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This post is a summary of recently published results concerning the investigation of wine-making by-

products by synergistic use of high-performance thin-layer chromatography (HPTLC) and high-performance 

liquid chromatography with diode array detection (HPLC-DAD) [1]. 

This work fits into a more general context related to the revalorization of agri-food by-products, which is 

extremely current for both environmental and economic reasons [2,3]. 

With particular regard to wine-making by-products, it is known that they are sources of biologically relevant 

compounds, mostly polyphenols, such as flavonoids and phenolic acids [4,5]. Thanks to the biological 

activities of these constituents (e.g. antioxidant, antiinflammatory, antimicrobial, antibacterial) [6-9], grape 

wastes could be re-used for applications in various fields, such as the nutraceutical and pharmaceutical 

ones. Accordingly, it is desirable to develop methods for isolation, characterization and quantification of 

molecules contained in winery by-products, especially in view of their re-utilization on a large scale. 

Phenolic compounds present in natural matrices have been investigated by HPTLC [10-14], sometimes in 

conjuction with HPLC [15,16]. To the best of our knowledge, each method has been generally used to 

confirm the results of the other, and no further information was inferred by comparing the data obtained 

from each technique. 

Based on these literature findings and our experience on the analysis of complex samples through HPTLC 

[17-20], we have developed the work in question, proving that HPTLC and HPLC-DAD are really 

complementary in both determining and quantifying flavonoid and non-flavonoid compounds within wine-

making by-products. 

Going into more detail, we investigated two types of winery by-products, that is pomace (stalks, seeds, 

skins) and desiccated seeds deriving from both Italian red (Lambrusco) and white (Trebbiano) cultivars of 

Vitis vinifera L. After being dried (ventilated oven, 70 °C, 24 h), these materials were subjected to solid-

liquid extraction procedures (Naviglio® extractor [21], ultrasounds) using pure ethanol-water mixtures with 

increasing water content up to 100% [9]. 

Next, HPTLC fingerprint evaluation [22] served to establish the best extraction solvent (50/50 pure ethanol-

water) and identify the major classes of organic compounds (anthocyanins, phenolic acids, non-anthocyanic 

flavonoids) present in the extracts on the basis of analyte spots intensity and color, after derivatization with 

NP/PEG reagent (Figure 1A). 

Concurrent investigation based on HPTLC/mass spectrometry (MS) interface and band comparison method 

gave indications on the type of molecules. In particular, only anthocyanins could be detected by HPTLC/MS: 

cyanidin-3-O-glucoside (kuromanin), delphinidin-3-O-glucoside (myrtillin) and malvidin-3-O-glucoside 

(oenin) were the main species (Figure 1B), with the latter being found in greater quantity. It is worthwhile 

noting that chromatogram zones corresponding to phenolic acids and non-anthocyanic flavonoids gave no 

noticeable signals in the mass spectra, probably due to their low concentration in the extracts, given that 

more than 250 ng/zone are required to have a significant visualization with MS interfaced to HPTLC [23]. 

On the other hand, phenolic acid (i.e. caftaric acid) and non-anthocyanic flavonoid (i.e. quercetin 3-O-

glucuronide, quercetin-3-O-glucoside) compounds were assigned by comparison of their bands (color and 

retardation factor) with those of available standards (Figure 1C). 



 

Figure 1. A: typical image of HPTLC separations for optimization of extraction solvent and identification of 

compound classes. B: chemical structures of the main anthocyanins identified by HPTLC-MS. C: HPTLC 

identification of non-anthocyanic flavonoids and phenolic acids by band comparison method (1: quercetin 

3-O-rutinoside, 2: quercetin 3-O-glucoside, 3: quercetin 3-O-rhamnoside, 4: quercetin 3-O-glucuronide, 5: 

quercetin 3-O-galactoside, 6: extract from red grape pomace, 7: extract from white grape pomace, 8: 

extract from red grape seeds, 9: caftaric acid, 10: kaempferol, 11: quercetin). 

Subsequent HPLC-DAD screening of red grape pomace extracts led to identify just anthocyanins at 520 nm 

(Figure 2A) and surprisingly, the same molecules have been identified in the extracts deriving from seeds 

incorporated in red grape pomace samples. This was in contrast with literature reports indicating that 

anthocyanins are not found in grape seeds [24], but it may be assumed that the contact between seeds and 

skins during grape processing may lead to this consequence. 

Importantly, the absence in the chromatograms of peaks related to phenolic acids and non-anthocyanic 

flavonoids (wavelenght range 250-370 nm) has proven not to depend on sample concentration, indeed 

both types of compounds could not be detected while increasing the concentration of the injected sample 

solutions up to the limits of filterability (70 mg/mL). 

In light of the above, what obtained by HPLC-DAD seemed to contradict the information given by HPTLC 

fingerprint, however some possible explanations could be offered. Possibly, the concentration of either 

phenolic acids or non-anthocyanic flavonoids, even when present, is so low that they may be lost during 

sample pre-treatment (filtration) before HPLC-DAD analysis. On this point, it has to be noted that the 

supposed low concentration of these species matches the results observed in HPTLC-MS studies. Moreover, 

it cannot be excluded that the limit of detection (LOD) of DAD was responsible for the incomplete (false) 

analytical response. 

Suitably optimized HPLC-DAD chromatographic conditions (modified Flamini and Favretto [25] method) 

allowed to identify delphinidin-3-O-glucoside (myrtillin), cyanidin-3-O-glucoside (kuromanin) and malvidin-

3-O-glucoside (oenin) in the extracts, confirming what we found by way of HPTLC-MS. Then, quantification 

via calibration curve method (Figure 2B) showed that oenin was the most abundant species, followed by 



myrtillin and kuromanin in this order (Figure 2C). At the same time, it was possible to quantify the content 

of unidentified anthocyanins building on the calibration curve of oenin (Figure 2D). 

 

Figure 2. A: HPLC-DAD chromatogram of a typical red grape pomace extract at 520 nm. B: calibration 

curves of kuromanin, myrtillin and oenin. C: quantification of kuromanin, myrtillin and oenin; D: 

quantification of unidentified anthocyanins. 

In addition, HPLC-DAD chromatograms provided an indication of the presence of proanthocyanidins 

(baseline drift at 280 nm), but their identification was not possible. 

Instead, HPTLC helped with that, in fact inspection of representative extracts deriving from red (white) 

grape pomace and seed materials showed that catechin was the only compound present, as demonstrated 

by densitogram profiles (Figure 3A). Additional HPTLC analysis corroborated this observation, with higher 

molecular weight derivatives (i.e. epigallocatechin, epigallocatechin gallate) being not found at all. Finally, 

catechin content was shown to be about the same in both red and white grape pomace extracts (Figure 

3B). 

 



 

Figure 3. A: (a) densitograms of four representative extracts (tracks 1-4), epicatechin standard solution 

(track 5) and catechin standard solution (track 6); (b) detail of standard catechin densitogram; (c) detail of 

standard epicatechin densitogram; (d) illustrative densitogram of sample extracts showing the complete 

lack of epicatechin. B: calibration curve of catechin for red and white grape pomace extracts (top), and 

quantification of catechin in red and white grape pomace extracts (bottom). 

To conclude, this work confirmed the potential of both HPTLC and HPLC-DAD for the analysis of complex 

mixtures, also showing that the advantages of one technique could be exploited to compensate for the 

limits of the other. Thus, typical features of HPTLC (minimal sample manipulation, i.e. dilution, low LOD, 

multiple derivatization) have helped achieve a greater extracts characterization (anthocyanins, non-

anthocyanic flavonoids, phenolic acids) that supplemented the limited information given by HPLC-DAD 

(anthocyanins) for same sample types. Although HPLC-DAD gives the advantage of monitoring matrices 

content in typical wavelength ranges with just one injection, either sample pre-treatment (filtration) or LOD 

of detector might provide incomplete (false) results, in apparent contradiction with HPTLC response. This 

being the case, each technique is not just for confirming the data provided by the other, as usually done, 

but one adds to the other. 
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