ON JUMPING LINES OF VECTOR BUNDLES ON \mathbb{P}^n .

PH. ELLIA

To the memory of Alexandru "Sacha" Lascu.

INTRODUCTION.

In the study of vector bundles on \mathbb{P}^n (projective space over an algebraically closed field, k, with ch(k) = 0) a useful technique is to consider the restrictions, E_L , of E to lines $L \subset \mathbb{P}^n$. Thanks to a well known theorem E_L splits as a sum of line bundles: $E_L \simeq \bigoplus \mathcal{O}_L(a_i^{(L)})$. One says that $(a_1^{(L)}, ..., a_r^{(L)}), a_1^{(L)} \ge \cdots \ge a_r^{(L)}$, is the splitting type of E over L. By semi-continuity of cohomology there exists a dense open subset $\mathcal{U} \subset G(1, n)$ and a set of integers (a_i) such that the splitting type of E_L is $(a_1, ..., a_r)$ for every $L \in \mathcal{U}$. One says that $(a_1, ..., a_r)$ is the generic splitting type of E. If $L \notin \mathcal{U}$, the splitting type of E_L is different from the generic one and L is said to be a jumping line of E (although it is E which jumps and not L!).

The set, $\mathcal{J}(E)$, of jumping lines doesn't characterize E in general but it is very useful in understanding the structure of E.

The first case is when $\mathcal{J}(E) = \emptyset$, in this case E is said to be *uniform*. Observe that an homogeneous vector bundle is uniform. Uniform vector bundles have been studied for a while, in particular they are classified up to rank n + 1 ([13], [11], [7] [8], [9], [1]). The classification shows that every uniform vector bundle of rank $\leq n+1$ on \mathbb{P}^n is homogeneous. By the way there exist uniform, non homogeneous vector bundles of rank 2n on \mathbb{P}^n ([5]).

In this paper we consider the next step that is to say when $\mathcal{J}(E)$ is nonempty but finite.

Definition 1. A vector bundle, E, on \mathbb{P}^n is said to be almost-uniform if it is not uniform but has only a finite number of jumping lines.

Date: April 9, 2017.

²⁰¹⁰ Mathematics Subject Classification. 14N05.

Key words and phrases. Vector bundles, uniform, jumping lines.

We set $\mathcal{A}(n) := \min\{r \mid \text{there exists an almost-uniform vector bundle of rank r on } \mathbb{P}^n\}.$

It is not clear a priori that such vector bundles even exist! Actually they do exist and our task will be to give bounds on the function $\mathcal{A}(n)$.

Our results may be summarized as follows:

Theorem 2.

With notations as above:

(1) $\mathcal{A}(2) = 2.$

(3) For every $n \ge 3$, $n+1 \le \mathcal{A}(n) \le 2n-1$.

In section 1 we treat the case of \mathbb{P}^2 , which is easy. In Section 2 we show $\mathcal{A}(n) \geq n$ and $\mathcal{A}(n) \geq n+1$ if $n \geq 4$. For this we observe that if H is a "good" hyperplane for E (i.e. H doesn't contain any jumping line of E), then E_H is uniform and we use the classification of uniform bundles. In Section 3 we show $\mathcal{A}(3) \geq 4$. This case deserves a special attention because it may happen that $E_H \simeq S^2 T_H$ for some "good" hyperplane. Finally in Section 4 we show $\mathcal{A}(n) \leq 2n-1$ by constructing examples. The bound $\mathcal{A}(n) \leq 2n-1$ could be not too far from being sharp (see Remark 17).

In conclusion "small" ($\leq n$) rank vector bundles on $\mathbb{P}^n, n \geq 3$, which are not a direct sum of line bundles or a twist of the tangent or cotangent bundle, have infinitely many jumping lines.

1. Almost uniform vector bundles on \mathbb{P}^2 .

Let's first treat the case of \mathbb{P}^2 which is fairly easy.

Lemma 3. There exist rank two vector bundles on \mathbb{P}^2 with a single jumping line (hence $\mathcal{A}(2) = 2$).

More precisely if E is a normalized, almost uniform rank two vector bundle on \mathbb{P}^2 , then $c_1(E) = -1$ and E is stable.

Proof. Let X be a set of d points on a line D. Consider the associated vector bundle:

$$0 \to \mathcal{O} \to E \to \mathcal{I}_X(1) \to 0$$

 $\mathbf{2}$

Then $c_1(E) = 1, c_2(E) = d$ and if $d > 1, h^0(E) = 2$ and E is stable. If $L \neq D$, then $E_L \simeq \mathcal{O}_L \oplus \mathcal{O}_L(1)$, while $E_D \simeq \mathcal{O}_D(d) \oplus \mathcal{O}_D(-d+1)$. So D is the unique jumping line (if d > 1; if $d = 1, E \simeq T_{\mathbb{P}}(-1)$).

Assume E normalized $(c_1 = 0, -1)$. If E is not stable $(h^0(E) \neq 0)$, looking at the minimal twist having a section we have:

$$0 \to \mathcal{O} \to E(-t) \to \mathcal{I}_Z(-2t+c_1) \to 0$$

where Z has codimension two and degree $c_2(E(-t))$. Observe that $-2t+c_1 \leq 0$. If $L \cap Z = \emptyset$, then $E_L(-t) = \mathcal{O}_L \oplus \mathcal{O}_L(-2t+c_1)$. Let $p \in Z$ and let L be a line through p with $r = \#(Z \cap L)$, then $E_L(-t) = \mathcal{O}_L(r) \oplus \mathcal{O}_L(-2t+c_1-r)$. Hence the pencil of lines through $p \in Z$ is made of jumping lines.

If E is stable with $c_1 = 0$, it is a result of Barth that there is a curve of jumping lines in the dual plane.

Remark 4. As proved in [10] a stable rank two vector bundle with c_1 odd has, in general, a finite number of jumping lines. More precisely Hulek defines jumping lines of the second order as lines L such $h^0(E|L^{(1)}) \neq 0$, where $c_1(E) = -1$. He shows that the locus of jumping lines of the second order is a curve, C(E), and that $\mathcal{J}(E)$, the set of jumping lines, is the singular locus of C(E). Hence if C(E) is reduced, E has a finite number of jumping lines.

2. A lower bound for $\mathcal{A}(n)$.

Goal of this section is to show that $\mathcal{A}(n) \ge n$, if $n \ge 2$. Although not stated in this way, the following is proved in [6]

Proposition 5. (Glueing lemma)

Let \mathcal{F} be a reflexive sheaf on \mathbb{P}^n . Suppose for a general hyperplane H and a general codimension two linear space K, that $h^0(\mathcal{F}_H) = h^0(\mathcal{F}_K) = s$. Furthermore assume that for any hyperplane, H, containing K, the restriction map $H^0(\mathcal{F}_H) \to H^0(\mathcal{F}_K)$ is an isomorphism. Then $h^0(\mathcal{F}) = s$.

Proof. The proof of Prop. 1.2 of [6] applies. The assumption $h^0(E_K(-1)) = 0$ in [6] is needed to show that the restriction map $H^0(E_H) \to H^0(E_K)$ is an isomorphism for every H containing K (first part of the proof).

Lemma 6. Let $n \geq 3$ be an integer. Let $R_1, ..., R_t \subset \mathbb{P}^n$ be lines. Let E be a rank r vector bundle such that:

(1)
$$E_H \simeq T_H(-1) \oplus (r-n+1)\mathcal{O}_H$$

for every hyperplanes H containing no one of the lines R_i . Then $r \ge n$ and $E \simeq T(-1) \oplus (r-n).\mathcal{O}$.

Proof. Assume first n = 3. If L is a line different from the R_i 's, then $E_L = \mathcal{O}_L(1) \oplus (r-1)\mathcal{O}_L$, hence $h^0(E_L) = r+1$. Let L be a line not meeting any of the R_i 's. Then for every plane H containing L, $E_H = T_H(-1) \oplus (r-2).\mathcal{O}_H$. It follows that the restriction map $H^0(E_H) \to H^0(E_L)$ is an isomorphism. By Proposition 5, we conclude that $h^0(E) = r+1$. Let $x \in \mathbb{P}^3$ be a point and let H be a plane through x not containing any of the R_i 's. We have:

$$\begin{array}{cccc} H^0(E) & \stackrel{ev}{\to} & E(x) \\ \downarrow r_H & & || \\ H^0(E_H) & \stackrel{ev_H}{\to} & E(x) \end{array}$$

It follows that the evaluation map has constant rank r, i.e. E is globally generated. So, considering Chern classes:

$$0 \to \mathcal{O}(-1) \to (r+1).\mathcal{O} \to E \to 0$$

It follows that E has rank $r \ge n$ because there is no injective vector bundle morphism $\mathcal{O}(-1) \to k.\mathcal{O}$ if $k \le n$. Moreover E is uniform of splitting type (1, 0, ..., 0) and the result follows by [9].

For n > 3 the argument is similar but easier. Since $H^1_*(E_H) = 0$, it follows that $H^1_*(E) = 0$ $(h^1(E(k-1)) \ge h^1(E(k)), \forall k$, but $h^1(E(-t)) = 0$ for t >> 0). So $H^0(E) \to H^0(E_H)$ is surjective for every H. Since $h^0(E_H(-1)) = 0$ if Hdoesn't contain any of the R_i 's, for such an hyperplane the restriction map $H^0(E) \to H^0(E_H)$ is an isomorphism. We conclude as above. \Box

Corollary 7. Let *E* be a rank *r*, almost uniform, vector bundle on \mathbb{P}^n , $n \geq 2$, then $r \geq n$ (i.e. $\mathcal{A}(n) \geq n$).

Proof. We may assume $n \geq 3$. We can find an hyperplane H such that E_H has no jumping lines.

If r < n - 1, by the classification of uniform vector bundles (cf [11], [8]), $E_H \simeq \bigoplus^r \mathcal{O}_H(a_i)$. This implies $E \simeq \bigoplus^r \mathcal{O}(a_i)$, which is absurd. Assume r = n - 1. If there exists one hyperplane such that E_H is a direct sum of line bundles, then as before we are done. By the classification of uniform bundles we may assume $E_H \simeq T_H(a), \Omega_H(b)$. The first Chern class will tell us if E_H is a twist of T_H or Ω_H (on $\mathbb{P}^2, \Omega = T(-3)$). So by dualizing and twisting, we may assume $E_H \simeq T_H(-1)$, for every hyperplane not containing any of the finitely many jumping lines of E. Lemma 6 says that no such bundle exists.

According to [1] every rank n + 1 uniform bundle on \mathbb{P}^n , $n \geq 3$, is a direct sum of bundles chosen among $T(a), \Omega(b), \mathcal{O}(c), a, b, c \in \mathbb{Z}$. (This is no longer true on \mathbb{P}^2 since we have to add to the list $S^2T(m)$.) Using this fact we will show that $\mathcal{A}(n) \geq n + 1$, if $n \geq 4$.

Lemma 8. Let E be a rank n + 1 almost uniform bundle on \mathbb{P}^n , $n \ge 4$. Then up to twisting or dualizing, there exists $a \in \mathbb{Z}$ such that: $E_H \simeq T_H(-1) \oplus \mathcal{O}_H(a)$, for every hyperplane not containing any of the finitely many jumping lines of E.

Proof. If H is a good hyperplane (i.e. non containing any jumping line of E), then E_H is uniform, hence a direct sum of bundles chosen among $T(a), \Omega(b), \mathcal{O}(c)$, $a, b, c \in \mathbb{Z}$. If E_H is a direct sum of line bundles for one good hyperplane, then E is a direct sum of line bundles, but this is impossible. Assume $E_H \simeq$ $T_H(b) \oplus \mathcal{O}_H(c)$ for one good hyperplane. Then $h^1(E_H(m)) = 0, \forall m$. By semi-continuity, this holds for H a general hyperplane. It follows that $E_H \simeq$ $T_H(b) \oplus \mathcal{O}_H(c)$ for a general good hyperplane (looking at the splitting type, we see that b, c do not depend on H). Let H_0 be a good hyperplane such that $E_{H_0} \simeq \Omega_{H_0}(d) \oplus \mathcal{O}_{H_0}(e)$. Then $h^{n-2}(E_{H_0}(m)) = 0, \forall m$. By semicontinuity this should hold for a general hyperplane. But on a general hyperplane $E_H \simeq T_H(b) \oplus \mathcal{O}_H(c)$ and $h^{n-2}(E_H(-b-n+1)) \neq 0$. We conclude that $E_H(-b-1) \simeq T_H(-1) \oplus \mathcal{O}_H(a), a = c - b - 1$, for every good hyperplane. \Box

Proposition 9. For $n \ge 4$, $\mathcal{A}(n) \ge n+1$.

Proof. Let E be a rank n almost uniform bundle on \mathbb{P}^n , $n \ge 4$. By Lemma 8 we may assume, $E_H \simeq T_H(-1) \oplus \mathcal{O}_H(a)$, for every good hyperplane (i.e. H doesn't contain any jumping line of E).

• If a = 0, we conclude by Lemma 6 that $E \simeq T(-1)$, which is absurd.

• Assume a > 0. Since $H_*^1(E_H) = 0$ if H is a good hyperplane, we get $H_*^1(E) = 0$. Since $h^0(E_H(-a-1)) = 0$, we get $h^0(E(-a-1)) = 0$. Finally we see that $h^0(E(-a)) = h^0(E_H(-a)) = 1$. Let $s : \mathcal{O} \hookrightarrow E(-a)$, we claim that s doesn't vanish. Indeed if s(x) = 0, then s|H = 0 for every good hyperplane through x, which is absurd. So we have $0 \to \mathcal{O} \to E(-a) \to F(-a) \to 0$, where F is a rank n - 1 vector bundle. If L is not a jumping line of E, then E(-a) has splitting type (1 - a, -a, ..., -a, 0) on L and it follows that the splitting type of F(-a) is (1 - a, -a, ..., -a). So F is (at least) almost uniform. Since there are no almost uniform bundles of rank n - 1 (Corollary 7), we conclude that F is uniform, hence a direct sum of line bundles. It follows that the exact sequence splits and this yields a contradiction.

An alternative proof goes as follows: since $h^1(E(-1)) = 0$, $h^0(E) \to H^0(E_H)$ is surjective for every good hyperplane. This implies that E is globally generated. Hence F, also is globally generated. Since $c_1(F) = 1$, F is uniform and we conclude as above.

• Assume a < 0. This time $E_H^{\vee} \simeq \Omega_H(1) \oplus \mathcal{O}_H(b)$ (-a = b > 0). Since $h^i(E_H^{\vee}(-b-m)) = 0$, for $0 \le i \le 1$ and m > 0, the same holds for $E^{\vee}(-b-m)$). It follows that $h^0(E^{\vee}(-b)) = h^0(E_H^{\vee}(-b)) = 1$. As before the section of $E^{\vee}(-b)$ doesn't vanish, so after dualizing and twisting we get: $0 \to F \to E \to \mathcal{O}(-b) \to 0$, where F is a rank n - 1 vector bundle. If L is not a jumping line of E, the splitting type of F on L is (1, 0, ..., 0). So F is (almost) uniform and, as above, we conclude that F is a direct sum of line bundles, which is a contradiction.

3. Rank three bundles on \mathbb{P}^3 .

Aim of this section is to prove that $\mathcal{A}(3) \geq 4$ (Theorem 15). Observe two differences with Proposition 9: we no longer have $H^1_*(T_H) = 0$, moreover it could be $E_H \simeq (S^2 T_H)(m)$, for some good plane H.

Our major tool will be the classification of rank three uniform vector bundles on \mathbb{P}^2 due to Elencwajg ([7]

6

Theorem 10. Let *E* be a rank three uniform vector bundles on \mathbb{P}^2 , then *E* is isomorphic to one of the following:

$$\bigoplus_{i=1}^{3} \mathcal{O}(a_i), \, T(a) \oplus \mathcal{O}(b), \, (S^2 T)(m)$$

(we recall that on \mathbb{P}^2 : $\Omega = T(-3)$)

Before to start let us recall some basic facts on $(S^2T)(-3)$ $(T := T_{\mathbb{P}^2})$. From $T \otimes T \simeq S^2T \oplus \wedge^2 T$, we get $T \otimes T^* \simeq (S^2T)(-3) \oplus \mathcal{O}$. Since T is simple $End(T) \simeq k$ and $h^0((S^2T)(-3)) = 0$. To compute the Chern classes one uses the following:

Lemma 11. Let *E* be a rank two vector bundles with Chern classes c_1, c_2 . Then $c_2(E \otimes E^*) = -c_1^2 + 4c_2$.

Proof. We use the splitting principle: $E = \mathcal{O}(a) \oplus \mathcal{O}(b)$. Then $E \otimes E^* = \mathcal{O} \oplus \mathcal{O}(a-b) \oplus \mathcal{O}(b-a) \oplus \mathcal{O}$. It follows that $c_2(E \otimes E^*) = -(a-b)^2$. We have $c_1 = a + b, c_2 = ab$, hence $c_1^2 = a^2 + b^2 + 2c_2$. It follows that $(a-b)^2 = a^2 + b^2 - 2ab = c_1^2 - 4c_2$.

Let us set $\mathcal{E} = (S^2 T_H)(-3)$, it is a rank 3 homogeneous vector bundle with splitting type (1, 0, -1). We have $h^0(\mathcal{E}) = 0$ and $h^1(\mathcal{E}(k)) = 0, k \ge 0$.

Lemma 12. The vector bundle $\mathcal{E}(1) = (S^2 T_H)(-2)$ is globally generated with $h^0(\mathcal{E}(1)) = 6$ and $c_1(\mathcal{E}(1)) = 3$, $c_2(\mathcal{E}(1)) = 6$. We also have $h^1(\mathcal{E}(-1)) = 3$.

Proof. Since $h^i(\mathcal{E}) = 0, 0 \leq i \leq 1$, for every line $L \subset H$, the restriction map $H^0(\mathcal{E}(1)) \to H^0(\mathcal{E}_L(1))$ is an isomorphism. Since $\mathcal{E}(1)$ has splitting type (2, 1, 0), we see that $h^0(\mathcal{E}(1)) = 6$ and $\mathcal{E}(1)$ is globally generated.

We have $T \otimes T = S^2 T \oplus \wedge^2 T = S^2 T \oplus \mathcal{O}(3)$. So $T \otimes T(-3) = (S^2 T)(-3) \oplus \mathcal{O} = \mathcal{E} \oplus \mathcal{O}$. It follows that $c_i(\mathcal{E}) = c_i(T \otimes T^*)$. Since $c_i(T) = (3,3)$, by Lemma 11 $c_2(\mathcal{E}) = 3$ ($c_1(\mathcal{E}) = 0$).

For a rank three coherent sheaf $c_2(\mathcal{F}(m)) = c_2 + 2mc_1 + 3m^2$.

From the exact sequence $0 \to \mathcal{E}(-1) \to \mathcal{E} \to \mathcal{E}_L \to 0$, since $h^i(\mathcal{E}) = 0, i = 0, 1$, we get $h^1(\mathcal{E}(-1)) = h^0(\mathcal{E}_L) = 3$.

Going back to our problem, if E is an almost uniform bundle of rank three on \mathbb{P}^3 , then for every good plane H, E_H will be one of the bundles $T_H(a) \oplus \mathcal{O}_H(b)$, $\mathcal{E}_H(m)$ ($\mathcal{E}_H := (S^2T_H)(-3)$). Indeed we can disregard the case where E_H is a direct sum of line bundles. A priori the restriction depends on the plane H, but we have:

Lemma 13. Let *E* be an almost uniform rank three vector bundle on \mathbb{P}^3 . Assume *E* normalized $(-2 \le c_1(E) \le 0)$. Then one of the following occurs: (1) For every good plane H, $E_H \simeq (S^2 T_H)(-3)$

(2) There exists $a \in \mathbb{Z}$ such that for every good plane H, $E_H \simeq T_H(a) \oplus \mathcal{O}_H(b)$, where $b = -3 - 2a + c_1(E)$.

Proof. First of all observe that since two good planes intersect along a line, the splitting type is the same for all good planes.

Assume $E_{H_0} = \mathcal{E}_{H_0}$ for one good plane $(\mathcal{E} = (S^2T)(-3))$. Then $h^0(E_{H_0}) = 0$ and $c_1(E) = 0$, also the splitting type is (1, 0, -1). If there exists a good plane H_1 with $E_{H_1} \neq \mathcal{E}_{H_1}$, then necessarily $E_{H_1} \simeq \begin{cases} T_{H_1}(-1) \oplus \mathcal{O}_{H_1}(-1) \\ \Omega_{H_1}(1) \oplus \mathcal{O}_{H_1}(1). \end{cases}$

So $h^1(E_{H_1}(-1)) \leq 1$. So if H is a general plane, then H is a good plane and $h^0(E_H) = 0, h^1(E_H(-1)) \leq 1$. By Lemma 12, this is impossible. So $E_H \simeq \mathcal{E}_H$ for every good plane.

We may now assume that E_H is of the form $T_H(a) \oplus \mathcal{O}_H(b)$ for every good plane H (with a, b depending on H). Since the splitting type is constant it is not hard to see that a, b are constant except if $c_1 = 0$ with splitting type (1, 0, -1), where the two cases (a) $T_H(-1) \oplus \mathcal{O}_H(-1)$, (b) $T_H(-2) \oplus \mathcal{O}_H(1)$ are possible. Looking at $h^0(E_H(-1))$, by semi-continuity, case (a) is the general one. But then looking at $h^0(E_H^{\vee}(-1))$, case (b) is the general one: contradiction.

Lemma 14. Let *E* be a normalized, almost uniform, vector bundle of rank three on \mathbb{P}^3 . Then for every good plane, $H, E_H \simeq (S^2 T_H)(-3)$.

Proof. We have to show that case (2) of Lemma 13 cannot happen. So assume to the contrary that $E_H \simeq T_H(a) \oplus \mathcal{O}_H(-3-2a+c_1(E))$, for every good plane. Twisting by -a - 1, we may assume $E_H \simeq T_H(-1) \oplus \mathcal{O}_H(c)$.

8

Assume c > 1. Since $h^0(E_H(-c-1)) = 0$ and $h^1(E_H(-c-k)) = 0$, if $k \ge 1$, we get $H^0(E(-c)) \simeq H^0(E_H(-c)) \simeq k$ and we conclude as in the proof of Proposition 9.

If c = 0, by Lemma 6 we should have $E \simeq T(-1)$, but this is impossible.

If c < 0 or c = 1, we consider E^{\vee} : we have $E_H^{\vee} \simeq \Omega_H(1) \oplus \mathcal{O}_H(-c)$. Since $\Omega_H(1) \simeq T_H(-2)$, we get: $E^{\vee}(1)_H \simeq T_H(-1) \oplus \mathcal{O}_H(-c+1)$ and we conclude by the previous cases.

We may now prove the main result of this section:

Theorem 15. Let *E* be a rank three vector bundle on \mathbb{P}^3 . If *E* is not uniform, then *E* has infinitely many jumping lines.

Proof. From Lemma 14 we may assume that $E_H \simeq (S^2 T_H)(-3) =: \mathcal{E}_H$, for every good plane.

Let L be a line not meeting any of the jumping lines of E. If H is a plane through L then H doesn't contain any of the jumping line, so H is a good plane and $E_H = (S^2T_H)(-3)$. Now the restriction map $H^0(E_H(1)) \to H^0(E_L(1))$ is an isomorphism. By the Glueing Lemma 5, we get $h^0(E(1)) = h^0(E_H(1)) = 6$. Moreover from $h^0(E_H) = 0$ it follows that $h^0(E) = 0$ so the restriction map $H^0(E(1)) \to H^0(E_H(1))$ is an isomorphism. Now let $x \in \mathbb{P}^3$ be a point. Let Hbe a good plane through x. The evaluation map $H^0(E(1)) \xrightarrow{ev(x)} E(1)(x)$ factors through the restriction to H. Since $E_H(1)$ is globally generated (Lemma 12), we get that E(1) is globally generated, with $h^0(E(1)) = 6$, $c_1 = 3$, $c_2 = 6$.

Now since $\mathcal{E}_H^{\vee} \simeq \mathcal{E}_H$ ($\mathcal{E}_H = (S^2 T_H)(-3)$). We conclude, in exactly the same way, that $E^{\vee}(1)$ too is globally generated, with $h^0(E^{\vee}(1)) = 6$, $c_1 = 3$, $c_2 = 6$.

Now globally generated vector bundles with $c_1 = 3$ on \mathbb{P}^n are classified in [12]. According to this classification if \mathcal{F} is such a bundle on \mathbb{P}^3 with $c_2 = 6$, then one of the following occurs:

(a) $\mathcal{F} \simeq 3.T(-1)$

(b) there is an exact sequence: $0 \to \mathcal{O}(-2) \oplus \Omega(1) \to 7.\mathcal{O} \to \mathcal{F} \to 0$

(c) there is an exact sequence: $0 \to s.\mathcal{O} \to \mathcal{G} \oplus r.\mathcal{O} \to \mathcal{F} \to 0$, where $s = h^1(\mathcal{F}^{\vee}), r = h^0(\mathcal{F}^{\vee})$ and where \mathcal{G} is as above, i.e.

(α) $\mathcal{G} = 3.T(-1)$ or

(β) there is an exact sequence: $0 \to \mathcal{O}(-2) \oplus \Omega(1) \to 7.\mathcal{O} \to \mathcal{G} \to 0.$

Now E(1) and $E^{\vee}(1)$ have to fit with this classification. Clearly, under our assumptions, case (a) is impossible. Case (b) also is impossible. Indeed restricting to a good plane H we get: $0 \to \mathcal{O}_H(-3) \oplus \Omega_H \oplus \mathcal{O}_H(-1) \to$ $7.\mathcal{O}_H(-1) \to \mathcal{E}_H \to 0$. Since $h^0(\mathcal{E}_H) = 0, h^1(\Omega_H) = 1$, we get a contradiction. So both E(1) and $E^{\vee}(1)$ come from (c). In any case we have $H^1_*(\mathcal{G}) = 0$. This implies $H^1_*(E) = H^1_*(E^{\vee}) = 0$. By Serre duality $H^1_*(E) = H^2_*(E) = 0$. By Horrocks' theorem E is a direct sum of line bundles, which is impossible. \Box

4. An upper-bound for $\mathcal{A}(n)$.

Let $\mathbb{P}^n = \mathbb{P}(V)$, the projective space of lines of the vector space V. A point $x \in \mathbb{P}^n$ corresponds to a line $d_x \subset V$, this line is the (vector bundle) fiber $\mathcal{O}(-1)(x)$ and Euler's sequence

$$0 \to \mathcal{O}(-1) \to V \otimes \mathcal{O} \to T(-1) \to 0$$

can be seen at the point x as: $0 \to d_x \to V \to V/d_x \to 0$. In particular $T(-1)(x) \simeq V/d_x$. We have $H^0(T(-1)) \simeq V$ and the section given by $u \in V$ vanishes exactly at the point x corresponding to the line $\langle u \rangle$.

Let $L \subset \mathbb{P}^n$ be a line. Then $T(-1)_L \simeq \mathcal{O}_L(1) \oplus (n-1).\mathcal{O}_L$. We can recover this isomorphism in the following way. The line L corresponds to a two-dimensional vector space $E \subset V$. Write $V = E \oplus W$. Then for any $x \in L$, $T(-1)_L(x) \simeq E/d_x \oplus W$. If $u \in V \simeq H^0(T(-1))$, then the value of u_L at the point $x \in L$ is $(\overline{u}_E, u_W) \in E/d_x \oplus W$, where $u = u_E + u_W \in E \oplus W$.

This being said we have:

Proposition 16. Assume $n \ge 2$ and let $\sigma : \mathcal{O} \xrightarrow{(u,v)} T(-1) \oplus T(-1)$ be a section given by two linearly independent vectors. Then the quotient, E, is locally free of rank 2n-1 and has a unique jumping line (the line corresponding to the plane $\langle u, v \rangle$). This shows $\mathcal{A}(n) \le 2n-1$.

Proof. Since u and v are linearly independent, σ has rank one at every point $x \in \mathbb{P}^n$. The exact sequence $0 \to \mathcal{O} \to 2.T(-1) \to E \to 0$ shows that E is globally generated with $c_1(E) = 2$. It follows that for a line L we have only two possibilities: (a) $E_L = 2.\mathcal{O}_L(1) \oplus (2n-3).\mathcal{O}_L$, (b) $E_L = \mathcal{O}_L(2) \oplus (2n-2).\mathcal{O}_L$. Of course case (a) is the generic case, so the jumping lines of E are precisely those of type (b).

10

With notations as above $(T(-1)_L \simeq \mathcal{O}_L(1) \oplus (W \otimes \mathcal{O}_L))$, consider the following diagram:

$$\mathcal{O}_L \xrightarrow{\sigma_L} 2.\mathcal{O}_L(1) \oplus (W \oplus W) \otimes \mathcal{O}_L$$
$$\downarrow p_L$$
$$(W \oplus W) \otimes \mathcal{O}_L$$

We see that we are in case (b) if and only if the composed map $\psi_L = p_L \circ \sigma_L$ is the zero map. Using our earlier description this means that $(u_W, v_W) \in W \oplus W$ is the zero vector. It follows that $u = u_E, v = v_E$, hence $E = \langle u, v \rangle$. In conclusion $\psi_L \equiv 0$ if and only if L is the line corresponding to the plane $\langle u, v \rangle$.

Using a construction of Drezet ([5]) we can give another example (always of rank 2n - 1).

Let V be a k vector space of dimension n + 1 and let $H \subset S^2V$ be a sub-vector space. Consider $\mathcal{O}(-2) \to (S^2V/H) \otimes \mathcal{O}$. At a point $x \in \mathbb{P}(V)$ corresponding to the line $\langle u \rangle$ the vector bundle map is given by $\overline{u}^2 \in S^2V/H$. It follows that the quotient F(H) is a vector bundle if and only if H doesn't contain any non-zero square $(u^2 \in H \Leftrightarrow u = 0)$. Assume this is the case. Then F(H) is globally generated with $c_1(F(H)) = 2$. It follows that for a line $L \subset \mathbb{P}(V)$, the splitting type of $F(H)_L$ is (a) (1, 1, 0, ..., 0) or (b) (2, 0, ..., 0). The jumping lines of F(H) are the lines of type (b). Clearly we are in case (a) if and only if $h^0(F(H)_L(-2)) = 0$. By Serre duality this is equivalent to $h^1(F(H)_L^{\vee}) = 0$. Dualizing and taking coomology on L this is equivalent to require that $f : H^0((S^2V/H)^{\vee} \otimes \mathcal{O}_L) \to \mathcal{O}_L(2)$ is surjective. If L corresponds to the plane $E \subset V$, then $H^0(\mathcal{O}_L(2)) \simeq S^2(E^{\vee})$ and f is the transpose of the natural map $S^2E \to S^2V/H$.

In conclusion we are in case (a) if and only if $H \cap S^2 E = \{0\}$, where $E \subset V$ is such that $\mathbb{P}(E) = L$.

It follows that F(H) will be uniform if and only if we can find H such that $S^2E \cap H = \{0\}$, for every plane $E \subset V$.

Let $Y \subset \mathbb{P}(S^2V)$ be the union of the planes $\mathbb{P}(S^2E)$, $E \in Gr(2, V)$. We have the Veronese embedding $\nu : \mathbb{P}(V) \to \mathbb{P}(S^2V) . \langle u \rangle \to \langle u^2 \rangle$. The secant variety to $X := \nu(\mathbb{P}(V))$ can be described as follows. Given two points $x = \langle u \rangle$, $y = \langle v \rangle$ of $\mathbb{P}(V)$, the line $E = \langle u, v \rangle$ is mapped to a conic K_E (= { $(\alpha u + \beta v)^2$ }). Every line of the plane $\langle K_E \rangle$ is a secant to X. It follows that Sec(X) is the union of the planes $\langle K_E \rangle$. Since G(1, n) has dimension 2n - 2, we get

dim(Sec(X)) = 2n. Now $\langle K_E \rangle = \mathbb{P}(S^2E)$ (indeed $S^2E = \langle u^2, v^2, uv \rangle, u^2, v^2 \in K_E$ and $uv = ((u+v)/2)^2 - ((u-v)/2)^2$ is on the line spanned by two points of K_E). We conclude that Y = Sec(X) has dimension 2n.

So if $H \subset S^2 V$ is a general subspace of codimension 2n+1, the bundle F(H) is uniform of rank 2n (and is not homogeneous, [5]).

Now if H is a general subspace of codimension 2n, it will intersect Y at $\deg(Y)$ distinct points (not on X) and F(H) will be a vector bundle of rank 2n - 1 with $\deg(Y)$ jumping lines. Since $\deg(Y) > 1$, F(H) is not isomorphic to the vector bundle E of Proposition 16.

Remark 17. Homogeneous vector bundles of rank $\leq 2n - 1$ on \mathbb{P}^n are classified ([2]) and are those one expects i.e. those obtained by algebraic operations $(\oplus, \otimes, \wedge)$ from $\mathcal{O}(1), T$. It is conjectured that every uniform bundle of rank $\leq 2n - 1$ is homogeneous. This is true if n = 2, 3 ([7], [3]). Taking into account Drezet's example this should be sharp. For this reason I suspect the bound $\mathcal{A}(n) \leq 2n - 1$ not too far from being sharp.

References

- [1] Ballico, E.: Uniform vector bundles of rank n + 1 on \mathbb{P}^n , Tsukuba J. Math., 7, 215-226 (1983)
- [2] Ballico, E.-Ellia, Ph.: Fibrés homogènes sur Pⁿ, C. R. Acad. Sc. Paris, Série I, t.294, 403-406 (1982)
- [3] Ballico, E.-Ellia, Ph.: Fibrés uniformes de rang 5 sur P³, Bull. Soc. Math. France, 111, n.1, 59-87 (1983)
- [4] Barth, W.: Some properties of stable rank-2 vector bundles on Pⁿ, Math. Ann., 226, 125-150 (1977)
- [5] Drezet, J.M.: Exemples de fibrés uniformes non homogènes sur Pⁿ, C.R. Acad.
 Sc. Paris, Série A, t.291, 125-128 (1980)
- [6] Ein, L.-Hartshorne, R.-Vogelaar, H.: Restriction theorems for stable rank 3 vector bundles on Pⁿ, Math. Ann., 259, 541-569 (1982)
- [7] Elencwajg, G.: Les fibrés uniformes de rang trois sur P²(C) sont homogènes, Math. Ann., 231, 217-227 (1978)
- [8] Elencwajg, G.-Hirschowitz, A.-Schneider, M.: Les fibrés uniformes de rang au plus n sur $\mathbb{P}^n(\mathbb{C})$ sont ceux qu'on croit, Progress in Math., 7, 37-63 (1980)
- [9] Ellia, Ph.: Sur les fibrés uniformes de rang n + 1 sur Pⁿ, Mémoire Soc. Math. France, nouvelle série, 7, 1-60 (1982)
- [10] Hulek, K.: Stable rank-2 vector bundles on \mathbb{P}^2 with c_1 odd, Math. Ann., **242**, 241-266 (1979)
- [11] Sato, E.: Uniform vector bundles on a projective space, J. Math. Soc. Japan, 28, 123-132 (1976)
- [12] Sierra, J.C.-Ugaglia, L.: On globally generated vector bundles on projective spaces, II, J. Pure and Applied Algebra, 218, 174-180 (2014)
- [13] Van de Ven, A.: On uniform vector bundles, Math. Ann., 195, 245-248 (1972)

DIPARTIMENTO DI MATEMATICA, 35 VIA MACHIAVELLI, 44100 FERRARA *E-mail address*: phe@unife.it