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Abstract

We have previously shown that expression levels of 48 long non-coding RNAs (lncRNAs) can 

generate a prognostic lncRNA score that independently associates with outcome of older patients 

with cytogenetically normal acute myeloid leukemia (CN-AML). However, the techniques used to 

identify and measure prognostic lncRNAs (i.e., RNA sequencing and microarrays) are not tailored 

for clinical testing. Herein we report on an assay (based on the nCounter platform) that is designed 

to produce targeted measurements of prognostic lncRNAs in a clinically applicable manner. We 

analyzed a new cohort of 76 older CN-AML patients and found that the nCounter assay yielded 

reproducible measurements and that the lncRNA score retained its prognostic value; patients with 

high lncRNA scores had lower complete remission (CR) rates (P=0.009; 58% vs. 87%), shorter 

disease-free (P=0.05; 3-year rates: 0% vs. 21%), overall (OS, P=0.02; 3-year rates: 10% vs. 29%) 

and event-free survival (EFS; P=0.002, 3-year rates: 0% vs. 18%) than patients with low lncRNA 

scores. In multivariable analyses, the lncRNA score independently associated with CR rates 

(P=0.02), OS (P=0.02) and EFS (P=0.02). To gain biological insights, we examined our initial 
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cohort of 71 older CN-AML patients, previously analyzed with RNA sequencing. Genes involved 

in immune response and B-cell receptor signaling were enriched in patients with high lncRNA 

scores. We conclude that clinically applicable lncRNA profiling is feasible and potentially useful 

for risk stratification of older CN-AML patients. Furthermore, we identify potentially targetable 

molecular pathways that are active in the high-risk patients with high lncRNA scores.
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Introduction

Acute myeloid leukemia (AML) is a heterogeneous disease with regard to the underlying 

molecular abnormalities and its clinical course (1, 2). The outcome of patients with AML is 

generally poor (2), especially in the case of patients who are 60 years of age or older. Only 

10% of older AML patients who are fit to receive induction chemotherapy will remain alive 

and leukemia-free five years after their diagnosis (2). Thus, it is important to identify 

molecular markers that could distinguish between the patients who will respond to standard 

treatment from those who will not and who could benefit from experimental therapeutic 

approaches. Currently, chromosomal alterations, which are detected in approximately 55–

60% of all AML cases, are used in the clinic to guide treatment decisions (2–5). In patients 

who lack microscopically detectable chromosomal abnormalities and thus have 

cytogenetically normal AML (CN-AML), recurrent gene mutations that associate with 

clinical outcome have been identified and are currently used to risk-stratify the treatment of 

CN-AML patients (6–8).

Long non-coding RNAs (lncRNAs) comprise a novel class of non-coding RNA molecules, 

which are equal to or longer than 200 nucleotides (9). LncRNAs have been shown to 

regulate many key cellular functions (10–12) and have been implicated in cancer 

pathogenesis (13–15). Our group has previously shown that expression levels of lncRNAs 

have prognostic significance in older patients with CN-AML (16). Specifically, we have 

demonstrated that a weighted summary expression score of 48 lncRNAs (called lncRNA 

score) provides independent prognostic information in this patient population.

Although two independent techniques of transcriptome interrogation (i.e., a microarray 

platform and total RNA sequencing) were used to generate and validate the prognostic 

lncRNA score in the aforementioned study (16), these techniques are not suitable for patient 

testing in the clinic. Consequently, there is a need for development of a fast, reproducible 

and clinically applicable assay that would enable the translation of lncRNA profiling from 

the bench to the bedside. To address this need, we designed an assay allowing targeted 

measurements of prognostic lncRNAs using the nCounter analysis system (NanoString 

Technologies, Inc.). The nCounter platform has been developed to provide RNA 

measurements in a single reaction without amplification and is compatible with real-life 

clinical testing. This technology is currently used as the basis of an FDA-approved assay that 

measures the expression of RNA molecules for risk stratification of breast cancer patients 
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(17, 18). Herein, we analyzed a cohort of 76 older patients with CN-AML, and report on the 

prognostic value of the lncRNA score, as measured by the nCounter lncRNA assay. In 

addition, to identify potentially targetable molecular pathways in the subset of patients with 

high lncRNA scores, we performed transcriptome analyses in our initial cohort of older CN-

AML patients who had been previously analyzed with total RNA sequencing (RNA seq) 

(16).

Materials and Methods

Patients and treatment

In this study, we analyzed pretreatment bone marrow (BM) or blood of older patients (aged 

≥60 years) with de novo CN-AML, who received intensive cytarabine/anthracycline-based 

therapy on Cancer and Leukemia Group B (CALGB)/Alliance for Clinical Trials in 

Oncology (Alliance) frontline clinical trials. We studied only patients who were alive 30 

days after initiation of induction chemotherapy. Per protocol, no patient received allogeneic 

stem cell transplantation in first complete remission (CR). Details regarding treatment 

protocols are provided in the Supplementary Data. There were no patients who were selected 

for the study but not included in the final analyses because of poor RNA quality or failure of 

the profiling experiments. All patients provided written informed consent for the analyses of 

their samples and data. All study protocols were in accordance with the Declaration of 

Helsinki and approved by institutional review boards at each center.

Cytogenetic and molecular analyses

Cytogenetic analyses were performed in CALGB/Alliance-approved institutional 

laboratories and the results were confirmed by central karyotype review (19). The diagnosis 

of normal karyotype was based on at least 20 metaphase cells analyzed in BM specimens 

subjected to short-term (24- or 48-hour) unstimulated cultures.

Targeted amplicon sequencing using the Miseq platform (Illumina) was used to analyze 

DNA samples for the presence of gene mutations that have been reported to associate with 

clinical outcome of CN-AML patients [i.e., mutations in the ASXL1, DNMT3A (R882 and 

non-R882), IDH1, IDH2 (R140 and R172), NPM1, RUNX1, TET2 and WT1 genes, and 

FLT3-tyrosine kinase domain (FLT3-TKD) mutations], as described previously (16, 20). A 

variant allele frequency of ≥10% was used as the cut-off to distinguish between mutated 

versus wild-type alleles of these genes. The presence of mutations in the CEBPA gene and 

FLT3-internal tandem duplications (FLT3-ITD) were evaluated using Sanger sequencing 

(21) and fragment analysis (22), respectively as described previously. As recent publications 

(2, 23, 24) indicate that only biallelic CEBPA mutations confer prognostic significance, we 

considered patients with this genotype as mutated.

Transcriptome analyses

The nCounter analysis system from NanoString allows direct profiling of individual RNA 

molecules in a single reaction without amplification. The custom assay we designed includes 

46 of the 48 lncRNAs that are used to generate the prognostic lncRNA score, as well as 

selected mRNAs and microRNAs (miRs) whose expression were previously reported as 
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associated with clinical outcome of CN-AML patients. These include BAALC (25), ERG 
(26), MN1 (27), miR-155 (28), miR-3151 (29) and miR-181a (30), and the seven genes that 

comprise the integrated genetic-epigenetic score (31) [CD34, MIR155HG, RHOC, SCRN1, 

F2RL1, FAM92A1 and VWA8]. Internal controls for normalization (e.g., GAPDH, ABL) 

were also included per NanoString guidelines. These probes were designed and synthesized 

by NanoString Technologies and the experiments were performed at The Ohio State 

University using the nCounter Diagnostic analysis system. Total RNA extracted with Trizol 

reagent was used as input material for the assay. For the details concerning calculation of the 

prognostic lncRNA score with the nCounter assay measurements see the Supplementary 

Data. The nCounter profiling experiments have been submitted to the GEO repository under 

the accession number GSE130923.

The expression status (i.e., high or low expresser) of each of the aforementioned prognostic 

mRNA and miR transcripts (e.g., BAALC, miR-155) was determined for each patient using 

the median expression value measured by the nCounter assay as the cut-off.

Statistical analyses

Clinical endpoint definitions are given in the Supplementary Data. Baseline demographic, 

clinical, and molecular features were compared between patients with high and those with 

low lncRNA scores using the Wilcoxon rank sum and Fisher’s exact tests for continuous and 

categorical variables, respectively (32). The estimated probabilities of disease-free (DFS), 

overall (OS) and event-free survival (EFS) were calculated using the Kaplan–Meier method, 

and the log-rank test evaluated differences between survival distributions (33). Cox 

proportional hazards models were used to calculate hazard ratios for DFS, OS and EFS (34). 

Multivariable Cox proportional hazards models were constructed using a forward selection 

procedure. All statistical analyses were performed by the Alliance Statistics and Data 

Center. The researchers who conducted the laboratory profiling experiments were blinded to 

patient outcome results.

Results

Design of nCounter assay and reproducibility of the measurements

nCounter probes capable of interrogating the lncRNA expression levels could be generated 

for 46 of the 48 prognostic lncRNAs described previously (16) (Supplementary Table S1). 

The sequences of the designed probes are provided in the Supplementary Data section 

(Supplementary Table S2). The assay also included mRNA and miRNA transcripts that have 

been previously reported to be prognostic in AML and reference genes for quality control of 

the analyzed material (Supplementary Table S3). Samples of 76 older patients with de novo 
CN-AML were measured with the nCounter platform in five independent experiments. To 

evaluate the reproducibility of lncRNA measurements across time and measured batches, we 

measured 16 of the 76 samples repeatedly. Eleven samples were measured twice in separate 

batches, three samples were measured 3 times in the same batch, and 2 samples measured 

four times in the same batch, yielding a total of 39 replicate runs. Analyses of samples that 

were measured repeatedly showed satisfactory reproducibility within and across measured 

batches in all but one case. The median of the Pearson’s r squared values for the correlation 
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of the nCounter measurements for each pair of replicate runs was 0.94 (range: 0.44–0.98, 

Supplementary Figures S1 and S2). The samples of three patients that were measured twice 

in the same or separate batches (Fig. 1A–C) and of one patient, which were measured three 

times in the same batch (Fig. 1D–F) are depicted in Figure 1 as examples.

To study whether the separation of the measurements in different batches impacted on the 

nCounter results, we generated multidimensional scaling plots. These plots display the 

pairwise Euclidean distance between the samples in two dimensions, and the physical 

distance between samples represents sample similarity (i.e., the shorter the distance between 

two annotated measurements, the higher the similarity between them). We observed that 

when all analyzed samples were depicted simultaneously, there was no segregation of the 

nCounter measurements by batches (Fig. 1G).

Association of lncRNA score with pretreatment characteristics of patients

To examine whether the lncRNA score retained its prognostic value when determined by 

nCounter assay measurements, we performed outcome analysis in our new cohort of 76 

older patients with CN-AML. Specifically, we used the median value of the lncRNA score, 

as measured with the nCounter assay, to divide our dataset into patients with high and 

patients with low lncRNA scores. With regard to pretreatment characteristics, patients with 

high lncRNA scores were older (P=0.04), and harbored mutated NPM1 (P=0.003) less 

frequently and mutated RUNX1 (P=0.03) and FLT3-ITD (P=0.005) more frequently than 

patients with low lncRNA scores. Patients with high lncRNA scores were also more 

frequently classified in the Intermediate or Adverse Risk Groups of the ELN Classification 

(2) (P<0.001), and were high expressers of ERG (P<0.001), BAALC (P=0.003) and 

miR-155 (P=0.04), and low expressers of MN1 (P=0.04) more often than patients with low 

lncRNA scores (Table 1).

Association of lncRNA score with clinical outcome

Survival analyses in the new cohort of older CN-AML patients showed that patients with 

high lncRNA scores were less likely to achieve a CR than those with low lncRNA scores 

(58% vs. 87%, P=0.009). High lncRNA score status associated with shorter DFS (P=0.05; 

Fig. 2A). None of the patients with high lncRNA scores were alive and leukemia free three 

years after diagnosis in contrast to 21% of the patients with low lncRNA scores who were. 

Patients with high lncRNA scores also had shorter OS (P=0.02, 3-year rates: 10% vs. 29%; 

Fig. 2B). In addition, high lncRNA scores associated with shorter EFS (P=0.02; Fig. 2C, 

Table 2). Three years after diagnosis 18% of the patients with low lncRNA scores were alive 

and had not experienced an event in comparison to none of the patients with high lncRNA 

scores.

Multivariable analyses

To assess whether the prognostic lncRNA score provides independent prognostic 

information in the context of other established prognostic markers, we constructed 

multivariable proportional hazards models. High lncRNA scores independently associated 

with a lower CR rate (P=0.02), after adjusting for BAALC expression status (P=0.02). High 

lncRNA score status also independently associated with shorter OS (P=0.02), after adjusting 
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for white blood cell (WBC) counts (P=0.005) and the sex of patients (P=0.02). Finally, high 

lncRNA score was an independent marker of shorter EFS (P=0.02); patients with high 

lncRNA scores had approximately a two-fold increase in their risk of experiencing an event 

than those with low lncRNA score, after adjusting for WBC counts (P=0.002) and BAALC 
expression status (P=0.02, Table 3). The lncRNA score status did not remain significantly 

associated with DFS duration in multivariable analysis.

Biological insights regarding the molecular pathways that associate with the lncRNA score

Using the nCounter assay, we could demonstrate that lncRNA score profiling could 

distinguish between the patients who were more likely to respond to standard chemotherapy 

from those who were not. However, older patients often have comorbidities that preclude 

intensification of chemotherapy and allogeneic stem cell transplantation as therapeutic 

options. It is therefore important to identify targetable molecular pathways, in particular in 

those patients that are predicted not to benefit from standard therapy. To this end, we 

performed correlation analysis in our initial cohort of 71 older CN-AML patients, who were 

analyzed with total RNA sequencing (16). This sequencing technique provides 

comprehensive information of both coding and non-coding fractions of the transcriptome. 

We applied stringent criteria [P value of <0.001 and false discovery rate (FDR) of <0.05] 

and identified 115 transcripts that were upregulated and three transcripts which were 

downregulated in patients with high lncRNA scores (Fig. 3A and Supplementary Table S4)

Among transcripts overexpressed in patients with high lncRNA scores, we identified genes 

that are key regulators of the immune system, such as CD74 and CIITA that are implicated 

in peptide processing and presentation in antigen presenting cells; BTK and SYK implicated 

in B-cell receptor signaling; and IL1RAP, IL6R and TLR6, which are important cytokine 

receptors. We also found aberrant overexpression of CD34 in patients with high lncRNA 

scores, a surface marker of leukemic stem cells whose expression has been related to 

chemotherapy resistance and poor outcome in AML (35). In addition, genes implicated in 

leukemogenesis such as DAPK1 (36) and IDH1 (37) were also upregulated in patients with 

high lncRNA scores. Finally, in keeping with the adverse prognostic impact of high lncRNA 

score, we found mRNAs, which are established markers of poor outcome in CN-AML, such 

as BAALC (25) to be enriched in the subset of patients with high lncRNA scores.

To further characterize and classify the genes and molecular pathways that are active in 

patients with high lncRNA scores we performed Gene Ontology analysis (38). Gene 

Ontology analysis revealed enrichment for genes involved in leukocyte migration, 

inflammatory response, mitochondrial function, apoptosis and immune response in patients 

with high lncRNA scores (Fig. 3B).

Discussion

LncRNAs are gaining increasing recognition as key regulators of important cellular 

functions including imprinting, cell cycle regulation and apoptosis (39–43). Over the past 

years, it has become evident that lncRNAs are functionally associated with malignant 

diseases (43–45) and that they affect clinical outcome of cancer patients. In CN-AML, we 

reported a prognostic score, which is based on the expression levels of 48 lncRNAs and 
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provides independent prognostic information in older CN-AML patients (16). Importantly, 

we found that the prognostic lncRNA score showed no association with recurrent prognostic 

gene mutations that are currently used for risk stratification of CN-AML patients, such as 

biallelic CEBPA mutations, NPM1 mutations or FLT3-ITD. For this reason, we 

hypothesized that the lncRNA score could further refine risk stratification of older CN-AML 

patients. However, the techniques that were used to identify and measure the prognostic 

lncRNA molecules are not clinically applicable. To acquire fast and reproducible 

transcriptome measurements, which would facilitate translation of lncRNA profiling to the 

clinic, we designed a prognostic lncRNA-measuring assay using the nCounter technology. 

The nCounter platform has been specifically developed to serve as the basis of clinically 

applicable tests, and is currently used in FDA-approved transcriptome profiling assays (17, 

18).

To test the efficacy and reproducibility of our nCounter lncRNA assay, we analyzed a new 

cohort of 76 older CN-AML patients, who were treated on frontline CALGB/Alliance 

studies. We performed a total of five experiments using standard RNA extraction techniques 

and methods. We sought to evaluate the performance of the assay in real-life conditions and, 

therefore, did not discard any samples on the basis of RNA yield or quality. We performed 

multiple measurements of individual samples, so as to evaluate the robustness and 

reproducibility of our assay. We found a satisfactory correlation of the repeated 

measurements when these were conducted within the same run of the assay or in 

independent experiments in all but one case.

To examine whether the nCounter-based lncRNA score retained its prognostic value, we 

performed outcome analyses in our new cohort of older CN-AML patients. We found that 

the lncRNA score was significantly associated with outcome and that patients with high 

lncRNA scores were less likely to achieve a CR and had shorter DFS, OS and EFS than 

patients with low lncRNA scores. We also detected associations of the lncRNA score status 

with prognostic mutations, such as those in the RUNX1 gene and FLT3-ITD. Despite these 

associations, in multivariable analyses, the nCounter assay lncRNA score was shown to be 

an independent prognosticator for achievement of CR, as well as OS and EFS duration after 

adjusting for other co-variates.

Our current study was conducted in a cohort of older CN-AML patients of relatively small 

size and was designed to evaluate the feasibility and utility of lncRNA profiling by the use 

of a nCounter assay in the clinical setting. LncRNA score-based risk assessment in the 

current study was dependent on profiling of a group of patients to establish the median 

lncRNA score value for this group that was then used to distinguish low- from high-risk 

patients. Nevertheless, because the nCounter platform allows individualized transcriptomic 

measurements it could be potentially used for risk-assignment of individual patients in the 

future. To achieve this goal, a larger number of older CN-AML patients should be analyzed 

to establish the optimal lncRNA score value that should be used as a widely accepted cut-off 

between patients with a low and those with a high lncRNA score in the clinic.

While it is important to identify those older CN-AML patients that will respond to 

conventional therapeutic modalities, those who will not represent a therapeutic challenge. 
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Confounding comorbidities often preclude the use of such options as intensification of 

chemotherapy or allogeneic stem cell transplantation that have been proven to be efficacious 

in younger adult AML patients. To gain biological insights and identify potentially 

targetable pathways active in patients with high lncRNA scores, we examined which mRNA 

transcripts correlate with unfavorable lncRNA profiles and performed gene ontology 

analyses in our initial cohort of 71 older CN-AML patients, previously analyzed with RNA 

seq (16). We found genes involved in the regulation of the immune response and B-cell 

receptor signaling, such as BTK and SYK, to be overexpressed in patients with high lncRNA 

scores. High expression levels of immune response-related genes are reminiscent of the 

mRNA expression signature associated with RUNX1 mutations in CN-AML patients (46). 

The relatively small number of patients with RUNX1 mutations in our initial cohort (n=8) 

renders it unlikely that these mutations are the sole drivers of the detected lncRNA score-

related gene expression signature. It could be hypothesized instead that high expression of 

the prognostically unfavorable lncRNAs has a similar impact on the transcriptome to 

RUNX1 mutations.

In recent years, targeting BTK with inhibitory molecules has proven to be a successful 

therapeutic approach for certain lymphoid malignancies (47, 48) and BTK inhibitors are 

currently included among the standard-of-care therapeutic agents for these diseases. Use of 

BTK inhibitors has also yielded encouraging preclinical results in AML (49). The high 

expression of BTK in patients with high lncRNA score that we detected could provide the 

rationale for exploring the efficacy of BTK-targeting agents in these patients. Thus, lncRNA 

profiling could be potentially used not only to risk-stratify treatment of older CN-AML 

patients but also to guide novel therapeutic approaches in patients who are at high risk of 

treatment failure.

In summary, we demonstrate the technical feasibility of using the nCounter assay for 

prognostic lncRNA profiling in a clinically applicable manner. We have also validated the 

prognostic value of lncRNA expression in older CN-AML patients, in our new cohort of 

patients analyzed using a different profiling method than the ones used previously. We 

believe that the value of the nCounter assay for improving risk stratification of AML patients 

warrants evaluation in future prospective clinical trials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Scatterplots depicting the correlation of nCounter results in repeated measurement of 

samples. A-C, Measurements of three samples that were analyzed twice in separate batches, 

D-F, Measurements of one sample that was analyzed three times in one batch. The Pearson’s 

r squared value is annotated on the top of each plot. G, Multidimensional scaling plots 

showing relationships between the total measurements of the 76 samples analyzed with the 

nCounter assay. Physical distance between samples indicates similarity: the shorter the 

distance, the higher the similarity of the measurements. Each dot represents the combined 

measurements of an individual sample. Measurements are colored by batch: black indicates 

batch 1; red, batch 2; green, batch 3; deep blue, batch 4 and light blue, batch 5.
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Figure 2. 
Outcomes of older patients (aged ≥60 years) with cytogenetically normal acute myeloid 

leukemia with low and high long non-coding RNA (lncRNA) scores. A, Disease-free 

survival, B, overall survival and C, event-free survival. The lncRNA score of each individual 

patient was computed as a weighted score, based on the nCounter assay measurements of 46 

prognostic lncRNAs.
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Figure 3. 
Messenger RNA (mRNA) transcripts which associate with the prognostic long non-coding 

RNA (lncRNA) score in older patients (aged ≥60 years) with cytogenetically normal acute 

myeloid leukemia (CN-AML). A, Heat map of the gene-expression signature associated 

with the lncRNA score. Rows represent protein-coding genes and columns represent 

patients. Patients are grouped by lncRNA score: low on the left and high on the right. The 

lncRNA score of each individual patient was computed as a weighted score of 46 prognostic 

lncRNAs. Expression values of the mRNA transcripts are represented by color: green, 

expression less than median value; red, expression greater than median value. B, Gene 

Ontology functional groups that positively correlate with high lncRNA scores in older 

patients with CN-AML. Gene Ontology functional groups are ranked according to fold 

enrichment.
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Table 1.

Comparison of clinical and molecular characteristics by low and high long non-coding RNA (lncRNA) score 

in the cohort of 76 older patients (aged ≥60 years) with cytogenetically normal acute myeloid leukemia, who 

were analyzed with the nCounter assay.

Characteristic Low lncRNA Score (n=38) High lncRNA Score (n=38) P

Age, years 0.04

 Median 66 71

 Range 60–81 60–82

Sex, n (%) of females 21 (55) 19 (50) 0.82

Race, n (%) 1.00

 White 35 (95) 34 (92)

 Non-white 2 (5) 3 (8)

Hemoglobin, g/dL 0.15

 Median 9 9.4

 Range 6.5–11.9 6.8–11.3

Platelet count, x109/L 0.67

 Median 70 70

 Range 18–507 5–592

WBC count, x109/L 0.54

 Median 29.7 28.5

 Range 1.4–343.6 1.0–173.1

Blood blasts, % 0.18

 Median 36 58

 Range 0–90 0–95

Bone marrow blasts, % 0.56

 Median 68 64

 Range 6–99 0–95

Extramedullary involvement, n (%) 7 (19) 4 (13) 0.53

NPM1, n (%) 0.003

 Mutated 28 (80) 15 (44)

 Wild type 7 (20) 19 (56)

FLT3-ITD, n (%) 0.005

 Mutated 8 (26) 20 (63)

  FLT3-ITD allelic raio ≥0.50 4 7

  FLT3-ITD allelic ratio <0.50 4 13

 Wild type 23 (74) 12 (38)

CEBPA, n (%) 1.00
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Characteristic Low lncRNA Score (n=38) High lncRNA Score (n=38) P

 Biallelic mutations 1 (4) 0 (0)

 Wild type or monoallelic mutations 27 (96) 25 (100)

FLT3-TKD, n (%) 1.00

 Present 2 (6) 2 (6)

 Absent 32 (94) 31 (94)

WT1, n (%) 0.71

 Mutated 3 (9) 4 (12)

 Wild type 31 (91) 29 (88)

TET2, n (%) 0.59

 Mutated 11 (32) 8 (24)

 Wild type 23 (68) 25 (76)

IDH1, n (%) 0.75

 Mutated 5 (15) 6 (18)

 Wild type 29 (85) 27 (82)

IDH2, n (%) 0.51

 Mutated 4 (12) 6 (18)

 Wild type 30 (88) 27 (82)

ASXL1, n (%) 0.43

 Mutated 2 (6) 4 (12)

 Wild type 32 (94) 29 (88)

DNMT3A, n (%) 0.12

 Mutated 15 (44) 8 (24)

 Wild type 19 (56) 25 (76)

RUNX1, n (%) 0.03

 Mutated 1 (3) 7 (21)

 Wild type 33 (97) 26 (79)

ELN Risk Category,
a
 n (%)

<0.001

 Favorable 22 (79) 6 (23)

 Intermediate 5 (18) 9 (35)

 Adverse 1 (4) 11 (42)

ERG expression group,
b
 n (%)

<0.001

 High 11 (29) 27 (71)

 Low 27 (71) 11 (29)

BAALC expression group,
b
 n (%)

0.003

 High 12 (32) 26 (68)

 Low 26 (68) 12 (32)
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Characteristic Low lncRNA Score (n=38) High lncRNA Score (n=38) P

MN1 expression group,
b
 n (%)

0.04

 High 24 (63) 14 (37)

 Low 14 (37) 24 (63)

miR-181a expression group,
b
 n (%)

0.82

 High 20 (53) 18 (47)

 Low 18 (47) 20 (53)

miR-3151,
b
 n (%)

0.82

 High 20 (53) 18 (47)

 Low 18 (47) 20 (53)

miR-155 expression group,
b
 n (%)

0.04

 High 14 (37) 24 (63)

 Low 24 (63) 14 (37)

Abbreviations: n, number; WBC, white blood cell; ELN, European LeukemiaNet; FLT3-ITD, internal tandem duplication of the FLT3 gene; FLT3-
TKD, tyrosine kinase domain mutation in the FLT3 gene.

a
Among patients with cytogenetically normal acute myeloid leukemia (CN-AML), the ELN Favorable Risk Category comprises patients with 

biallelic mutations in CEBPA and patients with mutated NPM1 without FLT3-ITD or with FLT3-ITDlow. The ELN Intermediate Risk Category 

includes patients with wild-type CEBPA and either wild-type NPM1 without FLT3-ITD, wild-type NPM1 and FLT3-ITDlow or mutated NPM1 

and FLT3-ITDhigh. The ELN Adverse Risk Category comprises patients with wild-type CEBPA and wild-type NPM1 with FLT3-ITDhigh, 
patients with mutated TP53, and patients with mutated RUNX1 and/or mutated ASXL1 (if these mutations do not co-occur with Favorable-risk 

AML subtype). FLT3-ITDlow is defined by a FLT3-ITD/FLT3 wild-type allelic ratio of less than 0.5 and FLT3-ITDhigh is defined as by a FLT3-
ITD/FLT3 wild-type allelic ratio of equal to or more than 0.5.

b
The median expression value was used as the cut point.
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Table 2.

Outcome of older patients (aged ≥ 60 years) with cytogenetically normal acute myeloid leukemia by low and 

high long non-coding RNA (lncRNA) score status

End point Low lncRNA score (n=38) High lncRNA score (n=38) P

Complete remission 0.009

 n, (%) 33 (87) 22 (58)

Disease-free survival 0.05

 Median, years 0.5 0.5

 Disease-free at 3 years, % (95% CI) 21 (9–36) 0

 Disease-free at 5 years,% (95% CI) 21 (9–36) 0

Overall survival 0.02

 Median, years 1.2 0.9

 Alive at 3 years, % (95% CI) 29 (16–44) 10 (3–22)

 Alive at 5 years, % (95% CI) 26 (13–40) 5 (0–18)

Event-free survival 0.002

 Median, years 0.6 0.3

 Event-free at 3 years, % (95% CI) 18 (8–32) 0

 Event-free at 5 years,% (95% CI) 18 (8–32) 0

Abbreviations: n, number; CI, confidence interval.
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