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Abstract 

To take into account the weakening effect of defects clusters in real microstructures, we propose a multiscale model in a two-
dimensional setting. At a small scale, single defects are described as elliptical voids randomly distributed and randomly oriented 
in an isotropic matrix. Using an effective field method proposed by Tandon and Weng [5,6], the effective properties of a porous 
equivalent material can be estimated in a simple closed form. At a larger scale, defects clusters are modelled as single large elliptical 
inclusions characterized by the weakened effective properties calculated in the first step and embedded in an infinite, elastic, 
isotropic matrix under remote loading. The method allows to examine the dependence of defects interaction on some basic 
microstructure parameters (porosity density, voids aspect ratio, inclusion aspect ratio).  
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1. Introduction 

Defects morphology largely affects the mechanical and strength properties of grey cast iron, cf. Hütter et al. (2015), 
Rausch et al. (2010). Irregularly shaped graphite clusters can be sites of stress concentrations and crack initiations, and 
fatigue properties are well known to correlate to microstructural parameters, like graphite inclusions shape, size and 
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spacing between them, cf. Costa et al (2010), and Mottitschka et al. (2012). Due to the complex defects’ distribution 
and shape, a numerical estimate of the exact interaction between these complex morphologies can be very difficult, 
even in a linear elastic framework. In cast iron, like in most part of natural materials, defects and voids come in a 
mixture of diverse shapes, as shown in Fig. 1a. A possible simplifying assumption is to replace them by elliptical holes 
of different shapes and aspect ratios, whose distribution could be identified from microstructural information, as done 
in Fig. 1a.  

In a previous paper (see Cova et al. 2017) the iteration between two ellipses in a plate under tensile loading was 
considered, whereas in this contribution we report on some ongoing work based on a novel simplified multiscale 
approach in a 2D setting (plane strain). The modeling strategy is based on two consecutive steps. The first step focuses 
on a small scale, where the complex microstructure internal to degenerate graphite clusters is modeled as a random 
distribution of randomly-oriented elliptical voids (the defects) in an isotropic matrix, see Fig. 1b.  

Using an effective field method firstly proposed by Weng (1984) and further developed by Tandon and Weng (1984, 
1986) and Zhao and Weng (1990), the effective elastic properties of a porous equivalent material can be estimated in 
a simple closed analytical, albeit approximated form, depending only on the matrix elastic parameters, the voids aspect 
ratio and the porosity density. In Section 2, we report the analytical expressions of the effective Young’s modulus and 
Poisson ratio for a two-dimensional elastic plate weakened by a family of equal elliptical voids randomly oriented 
inside an elementary cell. The expressions have been validated via a FE analysis and a good agreement has been found.  

The second step considers a larger scale, where a defect cluster is modeled as single elliptical inclusion embedded 
in an isotropic matrix and characterized by the weakened effective elastic properties calculated at the previous level, 
see Fig. 1c. Eshelby’s fundamental solution (1957, 1959, 1961) allows to analyze the dependence of the stress state, 
internal and external to the inclusion (the defects cluster), on some basic microstructure parameters (voids aspect ratio, 
porosity density, and inclusion aspect ratio). Our analysis performed in Section 3 focuses on the stress peaks at the 
interface between the inclusion and the matrix and on their dependence on the microstructure parameters. 

The model presented in this paper is simplified, in view of the many adopted approximations. Firstly, the model is 
two-dimensional, while a three-dimensional setting would be more appropriate, especially with the modern available 
techniques of high resolution tomographic imaging. Next, a family of equal ellipses has been considered. Weng’s 
approach is however enough general to take into account several families of different elliptical voids. Inhomogeneities 
found in real microstructures are usually non-ellipsoidal, so replacing a non-elliptical inclusion with an elliptical one 
is clearly a major simplifying assumption. Like in many other various micromechanical schemes available in the 
literature, cf. Shen and Yi (2001) and Feng et a. (2003), our choice of elliptical defects is related to the special feature 
of Eshelby’s fundamental solution, that the stress-strain field inside an elliptical inclusion in an infinite plate is uniform. 
Zou et al. (2010) and Zou (2011) have discussed the limit of applications of Eshelby’s fundamental solution, and have 
concluded that the elliptical approximation over a convex inclusion induces a small relative error and can be considered 
as valid. Finally, other simplifications in our model derive from the choice of the size (and shape) of the inclusion 
modeling the defects cluster, which we do not discuss here and postpone to future work. Other possible developments 
of the present approach could focus on the interaction of a single defects cluster with a free boundary or with other 
defects clusters. 

Taking into account all the discussed approximations, the results presented in the present paper can be considered 
as a first step towards a more general analysis.  

The approach presented in this paper may appear to be similar to the models proposed by Shen and Yi (2001) and 
Feng et a. (2003), but it is indeed different for the following reasons. The model proposed by Shen and Yi (2001) 
focuses on calculating the effective elastic moduli of a heterogeneous material, while our final goal is the analysis of 
the stress peaks and their dependence on the microstructure parameters. Feng et al. (2003) present a novel method to 
take into account the microcracks interaction. In their analysis, they apply Kachanov’s method to calculate the effective 
elastic moduli of microcracked materials, while we follow the approach proposed by Weng (1984) and Tandon and 
Weng (1984, 1986). 
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Nomenclature 

𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒  effective elastic tensor  
𝐶𝐶  matrix elastic tensor 
𝜆𝜆 voids volume fraction or porosity density 
𝑒𝑒0 average strain in the matrix 
⟨𝑒𝑒∗⟩ average strain over all orientations 
𝐼𝐼 unit fourth order tensor 
𝑆𝑆 Eshelby's tensor 
𝑄𝑄(𝜃𝜃) transformation tensor 
𝜃𝜃 void orientation angle 
a,b ellipse semi-axes 
𝐸𝐸,𝜈𝜈 Young’s modulus and Poisson ratio of the matrix 
𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒 ,𝜈𝜈𝑒𝑒𝑒𝑒𝑒𝑒 Young’s modulus and Poisson ratio of porous material from Weng’s model 
𝜒𝜒 voids aspect ratio 
𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚, 𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚  Young’s modulus and Poisson ratio of porous material from mixture rule 
𝜓𝜓 inclusion orientation angle 
t inclusion aspect ratio 

2. Effective elastic moduli of a porous plate  

At the lowest level of the multiscale model, the weakening effect induced by the presence of graphite inclusions is 
modeled using the micromechanical approach proposed by Weng (1984) and further developed by Tandon and Weng 
(1984, 1986), and by Zhao and Weng (1990). The approach considers a composite made of ellipsoidal inclusions, 
aligned or randomly-oriented, and homogeneously dispersed in an elastic matrix with different elastic properties. Mori 
and Tanaka’s (1973) concept of “average stress” in the matrix and Eshelby’s fundamental solution (1957, 1959, 1961) 
are combined to obtain the effective elastic moduli of the composite. Though approximated, the approach leads to the 
exact solution for the effective bulk modulus of an isotropic composite calculated by Hill (1963) when the shear 
moduli of the inclusion and matrix material are equal, cf. Weng (1984). 

 

 

Fig. 1. Scheme of the simplified multiscale approach: (a) degenerate graphite cluster; (b) cluster model as a fictitious 
elliptic inclusion incorporating many elliptical holes (in gray); (c) final elliptic inclusion filled with equivalent 

weakened material (in light gray) and embedded in the original matrix. 
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Fig. 2. (a) Schematic representation of a porous material obtained by homogeneously distributed, equal, randomly-

oriented elliptical voids in an elastic matrix; (b) angle 𝜃𝜃 defining the orientation of the generic void. 
 

For a composite with equal, elliptical, homogeneously dispersed, randomly-oriented voids, the effective elastic tensor 
𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒  solves the equation 

𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒0 + 𝜆𝜆⟨𝑒𝑒∗⟩) = 𝐶𝐶𝑒𝑒0,    (1) 

where 𝐶𝐶 is the elastic tensor of the matrix, 𝜆𝜆 is the voids volume fraction, 𝑒𝑒0is the average strain in the matrix in the 
composite system when there exists only a single inclusion, and ⟨𝑒𝑒∗⟩ is the average of the equivalent transformation 
strains of the inclusions over all orientations. In a plane case, ⟨𝑒𝑒∗⟩ can be expressed as follows: 

⟨𝑒𝑒∗⟩ = 1
𝜋𝜋 ∫ 𝑄𝑄𝑇𝑇(𝜃𝜃)((𝐼𝐼 − 𝑆𝑆)−1(𝑄𝑄(𝜃𝜃)𝑒𝑒0𝑄𝑄𝑇𝑇(𝜃𝜃)))𝜋𝜋

0 𝑄𝑄(𝜃𝜃)𝑑𝑑𝜃𝜃.   (2) 

Here, 𝐼𝐼is the unit fourth order tensor, 𝑆𝑆 is Eshelby's tensor, and 𝑄𝑄(𝜃𝜃) is the transformation tensor between the local 
(primed) axes and the global (unprimed) ones shown in Fig. 2b, and given by 

𝑄𝑄(𝜃𝜃) = (
𝑐𝑐𝑐𝑐𝑐𝑐( 𝜃𝜃) 𝑐𝑐𝑠𝑠𝑠𝑠( 𝜃𝜃) 0

− 𝑐𝑐𝑠𝑠𝑠𝑠( 𝜃𝜃) 𝑐𝑐𝑐𝑐𝑐𝑐( 𝜃𝜃) 0
0 0 1

),    (3) 

where 𝜃𝜃 is the angle defining the orientation of voids, cf. Fig. 2b. 
Assuming plane strain conditions, considering an isotropic elastic behavior for the matrix, with Young’s modulus 𝐸𝐸 
and Poisson ratio 𝜈𝜈, and substituting the components of the Eshelby's tensor 𝑆𝑆 given by Zhao and Weng (1990) into 
Equations (1-3), we obtain the following closed-form solution for the (in-plane) effective elastic constants of the 
porous material: 

𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒 =
𝐸𝐸(1−𝜆𝜆){1+𝜈𝜈+𝜆𝜆[2−4𝜈𝜈+(𝜒𝜒+1

𝜒𝜒)(1−𝜈𝜈)2]}

(1+𝜈𝜈){1+𝜆𝜆[1+𝜒𝜒+1
𝜒𝜒 −𝜈𝜈(2+𝜒𝜒+1

𝜒𝜒)]}
2 ,    (4) 

𝜈𝜈𝑒𝑒𝑒𝑒𝑒𝑒 =
{𝜆𝜆+𝜈𝜈−𝜆𝜆𝜈𝜈(2+𝜒𝜒+1

𝜒𝜒)+𝜆𝜆𝜈𝜈2(𝜒𝜒+1
𝜒𝜒)}

{1+𝜆𝜆[1+𝜒𝜒+1
𝜒𝜒 −𝜈𝜈(2+𝜒𝜒+1

𝜒𝜒)]}
.    (5) 

These constants take simple explicit forms as a function of the cross-sectional aspect ratio 𝜒𝜒 = 𝑏𝑏/𝑎𝑎 of the voids, of 
their volume fraction 𝜆𝜆 , or porosity density, and of the matrix elastic moduli 𝐸𝐸 and 𝜈𝜈 . More generally, the 
micromechanical approach proposed by Weng (1984) can treat hard, soft, or void inclusions with two- (ellipse, circle) 
and three-dimensional shapes (prolate, spherical and oblate) in a unified fashion.  
For the proposed multiscale model, families of ellipses with different aspect ratios could be considered, in order to 

a b 
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better describe the real microstructure, cf. Fig. 1b.  
In order to investigate the range of validity of relations (4) and (5), a parametric FE analysis has been performed, 
analyzing a plate of 100x200 mm under plane strain conditions with random distributions of elliptical voids inside a 
square elementary cell 10x10 mm. For the voids aspect ratio, 𝜒𝜒, the following values have been considered: 0.1, 0.2, 
0.4, 0.5, 1. The elastic constants of the matrix have been taken equal to 𝐸𝐸 = 206 GPa and 𝜈𝜈 = 0.3. Several random 
distributions of voids have been generated, cf. Fig. 3, and very small variations of the corresponding elastic properties 
calculated numerically have been observed. The plots of the elastic properties, 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒/(1 − 𝜈𝜈𝑒𝑒𝑒𝑒𝑒𝑒

2) and 𝜈𝜈𝑒𝑒𝑒𝑒𝑒𝑒calculated 
via FE analysis are illustrated in Figures 4 and 5, respectively, where the comparisons with the prediction given by 
relations (4) and (5) are also shown. In Figures 4 and 5, the estimates given by the following rules of mixtures  
 

𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 = (1 − 𝜆𝜆)𝐸𝐸/(1 − 𝜈𝜈2),    (6) 

 

𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚 = (1 − 𝜆𝜆)𝜈𝜈    (7) 

 
are visualized with dotted lines. 
 
Figures 4 and 5 indicate a good general agreement between Equations (4) and (5) and the FE results, with a maximum 
relative difference of 26% for the effective plain strain elastic modulus (maximum attained at 𝜆𝜆 = 0.502 and 𝜒𝜒 = 1), 
and of 14% for the effective Poisson ratio (maximum attained at 𝜆𝜆 = 0.283 and 𝜒𝜒 = 1). The rule of mixtures, cf. 
Equations (6) and (7), gives over-stiff results, with a maximum relative difference of 106% for the effective plain 
strain elastic modulus (maximum attained at 𝜆𝜆 = 0.636and 𝜒𝜒 = 1), and of 104% for the effective Poisson ratio 
(maximum attained at 𝜆𝜆 = 0.06and 𝜒𝜒 = 0.1). 
 
 
 
 
 
 
 

 

Fig. 3. Two reference geometries used in the FE analysis. 
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Fig. 4. Comparison between the effective plain strain elastic modulus 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒/(1 − 𝜈𝜈𝑒𝑒𝑒𝑒𝑒𝑒2) numerically calculated via 

the FE analysis (continuous curves) and the prediction given by the approximated relation (4) (dashed curves). 
Different (continuous and dashed) curves refer to different voids aspect ratio 𝜒𝜒. The prediction given by the rule of 

mixtures Eq. (6) is also shown (dotted line). 
 

 
Fig. 5. Comparison between the effective Poisson ratio 𝜈𝜈𝑒𝑒𝑒𝑒𝑒𝑒numerically calculated via the FE analysis (continuous 

curves) and the prediction given by the approximated relation (5) (dashed curves). Different (continuous and 
dashed) curves refer to different voids aspect ratio 𝜒𝜒. The prediction given by the rule of mixtures Eq. (7) is also 

shown (dotted line). 
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3. Stress intensity factors for inclusions weakened by porosity 

In this Section, we analyze the stress state arising in the equivalent elliptic inclusion subject to unidirectional traction 
load applied at infinity, see Fig 6. In view of the elliptical shape, the uniformity of the stress-strain field in the inclusion 
allows to obtain an exact solution, firstly presented by Eshelby in a three-dimensional setting (1957, 1959, 1961). 
Jin et al. (2014) have obtained the full field stress solution of Eshelby’s problem in plane elasticity using the equivalent 
inclusion method. In this paper, the Equations (56) -(58) given by Jin et al. (2014) and providing the interior and 
exterior stress fields have been implemented in MATLAB® together with Equations (4) and (5) giving the weakened 
elastic moduli of the inclusion.  
As a result, we have calculated the stress concentration factors (SCFs) at the matrix/inclusion interface, on the 
inclusion side and on the matrix side. For the matrix material, we have assumed 𝐸𝐸 = 206 GPa and 𝜈𝜈 = 0.3 , as in 
Section 2. 
The plots of the stress concentration factors shown in Fig. 7, 8 and 9 indicate their dependency on the porosity density 
𝜆𝜆, for inclusion orientation angles 𝜓𝜓 = 0, 𝜋𝜋6 ,

𝜋𝜋
4 , respectively. In these Figures, the aspect ratio porosity has been chosen 

equal to 𝜒𝜒 = 0.1, and the inclusion aspect ratio takes the values 𝑡𝑡 = 0.1, 0.5, 1, 2, 10.  
As the porosity density 𝜆𝜆 increases, the inclusion becomes softer, leading to relatively lower stress on the inclusion 
side and higher stress on the matrix side. Soft inclusions with the smallest aspect ratio 𝑡𝑡 = 0.1 and lowest orientation 
angle 𝜓𝜓 lead to the higher stress concentrations in the matrix.  
Contour plots of the SCFs on the inclusion and matrix sides for voids’ aspect ratio  vs inclusion aspect ratio t at 
constant porosity density =0.25 and for the inclusion orientation angles of =0, /6, /4 are shown in Fig. 10, 11 
and 12.  
Darkest points correspond to softest inclusions, leading to lower stress level on the inclusion side and higher stress 
concentrations on the matrix side. The plots reveal that higher stress concentrations (>4) occur for very small aspect 
ratios , t, or very small  and large t, i.e. for voids and inclusion approaching a crack shape. 
 

 

Fig. 6. Reference geometry and notation for the equivalent inclusion of Fig.1c subject to uniaxial traction at infinity. 
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Fig. 7. Variation of the stress concentration factor on the inclusion side (a) and on the matrix side (b) with the 
porosity for inclusion orientation angle 𝜓𝜓 = 0, aspect ratio porosity 𝜒𝜒 = 0.1 and inclusion aspect ratios 𝑡𝑡 =

0.1, 0.5, 1, 2, 10.  
 

 

 
Fig. 8. Variation of the stress concentration factor on the inclusion side (a) and on the matrix side (b) with the 
porosity for inclusion orientation angle 𝜓𝜓 = 𝜋𝜋/6, aspect ratio porosity 𝜒𝜒 = 0.1 and inclusion aspect ratios 𝑡𝑡 =

0.1, 0.5, 1, 2, 10.  
 

 

 
Fig. 9. Variation of the stress concentration factor on the inclusion side (a) and on the matrix side (b) with the 
porosity for inclusion orientation angle 𝜓𝜓 = 𝜋𝜋/4, aspect ratio porosity 𝜒𝜒 = 0.1 and inclusion aspect ratios 𝑡𝑡 =

0.1, 0.5, 1, 2, 10.  
  

a b 

a b 

a b 
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Fig. 7. Variation of the stress concentration factor on the inclusion side (a) and on the matrix side (b) with the 
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Fig. 8. Variation of the stress concentration factor on the inclusion side (a) and on the matrix side (b) with the 
porosity for inclusion orientation angle 𝜓𝜓 = 𝜋𝜋/6, aspect ratio porosity 𝜒𝜒 = 0.1 and inclusion aspect ratios 𝑡𝑡 =

0.1, 0.5, 1, 2, 10.  
 

 

 
Fig. 9. Variation of the stress concentration factor on the inclusion side (a) and on the matrix side (b) with the 
porosity for inclusion orientation angle 𝜓𝜓 = 𝜋𝜋/4, aspect ratio porosity 𝜒𝜒 = 0.1 and inclusion aspect ratios 𝑡𝑡 =

0.1, 0.5, 1, 2, 10.  
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Fig. 10. Contour plot of the stress concentration factor on the inclusion side (a) and on the matrix side (b) for 
inclusion orientation angle 𝜓𝜓 = 0, and porosity density 𝜆𝜆 = 0.25. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11. Contour plot of the stress concentration factor on the inclusion side (a) and on the matrix side (b) for 
inclusion orientation angle 𝜓𝜓 = 𝜋𝜋/6, and porosity density 𝜆𝜆 = 0.25. 

  

a b 

a b 
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Fig. 12. Contour plot of the stress concentration factor on the inclusion side (a) and on the matrix side (b) for 
inclusion orientation angle 𝜓𝜓 = 𝜋𝜋/4, and porosity density 𝜆𝜆 = 0.25. 

4. Conclusions 

In this paper, a multiscale approach for the stress analysis of defects clusters in an elastic matrix is proposed. The 
defects are assimilated to elliptical voids and the cluster is modeled as a porous elastic inclusion, whose elastic 
properties are weakened by the presence of the voids.  
Firstly, the elastic properties of the inclusion have been calculated following the approach proposed by Weng (1984) 
and further developed by Tandon and Weng (1984, 1986), and by Zhao and Weng (1990). The approach, though 
approximated, allows to obtain simple explicit expressions for the effective Young’s modulus and Poisson's ratio of 
an elastic, isotropic, infinite plate in plain strain, containing randomly distributed and randomly oriented elliptical 
pores. The effective elastic moduli, which depend only on the porosity density , the voids’ aspect ratio , and the 
elastic moduli of the plate material, have been validated via a FE analysis. 
Next, an equivalent elliptical inclusion with the calculated effective elastic properties and embedded in an infinite 
elastic plate under uniform uniaxial tension has been considered, as a simplified mechanical model of a defects cluster. 
To analyze the non-homogeneous stress field of the elliptical weakened inclusion in the matrix, the closed-form 
solution of Eshelby’s problem proposed by Jin et al. (2014) has been implemented in MATLAB®, to calculate the 
stress peaks (SCFs) at the interface between the inclusion and the matrix. The dependence of the SCFs on the various 
microstructure parameters, 
 

 porosity density , 
 

 voids aspect ratio , 
 

 inclusion aspect ratio t, 
 

 inclusion orientation 𝜓𝜓, 
 

is illustrated in Fig- 7-12. As expected, higher porosity densities correspond to higher SCFs, for any defects and 
inclusion shape. At a fixed porosity density, we have found that higher stress concentrations (>4) occur for voids and 
inclusion approaching a crack shape. 
  

a b 
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