent. Importantly, several proto-
oncogenes or tumor suppressors, including AKT and
p53, could affect mPTP opening by direct interaction
[101,102] and simultaneously alter Ca2+ homeostasis
[24,103], thus regulating cancer development at two
different stages.

MCU complex and tumor progression

Recently, our group showed that a pool of activated
AKT could localize at the IMS, where AKT phos-
phorylates MICU1 on a specific serine residue at its
N-terminal region. The AKT-mediated MICU1
phosphorylation abolishes MICU1’s gatekeeping
function on MCU, leading to higher mitochondrial
Ca2+ content at resting conditions and ROS produc-
tion [103] (Figure 2). We observed that phosphor-
MICU1 accumulates in a non-mature form that is
rapidly degraded (potentially by the ubiquitin-
proteasome system, as recently proposed [104]),
leading to concomitant loss of the binding partner
MICU2 and a disordered MCU complex composi-
tion [103]. The expression of a nonphosphorylatable
MICU1 mutant restores normal mitochondrial Ca2+

and ROS levels and inhibits AKT-mediated tumor

growth in vivo, suggesting that the MICU1-
dependent regulation of mitochondrial Ca2+ and
ROS homeostasis is a crucial element in AKT-
driven tumorigenesis. These data correlate with
other examples demonstrating the pro-malignant
role of MCU-mediated Ca2+ entry. The receptor-
interacting protein kinase 1 (RIPK1) stabilizes
MCU by direct interaction and promotes colon can-
cer growth by upregulating mitochondrial Ca2+
uptake [105] (Figure 2). In MDA-MB-231 xenograft
models, MCU depletion inhibits primary tumor
growth, lymph node infiltration, and lung metastasis
[92], whereas in an experimental metastatic model
(obtained by injecting cancer cells into the tail vein of
nude mice), MCU-overexpressing MCF7 breast can-
cer cells produce more lung metastatic lesions com-
pared to control conditions [94]. Similar results have
been obtained in HCC xenograft models, where
MCU depletion reduced the incidence of both intra-
hepatic and distal lung metastases. Interestingly,
expression of the Ca2+ buffer parvalbumin targeted
to mitochondria counteracts the MCU pro-
tumorigenic role [95]. In the same cancer context
(HCC), MCUR1 promotes Ca2+ entry and in vivo
tumor growth by inhibiting p53-mediated apoptosis
[89], as previously described (see “MCU complex
and cell death” section).

Analysis of mRNA expression levels of the MCU
complex subunits in human patients, revealed as
alterations in the MCU complex composition that
led to increased mitochondrial Ca2+ entry, correlates
with a poorer prognosis or high risk of recurrence
and death (Table 1). Thus, mitochondrial Ca2+ accu-
mulation appears to promote cancer growth and
progression, a hypothesis that has been expressed
since the 1970s, based on preliminary in vivo results
[106]. However, in other cancer scenarios, an oppo-
site role for Ca2+ in tumor development emerges. In
ovarian cancer, high levels of MICU1 contribute to
chemoresistance by inhibiting the mitochondrial
Ca2+ response to cisplatin [100]. MICU1 inhibition
reduces tumor growth by re-establishing chemosen-
sitivity and apoptosis induction [100]. In gliomas,
the expression levels of MCUb, the negative regula-
tor of MCU, were inversely correlated with overall
survival, and MCUb knock-down suppresses the
proliferation, migration, and invasion of glioma
cells, as well as glioma progression in vivo [107].
Such MCUb-mediated effects have not been
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associated with the remodeling of mitochondrial
Ca2+ homeostasis or alteration in the apoptotic
response, thus the putative pro-tumorigenic MCUb
activity awaits further clarifications.

Concluding remarks

From the evidence described here, it is difficult to
definitively affirm that mitochondrial Ca2+ entry
can (i) inhibit cancer growth by increasing sensi-
tivity to apoptosis and (ii) boost tumor progres-
sion by promoting ATP and ROS production or
modulating cytosolic Ca2+. The functional role of
Ca2+ may vary depending on the type and stage of
cancer or whether the Ca2+ signaling profile is
assessed in primary tumors or metastatic cells.
Moreover, mitochondrial Ca2+ could function dif-
ferently based on the tumorigenic pathway or
genetic alterations that are mainly involved in
conferring the aggressiveness of a specific type of
cancer. Once the pro- or anti-malignant role of
mitochondrial Ca2+ is established in a well-
defined cancer context, a Ca2+-based pharmaco-
logical strategy could be exploited alone or in
combination with chemotherapy. Today, most
solid therapeutic approaches do not directly target
the MCU complex but consist of compounds that
modulate mitochondrial Ca2+ transfer by acting
on ER Ca2+ release. These strategies include
photodynamic therapy [108] and G-202 (a thapsi-
gargin-based prodrug specific for prostate can-
cer), which promote apoptosis by favoring ER
Ca2+ depletion and mitochondrial Ca2+ overload
[109], or Xestospongin B, which selectively kills
cancer cells by blocking ER Ca2+ release and indu-
cing a bioenergetic crisis [110]. Recently, new cell-
permeable pharmacological agents targeting uni-
porter activity have been proposed, including the
synthetic anthracenediones mitoxantrone and
pixantrone, two analogs of doxorubicin, originally
developed to minimize its cardiotoxic effects
[111], the small-molecule DS16570511 [112], and
the new ruthenium complex Ru265 [113].
Although their biological activities could not be
exclusively dependent on MCU inhibition (the
antineoplastic effects of mitoxantrone have been
attributed to topoisomerase II impairment [114],
and DS16570511 could affect mitochondrial
membrane potential [115]), the employment ofTa
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these novel compounds may provide additional
elements to understand whether mitochondrial
Ca2+ and the MCU complex may represent reli-
able targets in cancer therapy.
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