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Non-coding RNAs (ncRNAs) have been implicated in most cellular functions.

The disruption of their function through somatic mutations, genomic imprinting,

transcriptional and post-transcriptional regulation, plays an ever-increasing role in cancer

development. ncRNAs, including notorious microRNAs, have been thus proposed to

function as tumor suppressors or oncogenes, often in a context-dependent fashion.

In parallel, ncRNAs with altered expression in cancer have been reported to exert a

key role in determining drug sensitivity or restoring drug responsiveness in resistant

cells. Acquisition of resistance to anti-cancer drugs is a major hindrance to effective

chemotherapy and is one of the most important causes of relapse and mortality in

cancer patients. For these reasons, non-coding RNAs have become recent focuses

as prognostic agents and modifiers of chemo-sensitivity. This review starts with a brief

outline of the role of most studied non-coding RNAs in cancer and then highlights

the modulation of cancer drug resistance via known ncRNAs based mechanisms. We

identified from literature 388 ncRNA-drugs interactions and analyzed them using an

unsupervised approach. Essentially, we performed a network analysis of the non-coding

RNAs with direct relations with cancer drugs. Within such a machine-learning framework

we detected the most representative ncRNAs-drug associations and groups. We finally

discussed the higher integration of the drug-ncRNA clusters with the goal of disentangling

effectors from downstream effects and further clarify the involvement of ncRNAs in the

cellular mechanisms underlying resistance to cancer treatments.
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miRNAs AND DRUG RESISTANCE IN CANCER

Chemotherapy represents the primary treatment for both early and advanced tumors. However,
drug resistance seriously limits the potency of conventional chemotherapeutics and novel biological
agents, this constitutes a major obstacle in the treatment of cancer (1). Then, a lot of effort is aimed
to identify new biomarkers, and to assess and predict the response of patients to drugs (2). Cancer
drug resistance is referred as intrinsic, if tumors demonstrate to be insensitive to therapeutic agents
before treatment, otherwise it is defined acquired if tumor becomes resistant during the treatment.
The acquisition of resistance to several types of anticancer drugs can be due to the expression
of transporters that eject drugs from cells, resulting in multidrug resistance (3). Nevertheless,
several other mechanisms are involved in resistance, including insensitivity to apoptosis induced
by drugs, increased repair of damaged DNA, decreased intracellular accumulation of therapeutics,
and induction of mechanisms capable of drug detoxification (1). Recent data showed that other
than by genetic and epigenetic changes, such as base mutations, amplifications, methylation and
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other post-translational modifications, drug resistancemight also
be due to non-coding RNA (ncRNAs) (4). The bulk of the human
transcriptome, excluding the ribosomal and mitochondrial RNA,
is represented by non-coding transcripts, including the most
studied miRNAs and the newly discovered long non-coding
RNAs (lncRNA) (5). MicroRNAs (miRNA) are small non-
coding RNA molecules (18–22 nt in length) that act as negative
regulators of gene expression through modulation of multiple
target mRNAs, by inhibition of translation (6–9). A number of
miRNA genes are located within intronic regions of genes, both
coding or non-coding for proteins and can be transcriptionally
regulated through their promoters (10). Other miRNAs are
found either within exons, including 3′ UTRs of mRNAs, or
clustered with other miRNA genes (11). Since their discovery
(12, 13), the number of annotated miRNAs in the human
genome has grown rapidly and they regulate a variety of cellular
processes, including apoptosis (14), differentiation (15) and cell
proliferation. miRNA deregulation has been demonstrated in
cancer (16–19). The role of miRNAs in controlling cellular
proliferation, differentiation and apoptosis, and their location
at sites of translocation breakpoints or deletions (20), suggests
that they might function as tumor suppressors or oncogenes
(21–23). Profiles of miRNA expression differ between normal
and tumor tissues, and among tumor types (18, 24–27). The
association of miRNAs with cancer was first revealed in chronic
lymphocytic leukemia (CLL), upon the discovery that miR-
15a and miR-16-1 were frequently deleted or down-regulated
(16, 28), and that their expression was inversely correlated to
that of BCL2 (29). Since then, numerous studies have provided
evidence for changes in microRNA expression in oncogenesis:
different cancer pathways can converge to affect the same
miRNAs and conversely a single miRNA can control an entire
transcriptional program, affecting a lot of target genes. The
deregulation of miRNAs is linked to cancer progression and
clinical outcome (30), and miRNAs have been proposed as
potential diagnosticmarkers, prognostics factors, and therapeutic
targets (27, 31–33). When aberrant microRNA expression is
directly involved in carcinogenesis (21), the inhibition of
selectd microRNAs may have therapeutic implications. Modified
antisense oligonucleotides have been designed ad-hoc and have
proven effective at inhibiting microRNA function in vivo in
mice (34, 35). The association of microRNA expression with
cancer prognosis, therapeutic outcome and response to therapy,
independently of other clinical covariates has been documented
(25, 26, 36, 37), and selected miRNAs may influence cancer
response to chemotherapy (38). The prognostic potential of
microRNAs has been demonstrated for CLL (37), lung cancer
(39), pancreatic cancer (25), and neuroblastoma (40) among
others. One of the firsts observation on a possible link between
miRNAs and drug resistance was reported in breast cancer (BC)
suggesting that increased sensitivity of patients to anthracycline-
based chemotherapy was related to deletion of chromosome 11q,
a region containing MIR125B1 (41). The effect of miRNAs on
chemotherapy was systematically studied by Blower et al. (42)
on NCI-60, a panel of 60 cancer cell lines, used by the National
Cancer Institute to screen >100,000 chemical compounds for
anticancer drug sensitivity (20, 38, 42). Overall, miRNAs can

mediate drug resistance throughmultiple pathways, including: (i)
cell cycle and proliferation control, (ii) survival and/or apoptosis
signaling pathways, (iii) DNA repair systems, (iv) specific
drug targets, (v) adenosine triphosphate–binding cassette (ABC)
transporter proteins, and/or drug metabolism, (vi) the epithelial–
mesenchymal transition (EMT) process (4, 6, 43, 44). For
example, miR-15b, miR-16 and miR-22 have been documented
as mechanisms in chemotherapy resistance (45, 46). Cell cycle
deregulation by miRNAs can induce resistance in cancer cells, as
confirmed for miR-224 (47). Also, miR-24 and miR-508-5p can
directly target enzymes involved in drug metabolism (48, 49).
In addition to the mechanisms described above, modulation of
epithelial-mesenchymal transition (EMT) can exert an effect on
cancer cell resistance. Importantly, once cancer cells undergo
EMT, chemo-resistance is increased and metastasis can occur
(50, 51). Normal stem cells are already more resistant to drug
treatment due to over-expression of drug efflux pumps and
anti-apoptotic proteins (52). In this context, miR-34, miR-125b,
miR-140, and miR-215 have an important role in conveying
drug resistance to cancer stem cells (2). Chemotherapy can
induce EMT andmodulate the expression of miR-448 to promote
cancer cell progression (53); conversely miR-29c or miR-224 have
recently been shown to regulate the EMT process (54). miRNome
dysregulation in relation to chemotherapy has been described for
the most common tumor types: breast, ovarian, lung, prostate,
gastric and colon cancer, squamous and hepatocellular carcinoma
(HCC), cholangiocarcinoma, neuroblastoma and various types of
leukemia (55). Overall, these studies highlight the complexity of
adaptive/selective mechanisms in the establishment of resistance
to cancer therapies.

lncRNAs AND DRUG RESISTANCE IN
CANCER

lncRNAs have been linked to cancer progression and metastasis

(56), and recently intensive research has been devoted to
the molecular dissection of their roles, as well as to their
diagnostic and prognostic significance (57). lncRNAs are mRNA-
like transcripts 200 nt to ∼100 kb in length lacking significant
open reading frames. lncRNAs can be transcribed by RNA
polymerase II (RNA pol II), poly-adenylated and located within
nuclear or cytosolic fractions (58). lncRNAs can be divided
into different categories: if overlapping with any transcript
on sense or anti-sense strand lncRNAs will be classified as
(i) sense or (ii) antisense respectively. When its expression

is initiated along with a neighboring transcript, sense or
antisense, that is proximal, (iii) bidirectional. When deriving
from an intronic region, (iv) intronic or (v) intergenic if
placed between two genes (53). Generally, lncRNA expression
levels appear to be lower than those of protein-coding
genes (54), and lncRNAs might be preferentially expressed
in specific tissues (59). As to their functions, lncRNAs can
regulate the expression of genes in close proximity (cis-acting
regulation) or can target distant transcriptional activators or
repressors (trans-acting) (53, 60). Their mechanisms of action
are still diverse, and have been associated with a spectrum
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of biological processes, for example, epigenetics, alternative
splicing, nuclear import, structural components, precursors to
small RNAs and regulators of mRNA decay (60–63). Thus
lncRNAs can regulate cellular functions such as chromosome
dosage compensation (64), imprinting (65), cell cycle progression
(66) and differentiation (67). Aberrant regulation of lncRNAs
is reported in a variety of diseases, including cancer (68–
71). Accumulating reports of misregulated lncRNA expression
across numerous cancer types suggest that also this class of
ncRNA can act in oncogenesis and tumor-suppression (72). A
number of useful databases providing molecular information on
lncRNAs are available (73). Loss of imprinting and redirecting
chromatin remodeling complexes (74), induction of metastasis
(75), depletion of miRNAs as “molecular decoy” or “miRNA
sponge” (76) and direct inactivation of tumor suppressor
genes (77) have been referred to specific lncRNAs. Preliminary
studies commenced to report the value of ncRNAs as potential
biomarkers in clinical settings (78, 79) and their roles in drug
resistance (80).

A NETWORK ANALYSIS: THE MOST
CENTRAL ncRNAs IN CHEMORESISTANCE

In recents years, an increasing number of studies have been
reported on ncRNAs, target gene modulation, and affected drug
functions, pharmacogenomics or chemoresistance. With the aim
to facilitate the classification of ncRNAs and drug targets, some
databases have been developed, such as NRDT (81) or Pharmaco-
miR (82), collecting all information about ncRNA-target gene-
drugs. There are large numbers, and growing, of both ncRNAs
and cancer drugs, thus the combinations between members of
the two groups are very difficult to manage in a traditional
review or interpretate in a database. Therefore we decided
to use machine-learning systems and to study the RNA-drug
interactions using a network-based approach. Basically, we took
from KEGG database all approved drugs used for cancer therapy.
Then, we searched in PubMed all recent studies (published from
2011 onwards) investigating ncRNAs in chemoresistance. This
selection was performed by batch analysis of PubMed-NCBI
(National Center for Biotechnology Information) using as major
topics the drugs from KEGG, ncRNA and chemoresistance.
The result of this screening was manually curated in order
to avoid and remove papers with generic statements and not
direct links between ncRNAs and drugs. Only the investigations
that proved (by in vitro/in vivo) experiments the existence
of a direct association between ncRNAs and chemoresistance
were then analyzed using a machine-learning tool. We thus
built a network of non-coding RNAs starting from a human-
curated selection of papers and applied an ad-hoc data mining
approach to dissect the network and identify the most important
ncRNA/cancer drugs interactions and cliques. We obtained
a fully connected network of 388 drug/ncRNA interactions
(edges) and 5 unconnected pairs (Supplementary Image 1).
We then went on with studying the network, which had
227 nodes: 150 miRNAs, 35 lncRNAs and 42 drugs. Three
graph theory measures were considered to define the most

relevant non-coding RNAs associated to therapeutics resistance:
(i) degree, indicating the number of links that an ncRNA had
with different nodes (here drugs) (ii) betweenness centrality, a
measure of centrality in the network based on shortest paths
(iii) closeness centrality, related to the distance between the
ncRNA and all the other nodes in the network. Then, we
ranked the nodes (drugs and ncRNAs) and edges (combinations)
in the network and collected the combinations from ncRNAs
with a degree >3 and a central position (closeness centrality
> 0.26 and betweenness centrality >0.003) (Figure 1 and
Supplementary Table 1). Finally, we performed a community
structure analysis using Glay and Cytoscape (83) to identify
different clusters of ncRNAs and drugs. The clusters were
converted to subnetworks for convenient visualization. The
visual separation of clusters was improved by overlaying the
community structure on a graphic layout addressing specific
topology (Figure 2).

We wish to add a cautionary note to our reviewing effort. Even
in the genome-wide studies (a minority among those we included
in this review) for a number of conscious or unconscious reasons,
scientists often end up chasing the most “popular” ncRNAs
among others of “lesser pedigree.” Thus there is potentially a
positive bias toward well-known ncRNAs in the overall scheme,
and therefore in the final network. For this reason, we decided
to keep all associations and, although the “degree” (number of
associated drugs for an ncRNA) is important, we tried to avoid
biased selections and included in our review all ncRNAs/pairs.

Here we commence with describing the ncRNAs that are
most prominent in relation to chemoresistance, as detailed in
(Figure 1).

miR-21 has the highest scores (degree, betweenness centrality
and closeness centrality) as it was associated with several drugs.
The MIR21 gene is located at17q23.2, a region frequently
amplified in several tumors (84, 85). Its overexpression has
been observed in most cancer types and modulates the
resistance toward apoptosis-inducing drugs (86–91). Down-
regulation of miR-21 sensitizes cancer cells in vitro to
different chemotherapeutics, including cisplatin, etoposide and
doxorubicin (92–94). On the other hand, some drugs can
induce alterations in miR-21 levels: e.g. soladosine can inhibit
lung cancer cell invasion through miR-21 down-regulation,
via PI3K/Akt signaling pathway (95). Interestingly, exogenous
Epstein Barr virus modulates the PI3K/Akt pathway through
LMP1, thus enhancing miR-21 expression and contributing to
cisplatin reduced response in nasopharyngeal carcinoma (96).
Moreover, miR-21 delivered by exosomes augmentedmalignancy
in recipient cells and conferred paclitaxel resistance to ovarian
cancer cells (97). There was also a report for enhancement
of anticancer activity when Cao et al. reported that miR-21
induction sensitized gastrointestinal tumor cells to imatinib (98).

miR-34a was reported to be downstream of p53 and to
function as a tumor suppressor (99). It is down-modulated in
colorectal cancer (CRC) (100). In 5-Fluorouracil (5-FU)-resistant
colon cancer cells ectopic expression of miR-34a inhibited cell
growth and attenuated the resistance to 5-FU through down-
regulation of SIRT1 and E2F3 (101), inhibition of LDHA (102)
and of c-Kit, thus reducing stem cell factor (SCF)-induced
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FIGURE 1 | The network of non-coding RNAs and anti-cancer drugs. Each link between a drug and an ncRNA indicates a study in literature, investigating on the

specific chemoresistance involvement of that ncRNA in cancer. The nodes (a ncRNA or a drug) shown in this figure have a degree >3, a central position in the

network (expressed as betweenness centrality in the network description) >0.003, or a closer position relative to the companion drug (expressed as closeness

centrality >0.26). The full network, with all nodes, is reported in supplemental information as Supplementary Image 1. Drugs are represented as red squares,

miRNAs as light blue circles and lncRNAs as yellow triangles. The size of a node is proportional to its betweeenness centrality, while the size of a node name is

proportional to its degree.

migration/invasion (103). Yang et al. demonstrated that miR-
34 targets BCL2 and sensitizes HCC cells to sorafenib
(104). In osteosarcoma cell lines miR-34a has been tested in
combination with celecoxib: the treatment showed decreased
cell viability, migration and invasion through regulation of the
Notch1/ROCK1-PTEN-Akt-GSK-3β axis (105). Moreover, miR-
34 could enhance the therapeutic efficacy of paclitaxel in resistant
prostate cancer (106). Its overexpression enhanced cisplatin
sensitivity, as confirmed in gastric cancer, by targeting MET
(107) and in lung cancer, through the p53/MICN axis (108).
Conversely, Pu et al. found that miR-34a overexpression in
osteosarcoma promoted resistance to several drugs (doxorubicin,
etoposide, carboplatin, cisplatin), via repression of AGTR1 (109).

The lncRNA Urothelial Cancer-Associated 1 UCA1 gene
is located at 19p13.12 (110). Different transcriptional isoforms
have been reported, UCA1 (1.4 kb), UCA1a (2.2 kb) and CUDR
(2.7 kb), generated by alternative splicing and poly-adenylated.
UCA1 is the most abundant isoform in various malignant
tumors such as bladder cancer, BC and HCC (110–113). UCA1
could promote drug resistance by directly binding to miR-204,
miR-18a and miR-16 (114). UCA1 emerged as a competitive
endogenous RNA (ceRNA) of multi-drug resistance associated
protein 1 (MDR1), inducing resistance to imatinib in CLL
cells by sequestering miR-16 (115). Overexpression of UCA1
up-regulated MDR1, resulting in imatinib resistance, whereas
its silencing had the opposite effect (116). In bladder cancer,

UCA1 enhanced chemoresistance to cisplatin by regulating Wnt
signaling (117) and to cisplatin/gemcitabine through modulation
of miR-195a (118). Recent studies reported that UCA1 regulates
tamoxifen resistance in BC (119). Liu et al. demonstrated
that the knockdown of this lncRNA could revert resistant
phenotype and increase tamoxifen sensitivity through inhibition
of the Wnt/β-Catenin pathway, thus further confirming the
oncogenic role of UCA1 in BC (120). Moreover, UCA1 was
shown to be released in exosomes by tamoxifen resistant
BC cells and increased tamoxifen resistance in ER-positive
recipient cells (121).

The members of miR-125 family (miR-125a, miR-125b-
1 and miR-125b-2) play an important role in tumorigenesis
and are potential biomarkers for cancer diagnosis, treatment
and prognosis in clinical settings (122). MIR125A gene is on
chromosome 19, while two separate loci on chromosomes 11
and 21 harbor MIR125B1 and MIR125B2, respectively (123).
miR-125b expression has been found negatively correlated
with 5-Fluorouracil resistance in HCC (124), while resistance
to pharmacological treatments with gentamicin, cetuximab,
doxorubicin and temozolomide by miR-125b still remains
controversial (88, 125–127). miR-125b regulates the resistance
to paclitaxel in colon cancer cells, in association with miR-125a
(128). Recent data strongly supports a relevant role for miR-
125b in conferring taxol resistance in BC, via suppression of
pro-apoptotic BCL2 antagonist killer 1 (Bak1) (129). In contrast,
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in chondrosarcoma, overexpression of miR-125 enhanced the
sensitivity to doxorubicin by directly targeting ERBB2-mediated
glucose metabolism (130). miR-125a overexpression increased
the response to paclitaxel in cervical cancer, through STAT3
down-modulation (131). Sorafenib treatment in HCC showed
restoration of mir125 levels by sirtuin-7 and p21/p27 signaling
blockage inhibiting cell cycle progression (132). In AML cells,
via mubritinib, miR125a inhibited the ERBB pathway and cell
cycle proliferation and progression, suggesting that miR-125a
increased the sensitivity to the drug (133).

The MIR100 gene is at 11q24. Deregulation of miR-

100 has been reported in drug resistance; however, miR-100
expression can be either over-expressed or under-expressed
in diverse cancers (134). In ovarian cancer, miR-100 targets
mTOR therefore reverting the cell’s chemoresistance toward
cisplatin (135) and chondrosarcoma (136). In pancreatic cancer,
miR-100 mimics inhibit proliferation and increase sensitivity
to cisplatin by targeting FGFR3 (137). Recently, it has been
shown that down-modulation of miR-100 could increase β-
tubulin class V expression, promoting tumor cells proliferation,
with implications for paclitaxel resistance (138). Also, miR-
100 reduced ATM levels in a human glioma cell line (M059J)
and could sensitize tumor cells to ionizing radiation (139). In
vitro, miR-100 also induced the differentiation of BC stem cells
expressing a functional ER (140). Furthermore, in CRC cells miR-
100, together with miR-125b, negatively regulatedWnt/β-catenin
signaling, and restored responsiveness to cetuximab (125). On
the other hand, in mutant p53 pancreatic carcinoma, miR-100
up-regulation was related to gemcitabine resistance (88). In
accordance, the exosomes-mediated intercellular transfer of miR-
100, from drug resistant BC cells, could lead to resistance in
sensitive cells (141).

miR-200c acts as a tumor suppressor, and could inhibit
the initiating steps of metastasis; a negative correlation
with ZEB factors has been reported, suggesting that this
miRNA-mediated regulatory pathway influences EMT (142–
147), potentially modulating drug resistance in advanced tumors.
miR-200c reverses resistance of lung cancer cells, both to
chemotherapeutics, like methotrexate (148), and to targeted
drugs, like crizotinib (149) and gefitinib (146, 150). In breast
and renal cancers, miR-200c could be involved in resistance or
re-sensitization to microtubule-targeting drug (151–153).

miR-141 is another member of the miR-200 family, also
involved in EMT, invasion, migration and drug resistance
(154). miR-141 overexpression contributes to acquired
chemoresistance, for both in vitro and in vivo models. The
initiation factor 4E (EIF4E) mRNA is a target of miR-141, that
is involved in drug-induced apoptosis, conferring resistance to
docetaxel-sensitive BC cells (155). miR-141 regulates cisplatin
sensitivity in non-small lung cancer cells via PDCP4 inhibition
and its inhibition increases cisplatin-induced apoptosis (156).
In oesophageal squamous cell carcinoma, miR-141 was highly
overexpressed in 5-Fluorouracil and oxaliplatin resistant cells
and contributed to acquired chemo-resistance via PTEN (157).
Moreover, in HCC cells, miR-141 was shown to confer resistance
to 5-Fluorouracil through the inhibition of KEAP1, thereby
reactivating the NRF2-dependent antioxidant pathway (158). Li

et al. discovered that miR-141 together with other miRNAs like
miR-16 contribute to prostate cancer chemoresistance via an
exosome network (159).

Two homologous microRNAs, miR-221 and miR-222, are
generally considered having an oncogenic activity (160). The
expression of miR-221 and miR-222 is highly up-regulated in
HER2/neu-positive human BCs resistant to endocrine therapy,
compared with HER2/neu-negative tissue samples (161); also,
in BC patients miR-222 is elevated in chemoresistant tissues
after surgery, compared with the pre-neoadjuvant samples
(162). miR-221/222 reduce the protein level of the cell cycle
inhibitor p27Kip1, conferring tamoxifen (161) and doxorubicin
resistance (162). Also, secreted miR-221/222 could serve as
signaling molecules and mediate communication of tamoxifen
resistance (163). Aberrant expression of miR-222 is tightly related
to poor overall survival (164) and affect oncogenic signaling
pathways associated with resistance to different drugs (165).
miR-222 also mediated BC cells resistance to adriamycin via
PTEN/Akt/FOXO1 (164). Furthermore, the exosome mediated
release of miR-222, miR-100 andmiR-30a contributes to the same
effect on docetaxel and doxorubicin: loss of responsiveness in BC
cells (141). In oesophageal and prostate cancers, miR-221 could
modulate 5-Fluoruracil resistance via the Wnt/β-catenin-EMT
pathway (166) or RB1 (167), respectively.

miR-101 (168, 169) has a relevant role in autophagy.
Targeting the autophagy process is a promising therapeutic
strategy to improve chemotherapy efficiency. In BC cells
miR-101 inhibits basal autophagy, as well as etoposide- and
rapamycin-induced autophagy, thus sensitizing cancer cells
to 4-hydroxytamoxifen (4-OHT)-mediated cell death (170).
In HCC, miR-101 sensitizes cell lines to cisplatin-induced
apoptosis by targeting Mcl-1 (171). Likewise, miR-101 inhibits
autophagy and enhances chemo-sensitivity to doxorubicin of
osteosarcoma cells in vitro (172). In pancreatic cancer, miR-
101 up-regulation reverts gemcitabine resistance by inhibiting
the expression of ribonucleotide reductase M1 (RRM1) (173).
Moreover, recent studies demonstrate that miR-101 interacts
with lncRNA MALAT1 in regulatory networks that modulate
cisplatin and temozolomide resistance, in lung cancer (174) and
glioblastoma (80), respectively.

The miR-15/16 gene cluster in chromosome 13 (13q14) is
deleted or down-regulated in some cancer types (21). This
somatic alteration was reported to occur early in cancer
development and could represent a target for intervention (21).
miR-16 expression is affected by several drugs: in gastric cancer
cell lines etoposide and 5-Fluorouracil could increase the levels
of miR-16, both in vitro and in vivo, and the up-regulation of
miR-16 is modulated by p38 MAPK signaling pathway (175). In
BC, lapatinib and trastuzumab are reported to regulate miR-16
via PI3K/Akt (176). Noteworthy, the altered expression of both
miR-15a/16-1, due to the CXCR4 inhibitor BL-8040 induced the
apoptosis of AML blasts by down-regulating ERK, BCL2, MCL1
and cyclin-D1 (177).

The lncRNA GAS5, originating from the Growth Arrest-
Specific 5 gene, is down-regulated in multiple cancers. GAS5
inhibits proliferation and promotes apoptosis, thus playing a
tumor suppressor role (178). Several studies confirmed GAS5
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as an mTOR effector, and its expression was directly correlated
with chemoresistance. Thus, enhancing GAS5 expression may
improve the effectiveness of rapalogues, as confirmed both in
prostate tumor cells and in mantle cell lymphoma cells (179,
180); also, the down-modulation of GAS5 caused resistance
to trastuzumab in BC (181). In lung adenocarcinoma cells
resistant to EGFR inhibitors, GAS5 enhance gefitinib-induced
cell death, via down-regulation of IGF1R (182). Lastly, in
bladder transitional cell carcinoma GAS5 inhibited malignant
proliferation and chemotherapy resistance to doxorubicin, partly
acting via BCL2 (183).

miR-106a, a member of the miR-17 family, is associated with
poor prognosis, invasion and metastasis (184). In ovarian cancer
(OV), miR-106a inhibited cell survival and cisplatin resistance,
through downregulation of MCL1 (185); conversely expression
of miR-106a was higher in cisplatin-resistant OV. miR-106a may
be involved in the modulation of cisplatin-induced apoptosis by
regulating PDCD4 (186). In non-small cell lung cancer, miR-
106a also confers cisplatin resistance, by targeting adenosine
triphosphatase-binding cassette A1, an ABC transporter
(187). Otherwise, by targeting autophagy, miR-106a enhances
sensitivity of lung cancer cells to SRC inhibitors, including
saracatinib and dasatinib, expliciting once more the context-
dependent function of miRNAs (188). Further, dysregulation
of miR-106a conferred resistance to paclitaxel in OV; its
modulation resensitized resistant cells by targeting BCL10,
caspase-7, and ZEB1 (189). Down-modulation of miR-106a was
reported in gentamicin resistant hepatoma, participating to EMT
via the PDGF-D/miR-106a/Twist1 pathway; notably, in HCC
patients, miR-106a and Twist1 were associated with PDGF-D
expression (190).

miR-375 is involved in a positive feedback loop with ER in BC
(191) and its re-expression is sufficient to sensitize tamoxifen-
resistant cells. Furthermore, miR-375 partly reversed the EMT
process: metadherin (MTDH) was identified as a direct target of
miR-375 and tamoxifen-treated patients with higher MTDH had
a higher risk of relapse (192). Another miR-375 target is HOXB3;
miR-375 inhibited cancer stem cells (CSCs) phenotype and
tamoxifen resistance by regulating CSCs, through degradation of
HOXB3 (193). Epigenetically down-regulated miR-375 in HER2-
positive BC could induce trastuzumab resistance by targeting
IGF1R (194). 9-cis retinoic acid (Alitretinoin) modulated the
expression of miR-375 in BC depending on ER status: thus, miR-
375 was inhibited in ERα-positive cells while highly induced
in ERα-negative cells (195). The deregulation of miR-375 was
also observed in other malignancies: in medullary thyroid
carcinomas (MTC) miR-375 was the strongest up-regulated
miRNA (196). Vandetanib is a tyrosine kinase inhibitor for the
treatment of patients with recurrent or metastatic MTC that are
unresectable, and/or symptomatic (197). Interestingly, miR-375
over-expression associated with SEC23A down-regulation could
improve the efficacy of vandetanib (196). Thus, the expression
levels of miR-375 and SEC23A pointed to vandetanib sensitivity
and could be evaluated as predictive indicators for efficacy
of vandetanib in MTC. Analogously, up-regulation of miR-
375 increased the cisplatin-sensitivity of gastric cancer cells by
regulating ERBB2 and phospho-Akt (198).

A role in chemoresistance modulation has emerged for
putative tumor-suppressor miR-145 (199). miR-145 targeting of
MDR1 helps to restore drug efficacy in resistant cells and in vivo
models of bladder cancer and BC (200, 201). Moreover miR-
145 confirmed its role in reducing chemoresistance also with
paclitaxel (202) and doxorubicin (203), possibly via regulation of
EMT.

miR-218 has a physiological role in neuron development and
its loss of expression is involved in neurodegeneration (204). In
BC, it acts as a risk factor in ductal carcinoma in situ (DCIS)
(205). In association with platinum compounds, miR-218 and
miR-205 inhibit tumorigenesis and overcome chemoresistance
in lung cancer (206). In prostate cancer, miR-218 up-regulation
inhibited tumor growth and increased chemo-sensitivity to
cisplatin, by negatively regulating BCAT1 (207). Furthermore
miR-218 mediated autophagy and was associated with positive
response to paclitaxel in resistant endometrial carcinoma (208).
It also promoted apoptosis and caused cell cycle arrest in
CRC by targeting BIRC5, thus possibly enhancing first-line 5-
FU treatment. Also, miR-218 through targeting the enzyme
thymidylate synthase (TS), enhanced 5-FU cytotoxicity in CRC
cells (209).

The let-7 family members are down-regulated in lung (210),
gastric (211), colon cancer (212) and in Burkitt’s lymphoma
(213). Loss of let-7 was associated with the shortened post-
operative survival of patients with lung cancer (210). The altered
expression of let-7a could increase chemoresistance to epirubicin
(214) and cytarabine (215). Furthermore, let-7a expression has
demonstrated to influence chemoresistance, due to maintained
treatment with gemcitabine, in pancreatic cancer patients (216,
217). Several studies have reported that let-7a acts as a tumor
suppressor in renal cell carcinoma (RCC), by targeting c-Myc
(218). let-7b and let-7e are down-regulated in glioblastoma and
ovarian cancer, respectively and promote resistance to cisplatin
by acting on the same target Cyclin D1 (219, 220). Reduced
levels of both let-7b and let-7c could determine the intrinsic
chemoresistance to 5-FU in RCC, possibly via AKT2 (221).
Clinically, 5-FU-based chemotherapy is considered moderately
effective in RCC due to rare response and severe toxicity (222);
transfection of let-7b or let-7c potentiated the efficacy of 5-
FU in vitro at tolerable concentrations. Moreover, let-7c up-
regulation contributed to sensitize lung cancer cells with acquired
cisplatin resistance, by involving ABCC2 and Bcl-XL (223).
Interestingly, a combination of miR-224 and let-7i, reduced
imatinib resistance in CML, probably through targeting the
ST3GAL IV sialyltransferase (224).

miR-30a was found to act as an oncosuppressor, but could
also promote tumor progression in several types of cancer (225).
The same dual activity was described for drug resistance. In
ovarian and lung carcinoma miR-30a interacted with cellular
receptors (EDNRA and EGFR) and played an important role
in overcoming the acquired resistance (226, 227), also via
exosomes (141). miR-181a is down-regulated in glioma and
lung cancer, while its up-regulation is involved in metastasis
and invasion in breast and oral squamous carcinomas (228).
Prostate cancer patients undergoing maintained treatment with
taxane develop resistance to the therapy. Recently, Armstrong
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et al. discovered that miR-181a overexpression contributes to
docetaxel and cabazitaxel resistance in prostate cancer cells (229).
The role of miR-181a in cisplatin resistance is apparently dual:
in cervical squamous cancer, it could induce chemoresistance,
partly by down-regulating PRKCD (230), while it could reverse
cisplatin resistance in tongue squamous cell carcinoma, acting
through Twist1 (231).

miR-182 is overexpressed in a broad range of tumor types.
Clinical studies associatedmiR-182 with increased aggressiveness
and poor survival (232). miR-182 was also found to have a role

in chemoresistance. Acting as a negative regulator of PDCD4, it
determined a reduction of sensitivity to cisplatin and paclitaxel in
OV (233) and to cisplatin in lung cancer (234). Further, in HCC
miR-182 was directly correlated in vitro and in vivowith cisplatin
resistance, possibly by regulating TP53 (235).

In inflammatory bowel disease (IBD) and in cancer, miR-224

has an important function. By targeting p21, it participated in
cell cycle regulation at the G1/S checkpoint (236). miR-224 could
induce resistance to cisplatin in lung and ovarian cancer cell lines
(47, 237). In contrast, miR-224 promoted cisplatin sensitivity in

FIGURE 2 | Subnetworks/clusters of non-coding RNAs/drugs associations, according to community analysis. This figure depicts disjoint subnetworks corresponding

to the different clusters in the whole network (Supplementary Image 1) and identified using the community analysis tool in Cytoscape. This is a simplification of the

involvement of ncRNAs in drug resistance, as an ncRNA, or a drug, is represented only in a single cluster/subnetwork. For sake of completeness, all interactions are

described in the main text and presented in the Supplementary Table 1.
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osteosarcoma resistant cells by targeting Rac1 (238). miR-224 was
related with CRC progression and the response to 5-fluorouracil
through KRAS-dependent and -independent mechanisms (239).

Finally, miR-29 family members are miRNAs that can play
different roles in cancer (240). For example, they can contribute
in BC to the acquisition of doxorubicin resistance by inhibition
of PTEN/AKT/GSK3β (241). Conversely, miR-29b exerts a tumor
suppressor activity in tamoxifen-resistant BC cells (242).

The lncRNA Regulator Of Reprogramming LINC-ROR

is involved in the regulation of the pluripotent stem cells
reprogramming. Its expression suppresses the induction of p53
after DNA damage and is associated with tumor progression,
EMT and metastasis (243). LINC-ROR is significantly up-
regulated in BC, resulting in chemotherapy tolerance and
enhanced invasiveness (244). In tamoxifen-resistant BC cell lines,
down-regulated LINC-ROR could inhibit EMT and enhance the
sensitivity to tamoxifen by increasing miR-205 (245). A relevant
study on cancer tissues from BC patients demonstrated that
inhibition of LINC-ROR reversed resistance to tamoxifen by
inducing autophagy (246). Moreover, LINC-ROR could mediate
for sorafenib chemosensitivity in HCC, through the realease of
extracellular vesicles (247).

DRUGS/NON-CODING RNAs
SUBNETWORKS

Non-coding RNAs can regulate several protein targets or
molecular pathways that lead or inhibit drug resistance according
to tumor type, stage and class of drug (248). Above we discussed
the ncRNAs with the most prominent roles in the literature
as measured using network statistics. There are though many
ncRNAs which have been described only in association to one
or few more drugs: for these rare ncRNA/drug combinations
we performed a clustering analysis of the whole network
and identified less than a dozen of groups. The ncRNA/drug
combinations are described below as subnetworks and are
visualized in (Figure 2). The Supplementary Table 2 details the
effects of ncRNAs on chemoresistance.

Subnetwork 1: Gefitinib, Afimoxifene,
Rapamycin, Trastuzumab, Lapatinib,
BL-8040
Gefitinib is a selective inhibitor of the Epidermal Growth Factor
(EGFR) protein. It is used to treat solid tumors, as non small
cell lung cancer (NSCLC). It acts by inhibiting the anti-apoptotic
Ras signaling cascade (249). Recent studies confirmed also that
the loss of regulation of ncRNAs is involved in chemoresistant
acquisition (250, 251). The GAS5 lncRNA is implicated in
chemoresistance modulation of several different drugs included
into this subnetwork (179–182). Another interesting lncRNA
present in this group is the Small Nucleolar RNA Host Gene
12 (SNHG12), that plays an oncogenic role in various cancers
(252). Moreover, SNHG12 overexpression is implicated in
multidrug resistance (included gefitinib resistance),by sponging
miR-181a and thus activating the MAPK/Slug pathway (253).
This confirms also the involvement of miR-181a in the regulation

of chemoresistance. miR-16 has been previously described, and
in cancers it may regulate the response to trastuzumab and
lapatinib. This miRNA plays an important role in inhibiting cell
proliferation and potentiting drug effects (176). Furthermore,
in leukemia miR-16 in combination with miR-15 interacts with
new phase II drug (177). miR-124 has a role in neuronal
differentiation (254) andmaymodulate resistance to gefitinib and
afimoxifene: miR-124 down-regulation could reverse afimoxifene
induced autophagy in BC through regulation of Beclin-1 protein
(255), while in lung cancer miR-124 depletion plays a role in
gefitinib resistance by regulating SNAI2 and STAT3 expressions
(256). A prolonged treatment with Gefitinib dramatically
reduced the expression of miR-155 and miR-200c. The depletion
of these miRNAs may contribute to the decrease in the sensitivity
to gefitinib (150). Intriguingly, trastuzumab positively regulates
miR-155 and as a consequence, this micro RNA negatively
regulates ErbB2 and the malignant cell transformation of breast
epithelial cells (257).

Subnetwork 2: Cisplatin, Olaparib,
Palbociclib, Chemoradiation
Cisplatin is a platinum compound classified as alkylating like
agent that interferes with DNA replication and is used to
treat several solid malignancies (258). The efficacy of cisplatin
in cancer therapies is limited by the acquired resistance,
that can lead to therapeutic failure and tumor recurrence
(259). It was demonstrated that cisplatin-resistant cancer cells
present an altered expression pattern of ncRNAs (260–281).
Among them, miR-451 is known to exert a critical role in
the pathogenesis and the development of several types of
cancers, including CRC, glioblastoma and NSCLC. miR-451 is
located on chromosome 17q11.2, in close proximity of ERBB2
(17q12) (282). miR-451 enhances cisplatin sensitivity in lung
cancer cells through regulation of Mcl-1 (283); furthermore,
it is involved in the resistance to imatinib in CML patients
(284). Another ncRNA present in this network is miR-20a, a
member of miR-17 family, which has an oncogenic role and
is involved in leukemia and CRC (285). Moreover, Zhou et
al. established that miR-20a expression in glioma cells was
negatively correlated to Temozolomide sensitivity by targeting
DNA methyltransferase (DNMT1) (286). In gastric cancer, miR-
20a negatively regulates cylindromatosis (CYLD) expression,
thus inducing cisplatin resistance (287). miR-15b had a dual
role in oral tongue squamous cell carcinoma (TSCC) and lung
adenocarcinoma; through the regulation of TRIM14 it was
implicated in the reversion of cisplatin resistance in TSCC (288),
while it decreased sensitivity to cisplatin by targeting PEBP4 in
lung adenocarcinoma (289). Similarly, Chen et al. discovered
the involvement of miR-136 as a tumor suppressor, which
targeted E2F1 gene and reversed cisplatin resistance in glioma
cells (290). On the contrary, in ovarian cancer miR-136 might
induce chemoresistance through the inhibition of apoptosis,
while promoting the repair of cisplatin-induced DNA damage
(291). miR-27 has a well-defined role: in lung adenocarcinoma
cells it contributed to cisplatin resistance by suppressing Raf
Kinase Inhibitory Protein RKIP (292). Strikingly, in esophageal
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cancer miR-27 was associated with the transformation of
normal fibroblasts to cancer-associated fibroblasts (293). The
same ncRNA could have a role in the sensibilization to
different drugs: e.g., miR-506-3p, which is up-regulated in
ovarian cancer, has an important function in sensitizing cancer
cells to both olaparib and cisplatin (294). Another interesting
example is miR-193a-3p that can contribute to the inhibition of
chemoradiation and of cisplatin resistance through PSEN1 and
p73, respectively in esophageal tumor (295) and osteosarcoma
(296). These findings confirmed an oncosuppressor activity
for miR-193a-3p (297). miR-199 also may act as either a
potential tumor suppressor or oncogene depending on cellular
context (298). Consequently, epigenetic silencing of miR-199b-
5p may contribute to raise cisplatin resistance via loss of
control in cell cycle regulation (299) or miR-199a-3p may
enhance cisplatin sensitization by downregulating TFAM (300).
Interesting situations emerged when comparing miRNAs from
the same family: i.e. down regulation of both let-7 members
(let-7b and let-7e) controlled cisplatin resistance through down-
modulation of cyclin D1 (219, 220). lncRNAs are an eterogeneous
class of non coding RNAs and several studies demonstrated that
their dysregulation could affect chemoresistance modulation as
much as miRNAs (301–303). Maternally expressed 3 (MEG3)
lncRNA that acts as a growth suppressor in tumor cells
and selectively regulates p53 target (304), does not have a
defined role in chemotherapy. Nevertheless, its up regulation
seems to enhance cisplatin resistance in lung cancer (305).
Meanwhile, palbociclib can determine the increment of MEG3
expression in a dose dependent manner, yielding to an
increase anticancer outcome (306). Controversely, lncRNAs
might also modify drug responsiveness exerting a miRNAs
sponge activity acting as ceRNAs. Wang et al. demonstrated
that downregulation of ANRIL lncRNA enhanced cisplatin
citotoxicity via let-7a in nasopharyngeal carcinoma (307). These
findings further confirm the role of let-7 family as inhibitors of
chemoresistance.

Subnetwork 3: Paclitaxel, Saracatinib,
Dasatinib
Subnetwork 3 incorporates several non-coding RNAs related
with paclitaxel. This antineoplastic drug is a taxol derivative that
blocks cell cycle progression by targeting beta-tubulin. Paclitaxel
causes inhibition of mitosis and triggers the apoptotic process or
the reversion of cell cycle. Paclitaxel is used to treat a number
of solid cancers that include lung, ovarian, breast and pancreatic
tumors (308). A number of studies produced evidence that loss
of non-coding RNAs regulation can modify chemoresistance to
taxol (202, 309–313). miR-182 is often up-regulated in cancers; it
can enhance cell proliferation, invasion and it plays an important
role in drug resistance. Two different studies found that miR-182
overexpression, by negatively regulating programmed cell death
4 (PDCD4), was involved in chemoresistance exacerbation of
lung and ovarian cancers to cisplatin and paclitaxel, respectively
(233, 234). Qin et al. demonstrated also that miR-182 expression
increases cisplatin resistance of HCC cell by targeting TP53INP1
(tumor protein 53-induced nuclear protein 1) (235). miR-214,

through targeting activating protein 2 (AP-2), contributes to
regulate molecular processes in melanoma (314). Despite its
role, miR-214 function in chemoresistance is still not clear:
it could enhance sensitivity to cisplatin in esophageal cancer
(315), or promote paclitaxel and carboplatin resistance in
ovarian cancer (89). miR-9 may influence cell growth, cell
cycle and it is often downregulated in cancer (316). miR-9
down-regulation is one of the key mechanisms accounting for
paclitaxel resistance in ovarian carcinoma (317); while high
expression of miR-9 in CD133+ glioblastoma cells activates
MDR1 gene and imparts Temozolomide (TMZ) resistance (318).
miR-17-5p isan oncogenic miRNA, member of the miR-17∼92
cluster, which plays an important role in the control of cell
cycle progression (319). Despite its oncogenic role, miR-17-
5p can promote paclitaxel-induced apoptosis by increasing p53
expression in BC cells (320). The same ncRNA may also
influence resistance to different drugs. It is the case of miR-
106a that can enhance paclitaxel resistance through apoptosis
inhibition (189) or promote sensitivity of lung cancer cells to
Saracatinib and Dasatinib (188). In addition, the secretion of
miRNA in exosomes is involved in paclitaxel resistance of
prostate cancer (159).

Subnetwork 4: Sorafenib, Mubritinib
To treat HCC in advanced status the multikinase inhibitor
Sorafenib is the only validated therapy, but tumor response rates
to this drug are quite low (321). Several miRNAs, including miR-
137 (322), miR-367-3p (323), andmiR-125a (131, 133) or lncRNA
such as LINC-ROR (247) are involved in the regulation of HCC-
Sorafenib treatment efficacy. Tang et al. demonstrated that the
simultaneous silencing of miR-21, miR-153, miR-216a, miR-217,
miR-494, and miR-10a-5p overcome sorafenib resistance in vitro
and in vivo models of HCC (324). Azumi et al. found also
that up-regulation of miR-181a increased sorafenib resistance,
by blocking a MAPK signaling factor (RASSF1) in HCC cells
(325). miR-122 is highly expressed in the liver, where it has been
implicated as a regulator of fatty-acid metabolism. This ncRNA
was significantly reduced in sorafenib-resistant HCC cells. Xu et
al. demonstrated that miR-122 restoration increases sensitivity
to sorafenib and induces apoptosis by repressing IGF1R (326).
miR-122 is also involved in the control of arginine transport
by targeting the solute carrier family 7 (SLC7). Arginine is the
substrate for nitric oxide (NO) synthetase and as a result, loss
of miR-122 in HCC cells causes an increment of intracellular
NO and resistance to sorafenib (327). Moreover, knock-down
of TUC338 lncRNA increased expression of RASAL1 protein in
HCC, inhibited tumor growth and sensitized cells to sorafenib
(328). Sorafenib is also used in the treatment of renal carcinoma
(RCC), where SRLR (sorafenib resistance-associated lncRNA in
RCC) was found up-regulated in sorafenib-resistant RCCs and
contributed to sorafenib tolerance (329).

Subnetwork 5: Docetaxel, Nintedanib
Docetaxel is a drug that promotes cell apoptosis after
its interaction with beta-Tubulin metabolism and Bcl-2
phosphorylation. It is used to treat late-stage and metastatic
BC, head and neck cancer, stomach cancer, prostate cancer
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and NSCLC (330). This subnetwork underlines the role of
miR-129, a miRNA with tumor suppressor activity in several
cancers (331). Lu et al. confirmed the role of this miRNA
also in reducing drug resistance: miR-129 in gastric cancer
cells reverses cisplatin-resistance through inhibition of P-gp
expression (332). Nevertheless, another study demonstrated
that miR-129 overexpression may be implicated in BC and
docetaxel resistance, mainly through CP110 inhibition (333).
Up-regulation of miR-141 and miR-181a (155, 229) also could
contribute to docetaxel resistance, while down-regulation of
miR-29a and miR-451 inhibited this process (334). Similarly
to miR-200c, miR-200b has also a role in drug response: loss
of miR-200b regulated autophagy in lung adenocarcinoma and
was associated with resistance to docetaxel (335). Nintedanib
inhibited VEGFR and consequently angiogenesis (336, 337).
Nintedanib is also capable of reverting the resistance to gefitinib
promoted by miR-200b and miR-141 (338). Dongqin et al. found
that miR-451 down-regulation induced c-Myc expression, an
event related to docetaxel-resistance (339). The role of miR-139
in cancer is still not clear (340), but by targeting NOTCH1, it
could mediate cell sensitivity to docetaxel and 5-FU, respectively
in breast (341) and CRC (342). Chen et. al. reported that miR-
30a was related with docetaxel resistance in BC by horizontal
exosomes transfer (141). Aberrant expression of CCAT1 lncRNA
had a sponging effect on miR let-7c and, as a consequence,
promoted chemoresistance to docetaxel in lung adenocarcinoma
(343). This last evidence is intriguing, since it is also reported that
let-7c up-regulation inhibited chemoresistance to 5-Fluorouracil
in renal carcinoma (221) and sensitized resistant lung carcinoma
cell (A549) to cisplatin (223).

Subnetwork 6: Gemcitabine,
Temozolomide, Cetuximab, Carboplatin,
Cytarabine, Epirubicin, Soladosine,
Vemurafenib
Gemcitabine is a synthetic nucleoside analog used to treat various
carcinomas and several investigations confirm that ncRNAs can
modulate gemcitabine action (344, 345). Cao et al. demonstrated
that miR-192 regulated gemcitabine and cisplatin resistance in
lung adenocarcinoma through modulation of apoptosis (346).
miR-192 together with miR-215, was found to be a positive
regulator of TP53 (347). In glioblastoma miR-138 is involved
in cell death mechanisms that promote chemoresistance to
temozolomide (348), an alkylating drug similar to gemcitabine,
that enhances cell apoptosis of tumor cells. Moreover miR-138
aberrant expression can provide a basis for novel gemcitabine
chemoresistance markers in bladder and pancreatic ductal
carcinoma (88, 349). Furthermore, miR-138 was implicated in
the pathogenesis of chronic myeloid leukemia and its clinical
response to imatinib (350). Cetuximab is a monoclonal antibody
with a mechanism of action different from gemcitabine, however,
miR-100 over-expression may promote chemoresistance against
both treatments (88, 125). Depending on the cellular context
both up-regulation and down-regulation of an ncRNA could lead
to chemoresistance. In our review, the role of miR-205, which
regulates EMT (351), emerged as one of such cases. It is apparent

that miR-205 upregulation causes inhibition of chemoresistance
to gemcitabine in pancreatic cancer (352), but Zarogoulidis et
al. demonstrated that miR-205 and miR-218 were associated
with carboplatin resistance in lung cancer (206). miR-181b over-
expression increased gemcitabine resistance (353), whereas miR-
181b was involved in temozolomide sensitivity in glioma by
targeting MEK1 (354). Lee et al. found that hypoxia-induced
miR-210 (355) could potentially reverse temozolomide resistance
in glioblastoma (356). Another investigation discovered that
miR-210, in association with miR-21, miR-99a, miR-100, miR-
125b, and miR-138 may serve as biomarkers of gemcitabine
resistance in pancreatic cancer (88). In this subnetwork we find
also some important miRNAs that were previous described:
miR-21-5p (91) miR-125b-5p (89, 125, 127), and let-7a (214–
217). The HOTTIP lncRNA (HOXA transcript at the distal tip)
can promote cancer progression and gemcitabine resistance in
pancreatic cancer (357). Finally the overexpression of BC200
lncRNA has a role in the induction of cell death by carboplatin
in ovarian cancer (358). Furthemore, miR-204 is highly induced
by vemurafenib in resistant melanoma cells and tissues, as much
as miR-211 (359). Although belonging to the same family, the
expression of miR-204 is high in amelanotic melanoma cells,
and acts as an effector of vemurafenib’s anti-motility activity.
Conversely, miR-211 which is induced in melanotic melanoma
cells, mediates and potentiates the increase in pigmentation due
to vemurafenib; this adaptive response de facto limits its efficacy
(360). miR-204 inhibits the migration/invasion of melanoma
cells with a potency similar to that of miR-211 and, more
importantly, it acts in the cellular contexts in which miR-211
is absent (359). Fattore et al. demonstrated that miR-579-3p is
strongly downregulated in melanoma and loss of BRAF and
MDM2 regulation leads to chemoresistance to targeted therapy
(361).

Subetwork 7: Oxaliplatin, Capecitabine
Oxaliplatin is used for the treatment of CRC and has been
compared with other platinum compounds used for advanced
cancers, such as cisplatin and carboplatin. Oxaliplatin in
combination with capecitabine (XELOX) is a first-line treatment
of CRC, hile for CRC in advanced stages is common to
use oxaliplatin in combination with 5-FU (FOLFOX) (362).
Several studies demonstrated that miRNAs modulate the
chemoresistance to these drugs. In particular, Hu et al. found
that circulating miR-1914-3p and miR-1915-3p are down-
regulated in patients with chemoresistant CRC. Consequently,
up-regulation of these miRNAs in vivo, could partially restore
CRC cells sensitivity to XELOX treatment (363). Furthermore,
miR-425-5p ihnibition reversed oxaliplatin resistance both in
HTC116-resistant cells lines and xenograft models bymodulating
the expression of PDCD10 (364). Tan et al. observed a
negative correlation between miR-409-3p and resistance to
Oxaliplatin in CRC resistant cells (365). Moreover, as a putative
miRNAs modulator, also long intergenic noncoding RNA
(LINC00152), can be involved in chemosensitivity of Oxaliplatin
in CRC. LINC00152 increases the chemosensitivity becoming an
endogenous RNA competitor formiR-193a-3p and ErbB receptor
tyrosine kinase 4 (ERBB4) (366).
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Subnetwork 8: 5-Fluorouracil, Irinotecan
5-Fluorouracil (5-FU) is a widely used therapeutic agent
for treating a range of cancers, including advanced CRC
(367), liver and BCs. It interferes with DNA replication by
interrupting the synthesis of pyrimidine thymidine and thereby
leading to cell cycle arrest or cell death (368, 369). In
the 5-FU metabolic pathway, the enzymes dihydropyrimidine
dehydrogenase, thymidylate synthase, thymidine phosphorylase
and methylenetetrahydrofolate reductase are important to
determine resistance (370). miRNAs are altered in CRC (26)
and targeting tumor-associated genes (23, 371–373). Moreover,
miRNAs are promising tumor biomarkers for CRC screening
(27) and are also responsible for 5-fluorouracil drug resistance
(374). In particular miR-587 (369), miR-195 (375), miR-149
(376), miR-203 (377), miR-129 (378), and miR-218 (209) are
involved in 5-FU response. While miR-20b (379) and miR-
519c (380) influence 5-FU and Irinotecan (only miR-519c)
resistance in CRC. Another interesting miRNA is miR-302a,
belonging to the miR-302-367 cluster, which includes miR-302b,
miR-302c, miR-302a, miR-302d, and miR-367. This cluster was
first identified in human embryonic stem cells (hESCs) and
human embryonic carcinoma cells (hECCs) and it has been
reported to help maintaining stemness and reprogramming
somatic cells into induced pluripotent stem cells (381). Recently,
in vitro models have pinpointed its role in chemoresistance:
miR-302a exerts its function through inhibition of IGF1R and
of downstream Akt signaling: events associated with enhanced
5-FU-induced cell death in colon cancer cells (370). The up-
regulation of miR-96 has been reported in several cancers
(382, 383) and conversely low expression levels of miR-96
have been associated with poor clinical outcomes in CRC
patients (384). miR-96 modulated 5-FU sensitivity in CRC
cells by promoting apoptosis through reduction of the anti-
apoptotic regulator XIAP and the p53 stability regulator UBE2N
(ubiquitin-conjugating enzyme E2N) (385). miR-23a antisense
enhanced 5-fluorouracil chemosensitivity in CRC cells, by acting
on the APAF1/Caspase-9 apoptotic pathway (386), while miR-
23a over-expression provided 5-FU resistance in a subtype of
CRC (387). Like let-7c, also present in this subnetwork, let-7b
resulted important for development of 5-FU chemoresistance in
RCC (221). miR-34a also plays a role in resistance to 5-FU and to
vemurafenib (102, 103, 388). The expression profile of lncRNAs
was investigated in 5-FU-resistant colon cancer cell lines and
snaRwas confirmed to be downregulated (389); this loss increases
cell viability after 5-FU treatment, suggesting that this lncRNA
has a potential role as a negative regulator in drug response
(390). miR-204 is significantly attenuated in CRC (391) and has
a relevant function in this cancer as tumor-suppressive miRNA,
through direct targeting of HMGA2. The miR-204/HMGA2 axis
notably modulated cell proliferation and positively influenced
CRC sensitivity to 5-FU (392).

Subnetwork 9: Doxorubicin, Methotrexate,
Etoposide, Crizotinib, Celecoxib
Most of non-coding RNAs disregulations related to doxorubicin,
methotrexate and etoposide play a role in chemoresistance
exacerbation or inhibition. They are involved in several

pathways that regulate cell growth, autophagy, apoptosis and
cell proliferation (393–401) or miR-34a (105), lnc-SCD and lnc-
PTMS (402) modulates the effects of celecoxib. Both doxorubicin
and etoposide block DNA replication by topoisomerase II
inhibition: thus causing errors in DNA synthesis and promoting
apoptosis in cancer cells. They are often used to treat cancers
including breast, bladder, ovarian, prostate and leukemia (403).
The human miR-135a is encoded by two genes localized on
chromosomes 3 and 12. It may have contradictory effects
promoting or repressing cell migration and invasion in colon,
melanoma, breast and prostate cancer cell lines (404). This
subnetwork shows a relation between miR-135 and miR-196b;
upregulation of these two miRNAs is reflected in ABCB1
increment. This pattern conferred resistance to genotoxic agents
like etoposide and doxorubicin in leukemia cancer cells (405),
an interesting result that confirms the pro-oncogenic role of
miR-196b. Its over-expression has been reported in different
types of leukemia (406), in the maintenance of stem cell
properties and chemoresistance in CRC (407), and in castrate-
resistant prostate cancer (408). Novel insights in improving the
effectiveness of chemotherapy emerged with miR-708, miR-101-
3p, andmiR-29b. Their regulation could enhance chemosensivity
of drug targeted genes involved in responses like autophagy or
apoptosis (172, 409, 410). miR-29b is generally the most highly
expressed ncRNA in the miR-29 family. Up-regulation of miR-
29b is common in the majority of human cancers where it
affects tumor progression (411). miR-29b increases etoposide
and paclitaxel induced toxicity in ovarian cancer, this effect
being linked to Mcl-1 (410, 412). Very interesting was the
case of the miR-200 family members that include miR-200c.
The expression of this miRNA was inversely correlated with
the chemoresistance to antioneoplastic drugs like Doxorubicin,
Crizotinib and Methotrexate. miR-200c improved drug sensivity
targeting TrkB and Bmi1 in BCs (151), ZEB1, and EZH2 in
lung cancer cells (148, 149). Furthermore, Ham et al. found
that overexpression of LUCAT1 lncRNA promotes methotrexate
resistance through miR-200c (413). A very interesting loop, if
considered that miR-200c up regulation contributes to restore
methotrexate sensivity. The identification of ncRNA effects
on cancer drugs could promote the development of novel
approaches. For example, Xu et al. found that co-delivery of miR-
101 and doxorubicin suppressed malignant properties of HCC
(414). The role of miR-215, as well as that of his homologous
miR-192 (subnetwork 6), in cancer is ambiguous. These two
miRNAs exert cell growth and migration-promoting effects in
gastric cancer (415) and are positive regulators of p53, playing
an important role in multiple myeloma (347). Furthermore, a
recent study has confirmed that miR-215 overexpression leads
to the development of doxorubicin resistance in HCC and is
also associated with bad prognosis in HCC patients harboring
mutated p53 (416). In another case, Doxorubicin was shown to
affect the subcellular localization of lncRNAs and to enhance
their functional effects. For example, Shen et al. discovered
that SNGH1 was retained in the nucleus as a consequence to
doxorubicin treatment, in turn leading to accumulation of p53 in
the nucleus and to the enhancement of p53-dependent apoptosis
(417).
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Subnetwork 10: Tamoxifen, Vandetanib,
Alitretinoin
Tamoxifen, a selective modulator of estrogen receptor, is an
effective first-line endocrine therapy that significantly improved
relapse overall and relapse-free survival for many ER+ and
endocrine-responsive patients. However, a significant proportion
of the advanced ER+ BC patients do not respond (418).
Recurrence occurs in approximately 40% of patients (419). As
pinpointed in this subnetwork, seven miRNAs could sensitize
cells to tamoxifen and might serve as potential therapeutic
approaches for overcoming tamoxifen-resistance in BC: miR-
27b, miR-375, miR-148a, miR-152, miR-206, miR-26a, miR-26b.
Conversely, only three miRNAs confered tamoxifen resistance:
miR-221, miR-222, miR-335. Lastly, aberrant expression of
lncRNAs has also been linked to cancer progression and
metastasis (56, 420). In the complex network of ER signaling,
lncRNAs are emerging as critical determinants of hormone
action. As opposed to miRNAs, high expression of lncRNAs,
namely LINC-ROR (248, 249), MALAT1, CCAT2, was often
associated with tamoxifen treatment failure in BC: their knock-
down improved tamoxifen responsiveness in BC cells while
uc.57 lncRNA promoted drug sensitivity. miR-27b had a
different expression pattern between tamoxifen-sensitive vs.
-resistant BC cell lines (421). In particular, miR-27b was
found to be down-regulated in breast tumor tissues from
tamoxifen-resistant patients (422) and high levels of miR-
27b correlated with poor prognosis in BC (423, 424). CSC
generation and EMT are essential events in tumor cell invasion
and metastasis, both present in resistance to tamoxifen (425,
426). Of note, miRNAs have been associated with EMT and
resistance to standard therapies. A direct target of miR-27b
in modulating drug resistance and EMT is HMGB3 (427),
an oncogene that can modulate drug resistance, proliferation
and metastasis (428). Notably, while tamoxifen repressed miR-
27b expression, estrogen induced miR-27b in BC cells (422).
We already illustrated above miR-375, that can modulate the
sensitivity/resistance of drug treatments in different cancers,
including BC (193) and MTC (196). At the same time an
anticancer treatment like alitretinoin may exert a regulatory
action on miR-375 expression in BC cells (195). miR-148a and
miR-152 reduced tamoxifen resistance in ER+BC via direct
down-regulating the activated leukocyte cell adhesion molecule
(ALCAM) (429). miR-206 was elevated in ER+BC cell lines (161)
and its knock-down induced resistance to tamoxifen, while its
overexpression reduced it by regulating G1/S-related proteins
(430). miR-26a/b levels were lower in tamoxifen-resistant
ER+BC and the inactivation of miR-26a/b decreased tamoxifen
responsiveness of cancer cells (431). Additionally, miR-26 was
found to be frequently downregulated in HCC and correlated
with poor survival. miR-26b significantly suppressed the NF-
κB signaling and dramatically enhanced chemo-sensitivity of
HCC to doxorubicin by targeting TAK1 and TAB3, two positive
regulators of NF-κB pathway (432). Subnetwork 10 also includes
miR-221 and miR-222. These two miRNAs have a bivalent
role in drug resistance across different cancer types. In this
subnetwork miR-221/221 were found to enhance tamoxifen
resistance (161, 163, 433). miR-335, promoted estrogen signaling,

resulting in increased potency of tamoxifen. Additionally, tumor
cells with acquired tamoxifen resistance did not show miR-
335 nor ESR1 expression (434). The Metastasis associated in
lung adenocarcinoma transcript 1 lncRNA (MALAT1), is over-
expressed in several human malignancies, including ER+BC
(435). High MALAT1 levels were also associated with tamoxifen
treatment failure by regulating the transcription and splicing of
ESR1, thus affecting ER signaling (436). Accordingly, MALAT1
may serve as an oncogenic lncRNA in pancreatic cancer,
by promoting EMT, decreasing chemosensitivity to anticancer
drugs and accelerating tumor angiogenesis (437). The CCAT2
lncRNA is overexpressed in BC, with the highest expression in
lymph node negative patients. However, its expression levels are
informative solely for a subgroup of patients, namely for lymph
node positive patients that received adjuvant 5-fluorouracil,
cyclophosphamide and methotrexate chemotherapy: high levels
of CCAT2 suggested that patients would not benefit from
CMF (438). Tamoxifen-resistant cells present a higher level
of CCAT2 compared with sensitive cell, and knockdown of
CCAT2 improved their response to tamoxifen (420). The levels
of transcribed ultraconserved region uc.57 are lower in BC tissues
than in precancerous breast tissues. uc.57 overexpression down-
modulated BCL11A and reduced tamoxifen resistance in BC
cells MCF7R by inhibiting the PI3K/AKT and MAPK signaling
pathways (439).

Subnetwork 11: Imatinib
Imatinib (IM) is a 2-phenyl-amino-pyrimidine, an ATP-
competitive tyrosine kinase inhibitor (TKI) and one of the
most potent inhibitors of ABL1. Imatinib was approved for
clinical treatment of CML but the problem of drug resistance
encouraged the development of new TKI generations (440).
Various ncRNAs have been associated with imatinib in CML,
either as enhancers or inhibitors. HOX Antisense Intergenic
RNA (HOTAIR) is located in the antisense strand of the HOXC
gene locus, flanked by HOXC11 and HOXC12 (441). HOTAIR
expression levels correlated with metastasis in BC and its loss
was linked to decrease in invasion potential (442). HOTAIR
lncRNA was up-regulated in CML patients with high levels of
MDR1. Moreover, the knockdown of HOTAIR led to down-
regulation of MDR1 resulting in higher sensitivity to imatinib;
an involvement of HOTAIR in the PI3K/Akt pathway was also
proposed (443). HULC is located at 6p24.3 and its transcript is a
∼500 nt long, spliced and poly-adenylated lncRNA that localizes
to the cytoplasm (444). The impact of HULC in hematologic
malignancies is not clear yet, but it could act as a sponge for
miRNA-372 in acute lymphoblastic leukemia (445). Moreover,
HULC is involved in K562 cells survival and its silencing leads
to increased apoptosis in CML cells by up-regulating PI3K/AKT
signaling and c-Myc (446). Colorectal cancer, gastric cancer
and melanoma show aberrant expression of SNHG5 (447, 448).
SNHG5 lncRNA promotes imatinb resistance in CML and,
although the mechanism may be complex, it seems to act as
a competing endogenous RNA for miR-205-5p (449). UCA1
lncRNA located at 19p13.12, has an important role in drug
resistance (114, 116). let-7i cooperates with miR-224 to revert
imatinib resistance in CML (224). miR-1301 is involved in human
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cancers but shows an ambiguous behavior (450, 451). It can
target the Ran GTPase Activating Protein 1 (RanGAP1) mRNA,
as demonstrated by inverse correlation in CML patients: the
RanGAP1 protein down-regulation or an increased miR-1301
are beneficial for the sensitivity to imatinib (452). miR-7 acts as
an inhibitor in hepatocellular and pancreatic carcinomas (453,
454) possibly regulating the PI3K/AKT pathway, which is also
downstream of BCR-ABL (455). In fact, over-expression of miR-
7 in K562 cells, exhibit a significant inhibition of proliferation
and increase of apoptosis via inhibition of BCR-ABL/PI3K/AKT
signaling. Another report showed that miR-7 could work in
synergy with imatinib to sensitize K562 (456). As the last ncRNA
in this subnetwork, miR-518a is down-regulated in imatinib-
resistant gastrointestinal stromal tumor (GIST) and PIK3C2A
was identified as the relevant specific target (457).

Non-connected RNA and Drug Nodes
Few ncRNA and drug combinations are not connected to the
main network (and also obviously not to the subnetworks). One
of these drugs is dactilosib, an imidazoquinoline derivative under
phase II trial that works as dual inhibitor of PI3K and mTOR.
It might improve conventional drug treatments and overcome
some intrinsic adverse reactions of rapamycin and its derivates
(458). Deng et al. studied dactilosib in AML and discovered
that it caused up-regulation of miR-1-3p and consequent down-
regulation of its targets involved in apoptosis, migration and
multidrugs resistance. Moreover inhibition of miR-1-3p could
interfere with dactilosib anti-proliferation effects (459).

In several human cancers miR-144 and miR-451 were
identified as tumor suppressor ncRNAs (460). In terms of
chemoresistance, miR-144 reversed 5-FU and imatinib resistance
respectively in HCC (461) and leukemia (462). In addition,
miR-144 might promote cisplatin sensitivity in prostate cancer
(463) and in thyroid carcinoma (464). Whereas miR-144-
3p contributed to sunitinib resistance in RCC by targeting
ARID1A, a cancer gene involved in chromatin remodeling
(465). Reduction of ARID1A expression could also serve as a
predictive biomarker for trastuzumab resistance in BC (466).
Although breast and ovarian cancer have comparable levels
of HER2/ErbB2 expression patterns, pertuzumab treatment is
more effective in BC. Wuerkenbieke et al. investigated this effect
and found miR-150 knockdown in ovarian cancer; this might
contribute to enhance pertuzumab resistance (467). ncRNAs can

also be related to side-effects occurring upon cancer treatment:
vascular events are a serious problem in CML patients treated
with tyrosine kinase inhibitors like nilotinib. Recent findings
suggest that nilotinib decreases levels of miR-3121-3p resulting
in higher levels of IL-1β and adhesion molecules in vascular
endothelial cells. (468). miR-132-5p expression, via CYP1A2
modulation, could reduce flutamide-induced hepatic cell toxicity
(469). Finally, in a matrix in vitro screen of several miRNAs
and drugs in BC, miR-126 augmented the potency of CDK4/6
or PIK3CA inhibitors in MCF7 (Luminal) and MDA-MB-453
(HER2+) cell lines (470).
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