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MAXIMAL RANK OF SPACE CURVES IN THE RANGE A

EDOARDO BALLICO, PHILIPPE ELLIA, CLAUDIO FONTANARI

Abstract. We prove the following statement, which has been conjectured
since 1985: There exists a constant K such that for all natural numbers d, g

with g ≤ Kd3/2 there exists an irreducible component of the Hilbert scheme of

P
3 whose general element is a smooth, connected curve of degree d and genus

g of maximal rank.

1. Introduction

The postulation of algebraic space curves has been the object of wide interest
in the last thirty years (see for instance [1], [2], [24]). In particular, the following
Conjecture was stated in 1985 in [2], p. 2 (see also [3], §6, Problem 4):

Conjecture 1. There exists a constant K such that for all natural numbers d, g
with g ≤ Kd3/2 there exists an irreducible component of the Hilbert scheme of P3

whose general element is a smooth, connected curve of degree d and genus g of

maximal rank.

Here we consider smooth and connected curvesX with h1(IX(m)) = 0, h0(IX(m−
1)) = 0, deg(X) = d, g(X) = g and h1(OX(m− 2)) = 0 (hence of maximal rank by
Castelnuovo-Mumford regularity). Since h1(IX(m)) = 0 and h1(OX(m)) = 0, we
have

(1) 1 +md− g ≤
(

m+ 3

3

)

Let d(m, g)max be the maximal integer d such that (1) is satisfied, i.e. set
d(m, g)max := ⌊

(

m+3
3

)

+g−1)/m⌋. Since h0(IX(m−1)) = 0 and h1(OX(m−1)) = 0,
we have

(2) 1 + (m− 1)d− g ≥
(

m+ 2

3

)

Let d(m, g)min be the minimal integer d such that (2) is satisfied, i.e. set
d(m, g)min := ⌈

(

m+2
3

)

+ g − 1)/(m− 1)⌉.
For every integer s > 0 define the number pa(Cs) := s(s+1)(2s−5)/6+1 (which

is going to to be the genus of the curve Cs to be introduced later in Section 2). For
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all positive integers m ≥ 3 set

ϕ(m) = pa(C⌊m/
√
20⌋−4) + pa(C⌊m/

√
20⌋−5)

=
(⌊m/

√
20⌋ − 4)(⌊m/

√
20⌋ − 3)(2⌊m/

√
20⌋ − 13)

6
+ 1

+
(⌊m/

√
20⌋ − 5)(⌊m/

√
20⌋ − 4)(2⌊m/

√
20⌋ − 15)

6
+ 1.

For any smooth curve X ⊂ P
3 let NX denote the normal bundle of X in P

3. If
h1(NX) = 0, then X is a smooth point of the Hilbert scheme of P3 and this Hilbert
scheme has the expected dimension h0(NX) at X .

Our main result is the following:

Theorem 1. For every integer m ≥ 3 and every (d, g) with 17052 ≤ g ≤ ϕ(m)
and d(m, g)min ≤ d ≤ d(m, g)max there exists a component of the Hilbert scheme of

curves in P
3 of genus g and degree d, whose general element X is smooth and satis-

fies h0(IX(m−1)) = 0, h1(IX(m)) = 0, h1(OX(m−2)) = 0, and h1(NX(−1)) = 0.

As an application of Theorem 1 we prove Conjecture 1. Indeed, if g = 0 we
have just to quote [17]. Next, if 0 < g < 17052 we may choose K > 0 such that
g ≥ K(g + 3)3/2. Hence from K(g + 3)3/2 ≤ g ≤ Kd3/2 we get d ≥ g + 3 and we
are done by [1]. Finally, if g ≥ 17052 we have the following:

Corollary 1. Let K = 2
3

(

1
10

)3/2
and ǫ = 11

20+4
(

1
20

)3/2
. If 17052 ≤ g ≤ Kd3/2−6ǫd

then there exists an irreducible component of the Hilbert scheme of P3 whose general

element X is a smooth, connected curve of degree d and genus g of maximal rank

and with h1(NX(−1)) = 0.

The constant K in Corollary 1 is certainly not optimal, but the exponent d3/2

is sharp among the curves with h1(NX) = 0 (see [11], [25, Corollaire 5.18] and [18,
II.3.6] for the condition h1(NX(−2)) = 0, [18, II.3.7] and [27] for the condition
h1(NX(−1)) = 0, and [18, II.3.8] for the condition h1(NX) = 0).

If X is as in Theorem 1, then by Castelnuovo-Mumford regularity we have
h1(IX(t)) = 0 for all t > m and the homogeneous ideal of X is generated by forms
of degree m and degree m + 1. A smooth curve Y ⊂ P

3 with h0(IY (m − 1)) =

0, m2+4m+6
6 ≤ deg(Y ) < m2+4m+6

3 and maximal genus among the curves with

h0(IY (m−1)) = 0 satisfies h1(OY (m−1)) = 0 ([15, proof of Theorem 3.3 at p. 97]).
In the statement of Theorem 1 we claim one shift more, namely, h1(OX(m−2)) = 0,
in order to apply Castelnuovo-Mumford regularity to X .

We describe here one of the main differences with respect to [17, 1, 2]. Fix
integers d, g as in Theorem 1 or Corollary 1. Suppose that we have constructed
two irreducible and generically smooth components W1,W2 of the Hilbert scheme
of smooth space curves of degree d and genus g. Suppose also that we have proved
the existence of Y1 ∈ W1 and Y2 ∈ W2 with h0(IY2

(m−1)) = 0, h1(IY1
(m)) = 0 and

h1(NYi
) = h1(OYi

(m − 3)) = 0, i = 1, 2. If W1 = W2, then by the semicontinuity
theorem for cohomology and Castelnuovo-Mumford regularity a general X ∈ W1

satisfies h0(IX(m − 1)) = 0, h1(IX(t)) = 0 for all t ≥ m and h1(NX) = 0. In
particular a general element of W1 has maximal rank. But we need to know that
W1 = W2. If d ≥ g + 3 it was not known at that time that the Hilbert scheme of
smooth space curves of degree d and genus g is irreducible ([6]), but it was obvious
since at least Castelnuovo that its part parametrizing the non-special curves is
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irreducible (modulo the irreducibility of the moduli scheme Mg of genus g smooth
curves). When d < g+3, the Hilbert scheme of smooth space curves of degree d and
genus g is often reducible, even in ranges with d/g not small ([5, 19, 20, 21, 22, 23]).
In [2] when d ≥ (g + 2)/2 we defined a certain irreducible component Z(d, g) of
the Hilbert scheme of smooth space curves of degree d and genus g and (under far
stronger assumptions on d, g) we were able find Y1 and Y2 with W1 = W2 = Z(d, g).
Several pages of Section 5 are devoted to solve this problem.

We work over an algebraically closed field of characteristic zero.

2. Preliminaries

2.1. The curves Ct,k. For each locally Cohen-Macaulay curve C ⊂ P
3 the index

of speciality e(C) of C is the maximal integer e such that h1(OC(e)) 6= 0.
Fix an integer s > 0. Let Cs ⊂ P

3 be any curve fitting in an exact sequence

(3) 0 → OP3(−s− 1) → (s+ 1)OP3(−s) → ICs
→ 0

Each Cs is arithmetically Cohen-Macaulay and in particular h0(OCs
) = 1. By

taking the Hilbert function in (3) we get deg(Cs) = s(s + 1)/2, pa(Cs) = s(s +
1)(2s − 5)/6 + 1 and e(Cs) = s − 3. Hence hi(ICs

(s − 1)) = 0, i = 0, 1, 2. By

taking d := deg(Cs) we get pa(Cs) = 1+ d(s− 1)−
(

s+2
3

)

= GA(d, s). The set of all
curves fitting in (3) is an irreducible variety and its general member is smooth and
connected. Among them there are the stick-figures called Ks in [12], [13] and [4].
We have h1(NCs

(−2)) = 0 for all Cs ([10, Lemme 1], see also [9]). Unless otherwise
stated we only use smooth Cs.

For any t, k let Ct,k := Ct ⊔ Cs be the union of a smooth Ct and a smooth
Ck with the only restriction that they are disjoint. By definition each Ct,k is
smooth. Let dt,k := deg(Ct,k) = t(t + 1)/2 + k(k + 1)/2 and gt,k := h1(OCt,k

) =
2+ t(t+ 1)(2t− 5)/6+ k(k+1)(2k− 5)/6 for t ≥ k > 0. If t ≥ k > 0 then we have

(4) (t+ k − 1)dt,k + 2− gt,k =

(

t+ k + 2

3

)

Since each connected component A of Ct,k satisfies hi(NA(−2)) = 0, i = 0, 1, we
have hi(NCt,k

(−2)) = 0, i = 0, 1.

Lemma 1. We have hi(ICt,k
(t+ k − 1)) = 0, i = 0, 1, 2.

Proof. Since Ct ∩ Ck = ∅, we have Tor1O
P3
(ICt

, ICk
) = 0 and ICt

⊗ ICk
= ICt,k

.

Therefore tensoring (3) with s := t by ICk
(t+ k − 1) we get

(5) 0 → tICk
(k − 2) → (t+ 1)ICk

(k − 1) → ICt,k
(t+ k − 1) → 0

We have h2(ICk
(k − 2)) = h1(OCk

(k − 2)) and the latter integer is zero, because
e(Ck) = k − 3 < k − 2. We have h1(ICk

(k − 1)) = 0, because Ck is arithmetically
Cohen-Macaulay. We have h0(ICk

(k − 1)) = 0, by the case s = k of (3). Hence
hi(ICt,k

(t+ k − 1)) = 0, i = 0, 1, 2. �

Remark 1. In this paper we only need k ∈ {t− 1, t}.
Remark 2. We have e(Ct,k) = max{e(Ct), e(Ck) = max{t− 3, k − 3} ≤ t+ c− 4.
Recall that dt,k = deg(Ct,k). If s := t+ k, then ds−1,1 = (s2 − s+ 2)/2 ≥ dt,k. If s
is even then dt,k ≥ s(s+2)/4 = d s

2
, s
2
. If s is odd, then dt,k ≥ (s+1)2/4 = d s+1

2
, s−1

2

.
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Remark 3. Let X be a general smooth curve of genus g and degree d ≥ g+3 such
that h1(OX(1)) = 0; if either g ≥ 26 ([25, p. 67, inequality DP (g) ≤ g + 3]) or
g ≤ 25 and d ≥ g + 14 ([25, p. 67]), then h1(NX(−2)) = 0.

2.2. Smoothing. We are going to apply standard smoothing techniques (see for
instance [16] and [26]).

Lemma 2. Fix A ⊔ B with A = Ct and B = Ck. Let X be a nodal curve with

X = A ∪ B ∪ Y , Y a smooth curve of degree d′ ≥ 2 and genus g′, ♯(A ∩ Y ) = 1,
♯(B ∩ Y ) = 1, h1(OY (1)) = 0 and h1(NY (−2)) = 0. Then h1(NX(−1)) = 0 and X
is smoothable.

Proof. Set C := A ∪B. Write {p1} = A ∩ Y and {p2} = B ∩ Y . We have an exact
sequence

(6) 0 → NX(−1) → NX(−1)|C ⊕NX(−1)|Y → NX(−1)|{p1,p2} → 0

Since NX(−1)|C is obtained fromNC(−1) by making two positive elementary trans-
formations and h1(NC(−1)) = 0, we have h1(NX(−1)|C) = 0. Since NX(−2)|Y is
obtained from NY (−2) by making two positive elementary transformations and
h1(NY (−2)) = 0, we have h1(NX(−2)|Y ) = 0. Let H ⊂ P

3 be a general plane
containing {p1, p2}. Since Y is not a line, Y ∩ H is a zero-dimensional scheme.
Since h1(NX(−2)|Y ) = 0, the restriction map

H0(Y,NX(−1)|Y ) → H0(Y ∩H,NX(−1)|H∩Y )

is surjective. Since {p1, p2} ⊆ Y ∩H , the restriction mapH0(Y ∩H,NX(−1)|H∩Y ) →
H0({p1, p2}, NX(−1)|{p1,p2}) is surjective. Hence the restriction map

H0(Y,NX(−1)|Y ) → H0({p1, p2}, NX(−1)|{p1,p2})

is surjective. From (6) we get h1(NX(−1)) = 0.
Since h1(NX(−1)) = 0, X is smoothable ([12, Corollary 1.2]). �

Call U(t, k, d′, g′) the set of all curves X = A ∪ B ∪ Y appearing in Lemma 2.
For all integer y ≥ 0 and x ≥ y + 3 the Hilbert scheme of smooth space curves
of degree x and genus y is irreducible ([6, 7]). By Lemma 2 there is a unique
irreducible component W (t, k, d′, g′) of the Hilbert scheme of P

3 containing the
curve X of Lemma 2. A general C ∈ W (t, k, d′, g′) is smooth and h1(NC(−1)) = 0.
We have deg(C) = d′ +deg(Ct) + deg(Ck) = d′ + t(t+1)/2+ k(k+1)/2 and genus
g(C) = g′ + pa(Ct) + pa(Ck) = g′ − 2 + t(t+ 1)(2t− 5)/6 + k(k + 1)(2k − 5)/6.

3. Assertion M(s, t, k), k ∈ {t− 1, t}
For any t ≥ 27, set c(2t+ 1, t, t) = t+ 3, d(2t+ 1, t, t) = 0, c(2t, t, t− 1) = t+ 2

and d(2t, t, t− 1) = t− 1. Set g(t+ k+ 1, t, k) := c(t+ k+ 1, t, k)− 3. Note that if
k ∈ {t− 1, t} we have

(7) t(t+ 1) + k(k + 1) + d(t+ k + 1, t, k) = (t+ k)(t+ k + 4− c(t+ k + 1, t, k))

Now fix an integer s ≥ t+ k + 3 with s− t− k − 1 ≡ 0 (mod 2) and define the
integers c(s, t, k), g(s, t, k) and d(s, t, k) by the relations g(s, t, k) = c(s, t, k)− 3 −
3(s− t− k − 1)/2 and

(8) s(dt,k+c(s, t, k))+3−gt,k−g(s, t, k)+d(s, t, k) =

(

s+ 3

3

)

, 0 ≤ d(s, t, k) ≤ s−2
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Note that (8) holds even if s = t+ k + 1. From (8) for the integers s+ 2 and s
and the equality g(s+ 2, t, k)− g(s, t, k) = c(s+ 2, t, k)− c(s, t, k)− 3 we get

2dt,k + 2c(s, t, k) + (s+ 1)(c(s+ 2, t, k)− c(s, t, k))+

d(s+ 2, t, k)− d(s, t, k) + 3 = (s+ 3)2(9)

Remark 4. We have c(2t+ 1, t, t) = t+ 3, d(2t+ 1, t, t) = 0, c(2t, t, t− 1) = t+ 2,
d(2t, t, t − 1) = t − 1, c(2t + 2, t, t − 1) = 2t + 6, d(2t + 2, t, t − 1) = 2t − 3,
c(2t+ 3, t, t) = 2t+ 7, d(2t+ 3, t, t) = 2t− 1.

Remark 5. We explain here the main reason for the assumption t ≥ 27 made in
this section. Fix an integer s ≥ t + k + 1 with s ≡ t + k + 1 (mod 2). We work
with a curve X = Ct,k ⊔ A with A a general smooth curve of degree c(s, t, k) and
genus g(s, t, k) and we need h1(NX(−2)) = 0, i.e. we need h1(NA(−2)) = 0. If
s = t+ k+1, then A has genus 0. The normal bundle of a general smooth rational
curve A ⊂ P

3 of degree c(t+ k + 1, t, k) ≥ 3 is balanced, i.e. it is the direct sum of
two line bundles of degree 2c(s, t, k)− 1 ([8]), hence h1(NA(−2)) = 0. Now assume
s ≥ t + k + 3. By Lemma 3 below we have g(s, t, k) ≥ g(t + k + 1, t, k). We have
g(2t+1, t, t) = t ≥ 27 and g(2t, t, t− 1) = t− 1 ≥ 26. Since g(s, t, k) ≥ 26, Remark
3 gives h1(NA(−2)) = 0.

Lemma 3. For each s ≥ t + k + 1 with s ≡ t + k − 1 (mod 2) we have 2(c(s +
2, t, k)− c(s, t, k)) ≥ s+ 4.

Proof. Since gt,k + g(s, t, k) < g⌈(s+1)/2⌉,⌊(s+1)/2⌋, (8) for s, t, k and (1) for t′ =
⌈(s + 1)/2⌉ and k′ = ⌊(s + 1)/2⌋ imply dt′,k′ ≥ c(s, t, k) + dt,k. Remark 4 gives
c(s + 2, t′, k′) = k′ + 3. Since 0 ≤ d(s + 2, t, k) ≤ s and 0 ≤ d(s, t, k) ≤ s − 2, (9)
and the difference between (8) for s′ := s+2 and (4) for t′, k′ imply c(s+2, t, k)−
c(s, t, k) ≥ −1 + c(s+ 2, t′, k′) = ⌊(s+ 1)/2⌋+ 2. �

Let Q := P
1 × P

1. The elements of |OQ(0, 1)| are the fibers of the projection
π2 : Q → P

1, so that each D ∈ |OQ(1, 0)| contains exactly one point of each fiber
of π2.

Assertion M(s, t, k), k ∈ {t − 1, t}, s ≥ t + k + 1, s ≡ t + k + 1 (mod 2):
Set e = 1 if 0 ≤ d(s, t, k) ≤ c(s + 2, t, k) − c(s, t, k) − 3 and e = 2 if d(s, t, k) >
c(s+ 2, t, k)− c(s, t, k)− 3. There is a 6-tuple (X,Q,D1, D2, S1, S2) such that

(a) Q is a smooth quadric surface, X = Ct,k⊔Y , Y is a smooth curve of degree
c(s, t, k) and genus g(s, t, k) and Q intersects transversally X , with no line
of Q containing ≥ 2 points of X ∩Q;

(b) D1, D2 are different elements of |OQ(1, 0)|, each of them containing one
point of Y ∩Q, Si ⊂ Di \Di ∩ Y , 1 ≤ i ≤ 2, and ♯(S1) + ♯(S2) = d(s, t, k);
π2(S2) ⊆ π2(S1); S2 = ∅ and π2(S1) ⊆ π2(Y ∩ (Q \ (D1 ∪ D2))) if e = 1,
♯(S2) = d(s, t, k) − c(s + 2, t, k) + c(s, t, k) + 3 and π2(S2) ⊆ π2(Y ∩ (Q \
(D1 ∪D2))) if e = 2;

(c) hi(IX∪S1∪S2
(s)) = 0, i = 0, 1.

Remark 6. Fix lines L,R ⊂ P
3 such that L ∩ R = ∅ and o ∈ P

3 \ (L ∪ R). Let
ℓ : P3\{o} → P

2 denote the linear projection from o. We have ♯(ℓ(L)∩ℓ(R)) = 1, i.e.
there is a unique line D(L,R, o) ⊂ P

3 such that o ∈ D(L,R, o), D(L,R, o) ∩ L 6= ∅
and D(L,R, o) ∩ R 6= ∅. We have ♯(D(L,R, o) ∩ L) = ♯(D(L,R, o) ∩ R) = 1. The
function (L,R, o) 7→ D(L,R, o) is regular.
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Lemma 4. For all t ≥ 27 and k ∈ {t− 1, t} assertion M(t+ k + 1, t, k) is true.

Proof. Fix Ct,k intersecting Q at 2dt,k general points ([25]).
(a) Assume k = t. We have c(2t+ 1, t, t) = t+ 3 and d(2t+ 1, t, t) = 0 and so

we take e = 1 with S1 = S2 = ∅. Take any A ∈ |OQ(2, t + 1)| with A ∩ Ct,k = ∅.
We have ResQ(Ct,t ∪A) = Ct,t and thus hi(IResQ(Ct,t∪A)(2t− 1)) = 0, i = 0, 1. We

have hi(Q, IQ∩(C∩A)(2t+ 1, 2t+1)) = hi(Q, ICt,t∩Q(2t− 1, t)) = 0, i = 0, 1, by (7)

and the generality of Ct,k ∩Q. Hence hi(ICt,k∪A(2t+ 1)) = 0, i = 0, 1.
We deform A to a curve Y of degree t + 3 and genus t with Y ∩ Ct,k = ∅,

Y intersecting transversally Q and with no line of Q containing ≥ 2 points of
Q∩ (Ct,k ∪ Y ). By the semicontinuity theorem for cohomology ([14, III.8.8]), for a
general Y we have hi(ICt,k∪Y (2t+1)) = 0, i = 0, 1. Set X := Ct,k∪Y , S1 = S2 = ∅
and take as D1 and D2 any two different elements of |OQ(1, 0)|, each of them
containing one point of Y ∩Q.

(b) Assume k = t− 1. We have c(2t, t, t− 1) = t+2, d(2t, t, t− 1) = t− 1 and
c(2t+ 2, t, t− 1)− c(2t, t, t− 1) = t+ 4 (Remark 4). Hence e = 1. However, in the
proof of M(t+ k+1, t, k) we will exchange the two rulings (as we will do below for
the general proof that M(s, t, k) =⇒ M(s + 2, t, k)), so that D1, D2 ∈ |OQ(0, 1)|.
Take lines L1, L2 ∈ |OQ(1, 0)| such that L1 6= L2 and Ct,t−1 ∩ (L1 ∪ L2) = ∅, and
t different lines Rj ∈ |OQ(0, 1)|, 1 ≤ j ≤ t, none of them containing a point of
Ct,t−1 ∩ Q. Fix D1, D2 ∈ |OQ(0, 1)| containing no point of Ct,t−1 ∩ Q and with
Dh 6= Rj for all h, j. Set uh := L1 ∩Dh, h = 1, 2. Fix E1 ⊂ D1 with ♯(E1) = t− 1
and E1 ∩ (L1 ∪ L2) = ∅. We have h1(Q, IE1

(2t − 2, t)) = 0. Since Ct,k ∩ Q is a
general subset of Q with cardinality 2dt,k, we have hi(Q, IQ∩(C∩A)∪E1

(2t, 2t)) =

hi(Q, I(Ct,t∩Q)∪E1
(2t− 2, t)) = 0, i = 0, 1, by (7). The residual sequence of Q gives

hi(ICt,k∪A∪E1
(2t)) = 0, i = 0, 1.

Take an ordering {o1, . . . , ot−1} of E1 and let Mi the only element of |OQ(1, 0)|
with oi ∈ Mi. Set wi := Ri ∩Mi, 1 ≤ i ≤ t− 1. We fix a deformation {Lh(λ)}λ∈Λ,
h = 1, 2, of Lh with the following properties: Λ is a connected and affine smooth
curve, o ∈ Λ, Lh(o) = Lh, uh ∈ Lh(λ) for all λ, L1(λ) ∩ L2(λ) = ∅ for all λ
and Lh(λ) is transversal to Q for all λ 6= o. For each i with 1 ≤ i ≤ t − 1
there is a unique line Ri(λ) containing wi and intersecting both L1(λ) and L2(λ)
(Remark 6). There is a deformation {Rt(λ)}λ∈Λ of Rt with Rt(o) = Rt, Rt(λ)
intersecting both L1(λ) and L2(λ). Taking instead of Λ a smaller neighborhood
of o we may assume Ri(λ) ∩ Rj(λ) = ∅ for all i 6= j and all λ so that A(λ) :=
L1(λ) ∪ L2(λ) ∪ R1(λ) ∪ · · · ∪ Rt(λ) is a connected nodal curve of degree t + 2
and arithmetic genus t − 1. By semicontinuity (restricting if necessary Λ to a
neighborhood of o) we have hi(ICt,k∪A(λ)∪E1

(2t)) = 0, i = 0, 1, for all λ ∈ Λ. Fix
λ0 ∈ Λ \ {o}. Let {Bδ}δ∈∆ be a smoothing of A(λ0) fixing u1 and u2, i.e. take a
smooth and connected affine curve ∆ and a ∈ ∆ with Ba = A(λ0), Bδ a smooth
curve of degree t + 2 and genus t − 1 and {u1, u2} ⊂ Bδ for all δ. Restricting if
necessary ∆ we may assume that Bδ is transversal to Q and disjoint from Ct,k ∪E1

for all δ ∈ ∆ and (by semicontinuity) that hi(ICt,k∪Bδ∪E1
(2t)) = 0, i = 0, 1.

Since A(λ0) is transversal to Q, we may (up to a finite covering of ∆) find t − 1
sections s1, . . . , st−1 of the family {Bδ ∩Q}δ∈∆ of 2t+ 4 ordered points of Q with
si(a) = wi, i = 1, . . . , t − 1. Let Mj(δ), δ ∈ ∆, be the only element of |OQ(1, 0)|
with wi ∈ Mi(δ). Set oi(δ) := L1 ∩ Mi(δ) and E1(δ) := {o1(δ), . . . , ot−1(δ)}. By
semicontinuity for a general δ ∈ ∆ \ {a} we have hi(ICt,k∪Bδ∪E1(δ)(2t)) = 0. We
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fix such a δ and set X := Ct,k ∪ Bδ, S1 := E1(δ), S2 := ∅. For M(2t, t, t − 1) we
use the lines D1, D2 and Mj(δ), 1 ≤ j ≤ t− 1. �

Lemma 5. For each integer s ≥ t+ k+1 such that s ≡ t+ k+1 (mod 2) we have

2c(s, t, k) ≥ s+ 4 and 2c(s, t, k) ≥ s+ 6 is s ≥ t+ k + 3.

Proof. The case s = t + k + 1 is true by Remark 4. The general case follows by
induction s− 2 =⇒ s by Lemma 3. �

Lemma 6. Assume t ≥ 27 and k ∈ {t − 1, t}. Fix an integer s ≥ t + k + 1 such

that s ≡ t+ k + 1 (mod 2). If M(s, t, k) is true, then M(s+ 2, t, k) is true.

Proof. Let e ∈ {1, 2} be the integer arising in M(s, t, k) and f ∈ {1, 2} the corre-
sponding integer for M(s+2, t, k). Take (X,Q,D1, D2, S1, S2) satisfying M(s, t, k)
with X = Ct,k ⊔ Y and D1, D2 ∈ |OQ(1, 0)|. The 6-tuple (X ′, Q,D′

1, D
′
2, S

′
1, S

′
2)

will be a solution after exchanging the two rulings of Q, i.e. we will take D′
1, D

′
2 ∈

|OQ(0, 1)| and we use π1 instead of π2. In each step with d(s, t, k) 6= 0 we obtain
X ′ smoothing a curve W union of X , χ := ∪o∈S1∪S2

χ(o), e+1 elements |OQ(1, 0)|
and c(s + 2, t, k) − c(s, t, k) − e − 1 elements of |OQ(0, 1)|. See step (c) for the
easier case d(s, t, k) = 0 (here to get W we add to X a line D0 ∈ |OQ(1, 0)| and
c(s+ 2, t, k)− c(s, t, k)− 1 elements of |OQ(0, 1)|).

(a) Assume e = 2 and set z := d(s, t, k) + 3 − c(s + 2, t, k) + c(s, t, k). Since
d(s, t, k) ≤ s − 2, Lemma 3 gives d(s, t, k) ≤ 2(c(s + 2, t, k) − c(s, t, k) − 3), i.e.
z ≤ c(s + 2, t, k)− c(s, t, k)− 3. By assumption there is E ⊂ Y ∩ (Q \ (D1 ∪D2))
such that ♯(E) = z and π2(E) = π2(S2) ⊆ π2(S1). Take a line D0 ∈ |OQ(1, 0)|
different from D1, D2, with D0 ∩ E = ∅, D0 ∩ Ct,k ∩ Q = ∅ and D0 ∩ Y ∩ Q 6= ∅;
we use that 2c(s, t, k) ≥ 3 + z (Lemma 5). Take distinct lines Li ∈ |OQ(0, 1)|,
1 ≤ i ≤ c(s + 2, t, k) − c(s, t, k) − 3, such that Li ∩ Y 6= ∅ if and only if i ≤ z,

X ∩ (
⋃c(s+2,t,k)−c(s,t,k)−3

i=1 Li) = E, Li∩ (Ct,k ∩Q) = ∅ for all i. Set J := (D0∪D1∪
D2) ∪ (

⋃c(s+2,t,k)−c(s,t,k)−3
i=1 Li). We fix f general lines Ri ∈ |OQ(0, 1)|, 1 ≤ i ≤ f ,

and Ai ⊂ Ri, 1 ≤ i ≤ f , with the conditions
∑f

i=1 ♯(Ai) = b(s+ 2, t, k), π1(Af ) ⊆
π1(A1) and π1(Af ) ⊆ π1(Y ∩ (Q \ J)). Set χ := ∪o∈S1∪S2

χ(o), A := A1 ∪ A2

and W := X ∪ J ∪ χ. W is a flat degeneration of a disjoint union of Ct,k and
a smooth curve of degree c(s + 2, t, k) and genus g(s + 2, t, k), but to obtain a
deformation compatible with the data A1, A2, see steps (a1) and (a2). We have
ResQ(W ∪ A) = X ∪ S1 ∪ S2 and so hi(IResQ(W∪A)(s)) = 0, i = 0, 1. We have

hi(Q, I(W∩Q)∪A(s + 2, s+ 2)) = hi(Q, I(X∩(Q\J)∪A(s − 1, s+ 5 + c(s, t, k) − c(s +

2, t, k))). We have ♯((X ∩ (Q \ J)) ∪A) = h0(Q,OQ(s− 1, s+ 5 + c(s, t, k)− c(s+
2, t, k)). We have h1(Q, IA(s − 1, s + 5 + c(s, t, k) − c(s + 2, t, k))) = 0, because
s+5+ c(s, t, k)− c(s+2, t, k) > 0, f ≤ 2 and ♯(A1) ≤ s; this is a key reason for our
definition of M(s + 2, t, k). Therefore to prove that hi(Q, I(X∩(Q\J)∪A(s − 1, s +
5+ c(s, t, k)− c(s+ 2, t, k))) = 0, i = 0, 1, it is sufficient to prove that we may take
as X ∩ (Q \ J) a general subset of Q with its prescribed cardinality. By Remark 5
we have h1(NX(−2)) = 0. Since h1(NX(−2)) = 0, we may deform X keeping fixed
E so that the other points are general in Q.

(a1) We have just proved that hi(IW∪A(s+2)) = 0, i = 0, 1. If d(s+2, t, k) = 0,
then M(s + 2, t, k) is proved for e = 2. Now assume d(s + 2, t, k) > 0. To prove
M(s + 2, t, k) when e = 2 we need to deform W to a smooth X ′ = Ct,k ⊔ Y ′

intersecting transversally Q and (perhaps moving A) to obtain condition (b) of
M(s+2, t, k). Set Pi := Y ∩Di, i = 0, 1, 2. Let {Di(λ)}λ∈Λ be a deformation of Di
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with Λ a smooth and connected affine curve, o ∈ Λ, Di(o) = Di, Di(λ), λ ∈ Λ\{o},
a line of P3 transversal to Q and containing Pi. Fix i ∈ {1, . . . , z}. By Remark
6 for each λ ∈ Λ there is a unique line Li(λ) ⊂ P

3 such that D0 ∩ Li ∈ Li(λ),
Li(λ) ∩ D1(λ) 6= ∅ and Li(λ) ∩ D2(λ) 6= ∅; restricting if necessary Λ we may
assume that all Li(λ), λ 6= o, are transversal to Q. Fix an integer i with z < i ≤
c(s + 2, t, k) − c(s, t, k) − 3 and fix a general mi ∈ Li. By Remark 6 there is a
unique line Li(λ) such that mi ∈ Li(λ), Li(λ) ∩D1(λ) 6= ∅ and Li(λ) ∩D2(λ) 6= ∅;
restricting if necessary Λ we may assume that all Li(λ), λ 6= o, are transversal
to Q. Restricting if necessary Λ to a smaller neighborhood of o in Λ we may
assume that Li(λ) ∩ Lj(λ) = ∅ for all i 6= j, that Ct,k ∩ Li(λ) = ∅ for all i and
all λ, that Li(λ) ∩ D0 6= ∅ if and only if i ≤ z. Fix a general λ ∈ Λ and set

J(λ) := D0(λ) ∪ D1(λ) ∪ D2(λ) ∪ (
⋃c(s+2,t,k)−c(s,t,k)−3

i=1 Li(λ)). Let χ(λ) be the
union of all χ(q) with either q ∈ D1(λ) ∩ Li(λ), 1 ≤ i ≤ c(s+ 2, t, k)− c(s, t, k)− 3
or q ∈ D2(λ) ∩ Li(λ), 1 ≤ i ≤ z. Set W (λ) := X ∪ J(λ) ∪ χ(λ). W (λ) is the
disjoint union of Ct,k and of a degeneration of a flat family of smooth and connected
curves of degree c(s + 2, t, k) and genus g(s + 2, t, k). As in the first part of step
(a), restricting if necessary Λ, by semicontinuity we get hi(IW (λ)∪A(s + 2)) = 0,
i = 0, 1.

(a2) To proveM(s+2, t, k) we need to prove that there is a set like A (call it A′)
satisfying both hi(IW (λ)∪A′(s+2)) = 0, i = 0, 1, and condition (b) of M(s+2, t, k).
First of all, instead of Pi, 0 ≤ i ≤ 2, we take a family {Pi(λ)}λ∈Λ of points of Y with
Pi(o) = Pi and Pi(λ) ∈ Y \Y ∩Q for all λ ∈ Λ\{o}. Assume for the moment f = 2.
We modify the definition of Di(λ), because we impose that Pi(λ) ∈ Di(λ) (instead
of Pi ∈ Di), but we also impose that D1(λ) ∩R1 6= ∅ and D2(λ) ∩ R2 6= ∅ (this is
possible by Remark 6). Then we construct Li(λ) as above. With this new definition
R1 and R2 are secant lines of W (λ) \ (Ct,k ∪ Y ) , Y ⊂ W (λ), π1(A2) ⊆ π1(A1)
and π1(Af ) ⊆ π1(Q ∩ (Y \ J(λ) ∩ Y )); call m1, . . . ,mx, x = ♯(Af ), the points of
Y ∩ Q whose image is π1(Af ). We fix λ ∈ Λ \ {o}. Let {Bδ}δ∈∆ be a smoothing
of W (λ) with ∆ an affine and connected smooth curve, a ∈ ∆, and Ba = W (λ).
Set A(a) := A. Since Y is transversal to Q, up to a finite covering of ∆ we may
find x+ 2 sections s1, . . . , sx, z1, z2 of the total space of {Bδ}δ∈∆ with si(a) = mi,
z1(a) = R1 ∩ D1(λ), z2(a) = R2 ∩ D2(λ), si(δ) ∈ Bδ ∩ Q, z1(δ) ∈ Bδ ∩ Q and
z2(δ) ∈ Bδ ∩ Q for all ∆. Let Rh(δ), h = 1, 2, be the only element of |OQ(0, 1)|
containing zh(δ). For each δ ∈ ∆ \ {a} and i ∈ {1, . . . , x} let Mi(δ) ∈ |OQ(1, 0)| be
the only line of this ruling of Q containing si(δ). Set A1(δ) := ∪x

i=1(R1(δ)∩Mi(δ))

and A2(δ) := ∪d(s+2,t,k)−x
i=1 (R2(δ) ∩Mi(δ)). Set Xδ := Ct,k ∪ Bδ. By construction

(Xδ, Q,R1, R2, A1(δ), A2(δ)) satisfies condition (b) of M(s+2, t, k), exchanging the
two rulings of Q. By semicontinuity we have hi(IBδ∪A(δ)(s + 2)) = 0, i = 0, 1, for
a general δ ∈ ∆.

Now assume f = 1. In this case we only impose that Di(λ) meets R1; we have
π1(A1) ⊂ π1(Q ∩ (Y \ J(λ) ∩ Y )) and x = ♯(A1) = b(s+ 2, t, k).

(b) Assume e = 1 and d(s, t, k) > 0, i.e. assume 0 < d(s, t, k) ≤ c(s+2, t, k)−
c(s, t, k)− 3. We set S2 := 0 and ignore D2. We fix o ∈ S1. Take a line D0 6= D1

meeting Y ∩ Q and c(s + 2, t, k)− c(s, t, k) − 2 distinct lines Li ∈ |OQ(0, 1)|, with
Li∩ (Ct,k ∩Q) = ∅ for all i, Li∩ (Y ∩Q) 6= ∅ if and only if 1 ≤ i ≤ d(s, t, k)− 1 and

S1\{o} = D1∩(L1∪· · ·∪Ld(s,t,k)−1). Set J := (D0∪D1)∪(
⋃c(s+2,t,k)+c(s,t,k)−2

i=1 Li)
and χ := ∪o∈S1

χ(o). Note that χ(X ∪ J ∪χ)−χ(X) = c(s, t, k)− c(s+2, t, k) + 3.
To modify step (a2) we impose that D1(λ) ∩R1 6= ∅ and D0(λ) ∩R2 6= ∅.
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(c) Assume d(s, t, k) = 0. Hence S1 = S2 = ∅. Take a line D0 ∈ |OQ(1, 0)|
different from D1, D2 and with D0∩Y ∩Q 6= ∅. Take c(s+2, t, k)−c(s, t, k)−1 lines
Li ∈ |OQ(0, 1)|, 1 ≤ i ≤ c(s+ 2, t, k)− c(s, t, k)− 1, such that Li ∩ (Ct,k ∩Q) = ∅
for all i and Li ∩ (Y ∩ Q) 6= ∅ if and only if 1 ≤ i ≤ c(s + 2, t, k) − c(s, t, k) − 3.

Set J := D0 ∪ (
⋃c(s+2,t,k)−c(m,t,k)−1

i=1 Li), Y ′ := Y ∪ J and W := X ∪ J . Note
that χ(W ) − χ(X) = c(s, t, k) − c(s + 2, t, k) + 3. The union Y ′ is a connected
nodal curve, which is a flat degeneration of a family of smooth curves of degree
c(s + 2, t, k) and genus g(s + 2, t, k) not intersecting Ct,k. As in step (a) we get
h1(IW (s + 2)) = 0 and h0(IW (s + 2)) = d(s + 2, t, k). If d(s + 2, t, k) = 0, then
we are done, because A = ∅ and so condition (b) of M(s+ 2, t, k) is trivially true.
Now assume d(s+ 2, t, k) > 0.

First assume f = 2. As in step (a) we prove M(s + 2, t, k) interchanging the
rulings of Q and set x := c(s+4, t, k)−c(s+2, t, k)−3. We fix general lines R1, R2 ∈
|OQ(0, 1)| and take Ai ⊂ Ri such that π1(A2) ⊆ π1(A1) ∩ π1(Q∩ (Y \ J ∩ Y )). Set
A := A1 ∪ A2. For a general X we have hi(IW∪A(s + 2)) = 0, i = 0, 1. Set
q := D0 ∩ Y . By Remark 6 there is a family {D0(λ)}λ∈Λ of lines of P

3 and
o ∈ Λ with D0(o) = D0, ♯(D0(λ) ∩ Y ) = 1 for all λ, D0(λ) ∩ Y /∈ Q if λ 6= 0,
D0(λ) ∩ R1 6= ∅ and D0(λ) ∩ R2 6= ∅. Up to a finite covering of Λ we may also
find families {Li(λ)}λ∈Λ, 1 ≤ i ≤ c(s+ 2, t, k)− c(s, t, k)− 1. Set J(λ) = D0(λ) :=

D0∪ (
⋃c(s+2,t,k)−c(s,t,k)−1

i=1 Li(λ)). We do the smoothing of Y ∪J(λ) as in step (a2).
Finally, if f = 1 we only need D0(λ) ∩R1 6= ∅ for all λ. �

4. With a constant genus g

We fix an integer t ≥ 27 and take k ∈ {t−1, t}. We fix an integer g ≥ gt,k+g(t+
k+5, t, k). Let y be the maximal integer ≥ t+k+5 such that y ≡ t+k−1 (mod 2)
and gt,k+g(y, t, k) ≤ g (y exists, because limu→+∞ g(t+k+1+2u, t, k) = +∞). By
the definition of y we have y ≥ t+ k+5 and y ≡ t+ k− 1 (mod 2). For all integers
x ≥ y+2 with x ≡ y (mod 2) define the integers a(x, t, k, y) and b(x, t, k, y) by the
relation

(10) xdt,k +3− g+ xa(x, t, k, y) + b(x, t, k, y) =

(

x+ 3

3

)

, 0 ≤ b(x, t, k, y) ≤ x− 1

If x ≥ y+4, by taking the difference between equation (10) and the same equation
for the integer x′ := x− 2 we get

2dt,k + 2a(x, t, k, y) + (x + 2)(a(x+ 2, t, k, y)− a(x, t, k, y))

+b(x+ 2, t, k, y)− b(x, t, k, y) = (x+ 3)2(11)

Lemma 7. For each x ≥ y + 2 with x ≡ y (mod 2) we have 2(a(x + 2, t, k, y) −
a(x, t, k)) ≥ x+ 5.

Proof. Assume by contradiction 2(a(x+ 2, t, k, y)− a(x, t, k)) ≤ x+ 4. Recall that
for all u ≥ v > 0 we have

(12) (u+ v − 1)du,v + 2− gu,v =

(

u+ v + 2

3

)

First assume x odd, i.e. k = t. Since g(x+1)/2,(x+1)/2 > g, (12) and (10) give
d(x+1)/2,(x+1)/2 ≥ dt,k+a(x, t, k, y). Since b(x+2, t, k, y) ≤ x+1 and b(x, t, k, y) ≥ 0
(11) gives

(x+ 1)(x+ 3)/2 + (x+ 2)(x+ 4)/2 + x+ 1 ≥ (x + 3)2,
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which is false. Now assume x even, i.e. k = t − 1. Since g(x+2)/2,x/2 > g, (12)
and (10) gives d(x+2)/2,x/2 ≥ dt,k + a(x, t, k, y). Since b(x + 2, t, k, y) ≤ x + 1 and
b(x, t, k, y) ≥ 0 (11) gives

(x+ 2)2/2 + (x+ 2)(x+ 4)/2 + x+ 1 ≥ (x+ 3)2,

which is false. �

Lemma 8. We have 2(a(y + 2, t, k, y)− c(y, t, k)) ≥ y + 5.

Proof. Define the integers w, z by the relations

(13) (y + 2)(w + dt,k) + 3− gt,k − g(y, t, k) + z =

(

y + 5

3

)

, 0 ≤ z ≤ y + 1

Since g ≥ gt,k + g(y, t, k), we have w ≤ a(y + 2, t, k). Hence it is sufficient to prove
that 2(w−c(y, t, k)) ≥ y+5. Taking the difference between (13) and the case s = y
of (8) we get

2dt,k + 2c(y, t, k) + (y + 2)(w − c(y, t, k)) + z − d(y, t, k) = (y + 3)2

Then we continue as in the proof of Lemma 7 with y + 2 instead of x+ 2. �

The next lemma follows at once by induction on x, the inequality 2c(y, t, k) ≥
y + 6 and Lemmas 7 and 8.

Lemma 9. We have 2a(x, t, k, y) ≥ x + 6 for all integers x ≥ y + 2 with x ≡ y
(mod 2).

Lemma 10. For each x ≥ y + 2 with x ≡ y (mod 2) we have a(x, t, k, y) ≥
g − gt,k + 3.

Proof. First assume x = y + 2. We have

(y + 2)(dt,k + c(y + 2, t, k)) + 3− gt,k − g(y + 2, t, k) + d(y + 2, t, k) =

(y + 2)(dt,k + a(y + 2, t, k, y)) + b(y + 2, t, k, y) + 3− g

hence

(y + 2)(c(y + 2, t, k)− a(y + 2, t, k, y) + d(y + 2, t, k)− b(y + 2, t, k, y)

= g(y + 2, t, k)− g − gt,k(14)

By the definition of y the right hand side of (14) is negative. Since c(y + 2, t, k) ≥
g(y+2, t, k)+ 3, b(y+2, t, k, y) ≤ y+1, d(y+2, t, k) ≥ 0, we have c(y+2, t, k, y) ≥
g − gt,k.

Now assume x ≥ y + 4. By Lemma 7 we have a(x, t, k, y) ≥ a(y + 2, t, k, y). �

By Lemma 10 there is a non-special curve of degree a(x, t, k, y) and genus g−gt,k.
We need this observation in the next statement.

Assertion N(x, t, k, y), x ≥ y, x ≡ y (mod 2): Set e = 1 if 0 ≤ b(x, t, k, y) ≤
a(x+2, t, k, y)−a(s, t, k, y)−1 and e = 2 if b(x, t, k, y) ≥ a(x+2, t, k, y)−a(x, t, k, y).
There is a 6-tuple (X,Q,D1, D2, S1, S2) such that

(a) Q is a smooth quadric surface, X = Ct,k ⊔ Y , Y is a smooth non-special
curve of degree a(x, t, k, y) and genus g−gt,k and Q intersects transversally
X , with no line of Q containing ≥ 2 points of X ∩Q;
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(b) D1, D2 are different elements of |OQ(1, 0)|, each of them containing one
point of Y ∩Q, Si ⊂ Di \Di∩Y , 1 ≤ i ≤ 2, and ♯(S1)+ ♯(S2) = b(x, t, k, y);
π2(S2) ⊆ π2(S1) and π2(Se) ⊂ π2(Y ∩ (Q \ (D1 ∪ D2))); S2 = ∅ if e = 1,
♯(S2) = b(x+ 2, t, k, y)− a(x+ 2, t, k, y) + a(x, t, k, y) + 2 if e = 2;

(c) hi(IX∪S1∪S2
(x)) = 0, i = 0, 1.

Lemma 11. If N(x, t, k, y) is true, then N(x+ 2, t, k, y) is true.

Proof. We outline the modifications of the proof of Lemma 6 needed to get Lemma
11. Let e ∈ {1, 2} (resp. f ∈ {1, 2}) be the integer arising in N(x, t, k, y) (resp.
N(x + 2, t, k, y)). Take (X,Q,D1, D2, S1, S2) satisfying N(x, t, k, y). Set w :=
a(x+ 2, t, k, y)− a(x, t, k, y).

(a) Assume e = 2. Set z := b(x+2, t, k, y)+2−w. Since b(x+2, t, k, y) ≤ x+1,
Lemma 7 gives z ≤ w−2. Let Li ∈ |OQ(0, 1)|, 1 ≤ i ≤ w−2, be the lines such that

S1 = D1∩(L1∪· · ·∪Lw−2) and S2 = D2∩(L1∪· · ·∪Lz). Set J := D1∪D2∪(
⋃w−2

i=1 Li)
and χ := ∪o∈S1∪S2

χ(o). Condition (b) gives ♯(Li ∩ Y ) = 1 for all i. Condition (a)
gives Ct,k ∩ J = ∅. Hence W := X ∪ J ∪ χ is a smoothable curve of degree
a(x+ 2, t, k, y) with h1(OW ) = g.

(b) Assume e = 1, i.e. assume d(x + 2, t, k, y) ≤ w − 1. Let Li ∈ |OQ(0, 1)|,
1 ≤ i ≤ b(x, t, k, y), be the lines such that S1 = D1 ∩ (L1 ∪ · · · ∪ Lb(x,t,k,y)). Take

general lines Lj ∈ |OQ(0, 1)|, b(x, t, k, y) < j ≤ w − 1. Set J := D1 ∪ (
⋃w−1

i=1 Li)
and χ := ∪o∈S1

χ(o). Condition (a) gives Ct,k ∩ J = ∅. Hence W := X ∪ J ∪ χ is a
smoothable curve of degree a(x+ 2, t, k, y) with h1(OW ) = g. �

Lemma 12. N(y + 2, t, k, y) is true.

Proof. Use the proof of Lemma 6 and Lemma 11 starting with (X,Q,D1, D2, S1, S2)
satisfying M(y, t, k) and quoting Lemma 8 instead of Lemma 7. �

5. Proving Conjecture 1

In order to prove Theorem 1 and Corollary 1, first of all we notice that from the
previous section we could deduce with a small effort the following two facts, but
that (as explained at the end of the introduction) they would not prove Theorem
1 and Corollary 1.

For each integer d such that g − 3 ≤ d ≤ d(m, g)max there exists a smooth and
connected curve X1 ⊂ P

3 such that deg(X1) = d, g(X) = g, h1(OX1
(m − 2)) = 0,

h1(IX1
(m)) = 0 and h1(NX1

(−1)) = 0.
For each integer d ≥ d(m, g)min there exists a smooth and connected curve

X2 ⊂ P
3 such that deg(X2) = d, g(X) = g, h1(OX2

(m−2)) = 0, h0(IX2
(m−1)) = 0

and h1(NX2
(−1)) = 0.

Now fix an integer d such that d(m, g)min ≤ d ≤ d(m, g)max. To prove Theorem 1
for the pair (d, g) it is sufficient to prove that we may find X1, X2 as above and with
the additional condition that X1 and X2 are in the same irreducible component,
Γ, of Hilb(P3). If we prove this statement, then by the semicontinuity theorem for
cohomology ([14, III.8.8]) we get h1(IX(m)) = 0 and h0(IX(m − 1)) = 0, hence
we would conclude the proof for the pair (d, g). To get X1 and X2 in the same
irreducible component of Hilb(P3) we need to rewrite the proofs of the previous
section with a few improvements. But first we need to distinguish between the
case in which d is very near to d(m, g)min and the case in which d is very near to
d(m, g)max. In the first case (say d(m, g)min ≤ d ≤ d′) we will modify the proof
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of the existence of X2 with h0(IX2
(m − 1)) = 0 to get (for the same curve X2)

also h1(IX2
(m)) = 0. If d is very near to d(m, g)max (say d′′ ≤ d ≤ d(m, g)max)

we will modify the proof of the existence of the curve X1 to get a curve X1 with
h1(IX1

(m)) = 0 and h0(IX1
(m − 1)) = 0. We use that N(x, t, k, y) are true for

x = m− 5,m− 4,m− 3,m− 2 (Lemma 13).
Set ǫ := 0 if m is odd and ǫ := 1 if m is even.

5.0.1. Near d(m, g)min. In this range the most difficult part is the proof of the
existence of X2. It is the construction of X2 which says in which W (t′, k′, d′, b′) we
will try to findX1. Recall that to get a curveX2 with h0(IX2

(m−1)) = 0 we started
with a curve Ct,t−ǫ with hi(ICt,t−ǫ

(2t− 1− ǫ)) = 0, where t is the maximal integer
t > 0 such that such that gt,t−ǫ+g(2t+5−ǫ, t, t−ǫ) ≤ g. Set k := t−ǫ. Recall that
an elementW of U(t, k, ad, b) has degree d and h1(OW ) = g if and only if b = g−gt,k
and ad = d − dt,k. The component W (t′, k′, d′, b′) is the component W (t, k, ad, b),
where b = g − gt,k and ad = d − dt,k. The curve T satisfying N(m − 1, t, k, y)
has h1(OT ) = g, 3 connected components, h0(IT (m − 1)) = b(m − 1, t, k, y) and
h1(IT (m − 1)) = 0, hence d > a(m − 1, t, k, y) + dt,k. The minimum integer
d(m, g)min is a(m− 1, t, k, y)+ dt,k +1, unless b(m− 1, t, k, y) ∈ {m− 2,m− 1} (in
the latter case we have d(m, g)min = a(m− 1, t, k, y) + dt,k + 2).

(a) We make the construction of Section 4 for the integerm′ := m−1 ≡ t+k−1
(mod 2) and the integer g (note that the numerology for g in Theorem 1 is such
that we may do the construction of Section 4 for m′ := m − 1 and the integer
g). We get an integer y ≤ m′ − 4 = m − 5 with y ≡ t + k − 1 ≡ 0 (mod 2).
Then for all integers x ≥ y + 2 with x ≡ y (mod 2) we proved N(x, t, k, y). Hence
N(m− 5, t, k, y) and N(m− 3, t, k, y) are true (Lemma 13). Since d ≥ d(m, g)min,
we have d > a(m− 1, t, k, y) + dt,k, hence we want to add in a smooth quadric Q a
certain union of d−a(m−3, t, k, y)−dt,k lines. We write Ct∪C′

k for a general (but
fixed in this construction) Ct,k, because we need to distinguish the two connected
components of Ct,k, even when k = t.

(a1) Assume d = d(m, g)min = a(m − 1, t, k, y) + dt,k + 1. Set z := d −
a(m− 3, t, k, y)− dt,k = 1 + a(m− 1, t, k, y)− a(m− 3, t, k, y). We need to modify
N(m− 3, t, k, y) in the following way.

Assertion N ′(m−3, t, k, y), m−3 ≡ y (mod 2): Set e = 1 if b(m−3, t, k, y) ≤
z− 3 and e = 2 if b(m− 3, t, k, y) ≥ z − 2. There is a 6-tuple (X,Q,D1, D2, S1, S2)
such that

(a) Q is a smooth quadric surface, X = Ct ⊔ C′
k ⊔ Y , Y is a smooth curve of

degree a(m− 3, t, k, y) and genus g− gt,k and Q intersects transversally X ,
with no line of Q containing ≥ 2 points of X ∩Q;

(b) D1, D2 are different elements of |OQ(1, 0)|, D1 ∩ Ct 6= ∅, D2 ∩ Ck 6= ∅,
Si ⊂ Di \Di ∩ (Ct ∪ C′

k), 1 ≤ i ≤ 2, and ♯(S1) + ♯(S2) = b(m − 3, t, k, y);
π2(S2) ⊆ π2(S1), π2(Se) ⊂ π2(Y ∩ (Q \ (D1 ∪ D2))); S2 = ∅ if e = 1,
♯(S2) = b(m− 3, t, k, y)− z + 3 if e = 2;

(c) hi(IX∪S1∪S2
(m− 3)) = 0, i = 0, 1.

As in the proof of Lemma 6 and Lemma 11 we get (X,Q,D1, D2, S1, S2), X =
Ct ⊔ C′

k ⊔ Y satisfying N ′(m − 3, t, k, y); in the proof of Lemma 6 we take R1

containing a point of Ct ∩Q instead of a point of Y ∩Q and R2 containing a point
of C′

k ∩Q instead of a point of Y ∩Q.
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(a1.1) Assume b(m− 3, t, k, y) = 0. Take D0 ∈ |OQ(1, 0)| containing one point
of Y ∩Q, L1 ∈ |OQ(0, 1)| containing a point of Ct, L2 ∈ |OQ(0, 1)| containing a point
of C′

k and general Li ∈ |OQ(0, 1)|, 3 ≤ i ≤ z − 1. Set J := D0 ∪ (
⋃z−1

i=1 Li). Since
X ∩ (Q\J) is a general subset of Q with cardinality 2dt,k+2a(m−3, t, k, y)−3, we
have h0(Q, IQ∩(X∪J)(m−1)) = h0(Q, IX∩(Q\J)(m−2,m−z)) = 0 (use (10) for x =
m−3, that z = 1+a(m−1, t, k, y)−a(m−3, t, k, y) and that b(m−1, t, k, y) ≤ m−2).
Since ResQ(X ∪ Y ) = X and h0(IX(m − 3)) = 0, we have h0(IX∪J (m − 1)) = 0.
The union X ∪ J is a nodal and connected smoothable curve of degree d and
arithmetic genus g and Y ∪ J is a connected smoothable curve of degree d − dt,k
and arithmetic genus g−gt,k−2 ≥ 26. We may smooth Y ∪J in a family of curves,
all of them containing the two points (Ct∪C′

k)∩J . Call E a general element of this
smoothing. Since Aut(P3) is 2-transitive, we may see E as a general non-special
space curve of its degree and its genus ≥ 26. By construction and Lemma 2 we have
Ct ∪ C′

k ∪ E ∈ U(t, k, ad, b) and h1(NCt∪C′

k
∪E(−1)) = 0. By semicontinuity there

is a smooth X2 ∈ W (t, k, ad, b) with h0(IX2
(m− 1)) = 0 and h1(NX2

(−1)) = 0.
(a1.2) Assume 0 < b(m − 3, t, k, y) ≤ z − 3. Hence S2 = ∅. We take D1 and

call Li ∈ |OQ(0, 1)|, 1 ≤ i ≤ b(m − 3, t, k, y), the elements of |OQ(0, 1)| such that
S1 = D1 ∩ (L1 ∪ · · · ∪ Lb(m−3,t,k,y)); note that each line Li contains a point of
Y ∩ Q. Take any Lb(m−3,t,k,y)+1 ∈ |OQ(0, 1)| with C′

k ∩ Lb(m−3,t,k,y)+1 6= ∅, any
Lb(m−3,t,k,y)+2 ∈ |OQ(0, 1)| with Y ∩ Lb(m−3,t,k,y)+2 6= ∅, Lb(m−3,t,k,y)+2 6= Li for
i ≤ b(m − 3, t, k, y) and (if b(m − 3, t, k, y) < z − 3) take general Lj ∈ |OQ(0, 1)|,
b(m − 3, t, k, y) + 3 ≤ j ≤ z − 1. Set J := D1 ∪ (

⋃z−1
i=1 Li), χ := ∪o∈S1

χ(o) and
W := X ∪ J ∪ χ. We have ResQ(W ) = X ∪ S1 and thus h0(IResQ(W )(m− 3)) = 0.
Since W ∩ Q is the union of J and 2dt,k + 2a(m − 3, t, k, y)− b(m − 3, t, k, y)− 3
general points of Q and b(m− 1, t, k, y) ≤ m− 1, (11) gives h0(Q, IW∩Q(m− 1)) =
h0(Q, IX∩(Q\J)(m − 2,m − z)) = 0. Thus h0(IW (m − 1)) = 0. We first deform

W to the union F of Ct ∪C′
k ∪D1 ∪ Y ∪ (

⋃z−1
i=b(m−3,t,k,y)+1 Li) and b(m− 3, t, k, y)

disjoint lines M1, . . . ,Mb(m−3,t,k,y), each of them containing one point of Y . The
union F is a nodal and connected curve. Write F = Ct ∪ C′

k ∪ G. We have
♯(G ∩Ct) = ♯(G ∩C′

k) = 1. Let G′ be a general smoothing of G fixing the 2 points
of (Ct∪C′

k)∩G. Ct∪C′
k∪G′ ∈ U(t, k, ad, b). By Lemma 2 and semicontinuity there

is a smooth X2 ∈ W (t, k, ad, b) with h0(IX2
(m− 1)) = 0 and h1(NX2

(−1)) = 0.
(a1.3) Assume b(m − 3, t, k, y) ≥ z − 2. Since z = a(m − 1, t, k, y) − a(m −

3, t, k, y)+ 1 and b(m− 3, t, k)) ≤ m− 4, Lemma 7 gives 2(z− 3) ≥ b(m− 3, t, k, y).

Let Li ∈ |OQ(0, 1)|, 1 ≤ i ≤ z − 3, be the lines such that S1 = D1 ∩ (
⋃z−3

i=1 Li)
and S2 := D2 ∩ (

⋃w
i=1 Li). Take Lz−2 ∈ |OQ(0, 1)| containing one point of Y ∩ Q

and different from the other lines Li, i ≤ z − 3. Set J := D1 ∪ D2 ∪ (
⋃z−2

i=1 Li),
χ := ∪o∈S1

χ(o) and W := X ∪ J ∪ χ. We have ResQ(W ) = X ∪ S1 ∪ S2 and thus
h0(IResQ(W )(m−3)) = 0. SinceW∩Q is the union of J and 2dt,k+2a(m, t, k, y)−w−
3 general points of Q and b(m−1, t, k, y) ≤ m−1 (11) gives h0(Q, IW∩Q(m−1)) =
h0(Q, IX∩(Q\J)(m − 2,m − z)) = 0. Thus h0(IW (m − 1)) = 0. We first deform

W to the union F of Ct ∪ C′
k ∪ D1 ∪ D2 ∪ Y ∪ (

⋃z−2
i=w+1 Li) and w disjoint lines

M1, . . . ,Mw, each of them containing one point of Y . The union F is a nodal and
connected curve. Write F = Ct ∪ C′

k ∪ G. We have ♯(G ∩ Ct) = ♯(G ∩ C′
k) = 1.

Let G′ be a general smoothing of G fixing the 2 points of (Ct ∪ C′
k) ∩G. We have

Ct ∪ C′
k ∪ G′ ∈ U(t, k, ad, b). By Lemma 2 and semicontinuity there is a smooth

X2 ∈ W (t, k, ad, b) with h0(IX2
(m− 1)) = 0 and h1(NX2

(−1)) = 0.
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(a1.4) Assume d(m, g)min = a(m − 1, t, k, y) + dt,k + 2. We are in the set-up
of step (a1.3) with the integer z′ := a(m − 1, t, k, y)− a(m − 3, t, k, y) + 2 instead
of the integer z := a(m− 1, t, k, y)− a(m− 3, t, k, y) + 1.

(a2) Assume d > d(m, g)min and set w := d−d(m, g)min. By step (a1) there is
a nodal curve E = Ct ∪C′

k ∪F ∈ U(t, k, ad −w, b) with ♯(Ct ∩F ) = ♯(C′
k ∩F ) = 1,

Ct ∩ D′
k = ∅, F and h0(IE(m − 1)) = 0. Take a general union G of F and w

lines, each of them meeting F at exactly one point and quasi-transversally. By
construction E′ := Ct ∪ C′

k ∪ G is nodal and Ct ∩ G = Ct ∩ F , C′
k ∩ G = C′

k ∩ F .
Since h0(IE(m−1)) = 0 and E′ ⊃ E, we have h0(IE′(m−1)) = 0. We may smooth
G keeping fixed the points Ct∩F and C′

k∩F , because Aut(P3) is 2-transitive. Hence
there is a non-special smooth curve G′′ of degree d − dt,k and genus g − gt,k with
Ct ∩ G′′ = Ct ∩ F , C′

k ∩ G′′ = C′
k ∩ F and which is a general member of a family

with F ′ as its special member and with Ct ∪C′
k ∪G′′ nodal. By semicontinuity we

have h0(ICt∪C′

k
∪G′′(m− 1)) = 0. We have Ct ∪ C′

k ∪G′′ ∈ U(t, k, ad, b).

(b) Set α := t(t − 2) if k = t and α := t2 − 3t + 1 if k = t − 1. Fix a plane
H , a smooth conic D ⊂ H and general Ct,k. We have D ∩ Ct,k = ∅ and Ct,k ∩ H
is a general subset of H with cardinality dt,k. Hence h0(H, IH∩(Ct,k∪D)(t + k)) =

h0(H, ICt,k∩H(t+ k − 1)) =
(

t+k+1
2

)

− dt,k = α and h1(H, IH∩(Ct,k∪D)(t+ k)) = 0.
Then we continue the construction from the critical value t+ k to the critical value
t + k + 2, then to the critical value t + k + 4, and so on up to the critical value
m− 2; in each step, say to arrive at the critical value x from a curve A′ and a set
S′ with h1(IA′∪S′(x − 2)) = 0 and h0(IA′∪S′(x − 2)) = α and 0 ≤ ♯(S′) ≤ x − 3
(and so ♯(S′) =

(

x+1
3

)

− (x − 2) deg(A′) − 3 + g − α ; we have bijectivity inside Q

and get a curve A′′ and a set S′′ with h1(IA′′∪S′′(x)) = 0 and h0(IA′′∪S′′(x)) ≤ α.
In the last step we also need to connect the connected components of the curve and
get an element B ∈ U(t, k, a′, b) for some a′; we need to check that at each step
the numerical conditions are satisfied. Call (X,Q,D1, D2, S1, S2) the curve we get
for OP3(m − 2) and either e = 1 or e = 2. Set S := S1 ∪ S2 and α′ := ♯(S). We
have 0 ≤ α′ ≤ m − 3. Since S is a union of connected components of X ∪ S, the
restriction map H0(OX∪S(m − 2)) → H0(OX(m − 2)) is surjective and its kernel
has dimension ♯(S). Since h1(IX∪S(m − 2)) = 0, we have h1(IX(m − 2)) = 0
and h0(IX(m − 2) = α + α′ ≤ α + m − 3. We cover in this way the integers

d such that
(

m+3
3

)

+ g − 1 − dm ≥ α + m − 3. Hence we cover all d such that
d(m, g)max − d ≥ 1 + ⌊α/m⌋. If t ≤ m/4 we have α/m ≤ m/4.

5.0.2. Near d(m, g)max. In this range the most difficult part is the existence of X1

with h1(IX1
(m)) = 0 and it is this part which dictates the componentW (t′, k′, a′, b′)

in which we will find both X1 and X2. We stress that the integers t, k introduced
in this subsection are not the same as in the previous one and hence also y may be
different.

(a) In this step we prove the existence of X1. We start with the maximal
integer k such that gk+1−ǫ,k + g(2k+ 6− ǫ, k+ 1− ǫ, k) ≤ g and set t := k+ 1− ǫ.
We use N(x, t, k, y). In particular we have N(m−4, t, k, y) andN(m−2, t, k, y). Set
ad := d−dt,k and b := g−gt,k. In this step we prove the existence of A ∈ U(t, k, ad, b)
with h1(IA(m)) = 0, hence by semicontinuity the existence of X1 ∈ W (t, t−1, ad, b)
with h1(IX1

(m)) = 0. Set z := d − a(m − 2, t, k, y) − dt,k. We write Ct ∪ C′
k for

a general (but fixed in this construction) Ct,k, because we need to distinguish the
two connected components, even when k = t. Recall that we have (1).
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(a1) Assume d = d(m, g)max. Let T be any curve satisfying N(m, t, k, y).
We have deg(T ) = dt,k + a(m, t, k, y), h1(OT ) = g, h1(OT (m)) = 0, T has 3
connected components, h1(IT (m)) = 0 and h0(IT (m)) = b(m, t, k, y). By (1) we
have d = a(m, t, k, y) + dt,k if b(m, t, k, y) ≤ m− 3 and d = a(m, t, k, y) + dt,k +1 if
m−2 ≤ b(m, t, k, y) ≤ m−1. Hence a(m, t, k, y)−a(m−2, t, k) ≤ z ≤ a(m, t, k, y)−
a(m− 2, t, k, y) + 1. Call η the difference between the right hand side and the left
hand side of (1).

Assertion N ′′(m− 2, t, k, y), m ≡ y (mod 2): Set e = 1 if b(m− 2, t, k, y) ≤
z− 3 and e = 2 if b(x, t, k, y) ≥ z− 2. There is a 6-tuple (X,Q,D1, D2, S1, S2) such
that

(a) Q is a smooth quadric surface, X = Ct ⊔ C′
k ⊔ Y , Y is a smooth curve of

degree a(m− 2, t, k, y) and genus g− gt,k and Q intersects transversally X ,
with no line of Q containing ≥ 2 points of X ∩Q;

(b) D1, D2 are different elements of |OQ(1, 0)|, D1 ∩ Ct 6= ∅, D2 ∩ C′
k 6= ∅,

Si ⊂ Di \ Di ∩ (Ct ∪ C′
k), 1 ≤ i ≤ 2, and ♯(S1) + ♯(S2) = b(x, t, k, y);

π2(S2) ⊆ π2(S1) and π2(Se) ⊂ π2(Y ∩ (Q \ (D1 ∪ D2))); S2 = ∅ if e = 1,
♯(S2) = b(m− 2, t, k, y)− z + 2 if e = 2;

(c) hi(IX∪S1∪S2
(x)) = 0, i = 0, 1.

As in the proof of Lemma 6 and Lemma 11 we get (X,Q,D1, D2, S1, S2), X =
Ct ⊔ C′

k ⊔ Y satisfying N ′′(m − 2, t, k, y); in the proof of Lemma 6 we take R1

containing a point of Ct ∩Q instead of a point of Y ∩Q and R2 containing a point
of C′

k ∩Q instead of a point of Y ∩Q.
(a1.1) Assume b(m− 2, t, k, y) = 0. Take z − 1 distinct lines Li ∈ |OQ(0, 1)|,

1 ≤ i ≤ z − 1, such that Li ∩ Ct = ∅ for all i, Li ∩ C′
k 6= ∅ if and only if i = 1

and Li ∩ Y 6= ∅ if and only if i = 2. Set J := D1 ∪ (
⋃z−1

i=1 Li). Since X ∩ (Q \ J)
is a general subset of Q with cardinality 2dt,k + 2a(m − 3, t, k, y) − 3, we have
h1(Q, IQ∩(X∪J)(m)) = h1(Q, IX∩(Q\J)(m−1,m+1−z)) = 0 (use the generality of
X ∩ (Q \ J) and the difference between (1) and the case x := m− 2 of (10), which
gives an upper bound for ♯(X ∩ (Q \ J)); we get an equality if and only if η = 0,
i.e. b(m, t, k, y) = m− 2 and d = a(m, t, k, y) + dt,k + 1). Since ResQ(X ∪ J) = X
and h1(IX(m − 2)) = 0, we have h1(IX∪J(m)) = 0. The union X ∪ J is a nodal
and connected smoothable curve of degree d and arithmetic genus g and Y ∪ J is a
smooth and connected curve of degree d−dt,k and arithmetic genus g−gt,k−2 ≥ 26.
We may smooth Y ∪ J in a family of curves, all of them containing the two points
(Ct ∪ C′

k) ∩ J . Call E a general element of this smoothing. Since Aut(P3) is 2-
transitive, we may see E as a general non-special space curve of its degree and its
genus ≥ 26. By construction and Lemma 2 we have Ct ∪C′

k ∪E ∈ U(t, k, ad, b) and
h1(NCt∪C′

k
∪E(−1)) = 0. By semicontinuity there is a smooth X1 ∈ W (t, k, ad, b)

with h1(IX1
(m)) = 0 and h1(NX1

(−1)) = 0.
(a1.2) Assume 0 < b(m − 2, t, k, y) ≤ z − 3. Hence S2 = ∅. We take D1 and

call Li ∈ |OQ(0, 1)|, 1 ≤ i ≤ b(m − 2, t, k, y), the elements of |OQ(0, 1)| such that
S1 = D1 ∩ (L1 ∪ · · · ∪ Lb(m−2,t,k,y)); note that each line Li contains a point of
Y ∩ Q. Take any Lb(m−2,t,k,y)+1 ∈ |OQ(0, 1)| with C′

k ∩ Lb(m−2,t,k,y)+1 6= ∅, any
Lb(m−2,t,k,y)+2 ∈ |OQ(0, 1)| with Y ∩ Lb(m−2,t,k,y)+2 6= ∅, Lb(m−2,t,k,y)+2 6= Li for
i ≤ b(m − 2, t, k, y) and (if b(m − 2, t, k, y) < z − 3) take general Lj ∈ |OQ(0, 1)|,
b(m − 2, t, k, y) + 3 ≤ j ≤ z − 1. Set J := D1 ∪ (

⋃z−1
i=1 Li), χ := ∪o∈S1

χ(o) and
W := X ∪ J ∪ χ. We have ResQ(W ) = X ∪ S1 and thus h1(IResQ(W )(m− 2)) = 0.
Since η ≥ 0, (1) and the case x = m− 2 of (11) give 2dt,k + 2a(m, t, k, y)− b(m−
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2, t, k, y)−3 = m(m+3−z)−η ≤ h0(Q,OQ(m−2,m+2−z)). Since W ∩Q is the
union of J and 2dt,k+2a(m, t, k, y)−b(m−2, t, k, y)−3 general points of Q, we have
h1(Q, IW∩Q(m)) = h1(Q, IX∩(Q\J)(m− 1,m+ 1− z)) = 0. Thus h1(IW (m)) = 0.

We first deform W to the union F of Ct ∪C′
k ∪D1 ∪ Y ∪ (

⋃z−1
i=b(m−3,t,k,y)+1 Li) and

b(m − 3, t, k, y) disjoint lines M1, . . . ,Mb(m−3,t,k,y), each of them containing one
point of Y . The union F is a nodal and connected curve. Write F = Ct ∪ C′

k ∪G.
We have ♯(G∩Ct) = ♯(G∩C′

k) = 1. Let G′ be a general smoothing of G fixing the 2
points of (Ct∪C′

k)∩G. Ct∪C′
k∪G′ ∈ U(t, k, ad, b). By Lemma 2 and semicontinuity

there is a smooth X2 ∈ W (t, k, ad, b) with h1(IX2
(m)) = 0 and h1(NX2

(−1)) = 0.
(a1.3) Assume b(m− 2, t, k, y) ≥ z − 2. Since z ≥ a(m, t, k, y)− a(m− 2, t, k)

and b(m−2, t, k, y) ≤ m−3, the case x = m−2 of Lemma 7 gives 2(z−3) ≥ b(m−
2, t, k, y). Set w := b(m−2, t, k)−z+3. Let Li ∈ |OQ(0, 1)|, 1 ≤ i ≤ z−3, be the line

such that S1 = D1(
⋃z−3

i=1 Li) and S2 := D2 ∩ (
⋃w

i=1 Li). Let Lz−2 ∈ |OQ(0, 1)| be a
line with Lz−2 6= Li for any i 6= z−2 and Lz−2∩Y 6= ∅. Note that Lj∩Y 6= ∅ if and

only if either j ≤ w or j = z− 2. Set J := D1 ∪D2 ∪ (
⋃z−2

i=1 Li), χ := ∪o∈S1∪S2
χ(o)

and W := X ∪ J ∪ χ and continue as in the last step.
(a2) Assume d < d(m, g)max We have η ≥ m(d(m, g)max − d) ≥ m and in

particular η ≥ m ≥ b(m − 2, t, k, y) + 2. To prove the existence of X1 in this
component we only need that z ≥ 3, i.e. that d ≥ am−2,t,k,y+dt,k+3, which is true

because 1+(m−1)d−g ≥
(

m+2
3

)

and (m−1)(a(m−2, t, k, y)+dt,k)+3−g =
(

m+1
2

)

−
a(m− 2, t, k)− dt,k + b(m− 2, t, k, y) ≥ 3m. Take (X,Q,D1, D2, S1, S2) satisfying
N(m − 2, t, k, y) with X = Ct ⊔ C′

k ⊔ Y and throw away D1, D2, S1 and S2. Fix
D ∈ |OQ(1, 0)| containing one point of Y ∩Q and z−1 distinct lines Li ∈ |OQ(0, 1)|
with Li ∩ Y = ∅ for all i, Li ∩ Ct 6= ∅ if and only if i = 1 and Li ∩ C′

k 6= ∅ if and

only if i = 2. Set J := D ∪ (
⋃z−1

i=1 Li) and W := X ∪ J . As in the previous steps
it is sufficient to prove that h1(IW (m)) = 0. We have ResQ(W ) = X and thus
h1(IResQ(W )(m− 2)) = 0. Hence it is sufficient to prove that h1(Q, IW∩Q(m)) = 0.

We have h1(Q, IQ∩W (m)) = h1(Q, IX∩(Q\J)(m − 1,m + 1 − z)). Since X ∩ Q is
general in Q, it is sufficient to prove that ♯(X ∩ (Q \ J)) ≤ m(m+ 2− z). We have
♯(X ∩ (Q \ J)) = 2dt,k + 2a(m− 2, t, k, y)− 3. By the definition of η and (10) for
x = m−2 we have 2dt,k+2a(m−2, t, k, y)−3 = m(m+2−z)+b(m−2, t, k, y)+2−η ≤
m(m+ 2− z).

(b) In this part we get the existence of A ∈ U(t, k, ad, b) with h0(IA(m −
1)) = 0, deg(A) = d and pa(A) = g, hence by semicontinuity the existence of
X2 ∈ W (t, k, ad, b) with h0(IX2

(m − 1)) = 0. We have hi(ICt,k
(t + k − 1)) = 0,

i = 0, 1 and m − 1 ≡ t + k (mod 2). Fix a plane H . Let c be the maximal

integer such that
(

t+k+2−c
2

)

≤ dt,k. Let E ⊂ H be a general linear projection

of a general smooth and rational degree c curve E′ ⊂ P
3. The curve E is nodal

and it has (c − 1)(c − 2)/2 singular points. Set χ := ∪p∈Sing(E)χ(p). The union

E ∪ χ is the flat limit of a family of degree c smooth rational curves in P
3 ([14,

Fig. 11 at p. 260]. Hence to prove that a general union of some Ct,k and a smooth
rational curve of degree c is contained in no surface of degree t + k it is sufficient
to prove that h0(ICt,k∪E∪χ(t + k) = 0 for a general Ct,k. Thus it is sufficient to

prove that h0(ICt,k∪E(t + k)) = 0 for a general Ct,k. For a general Ct,k we have
Ct,k ∩ E = ∅ and Ct,k ∩ H is a general subset of H with cardinality dt,k. By
definition c is the minimal positive integer such that h0(H, ICt,k∩H(t+ k− c)) = 0.

Set β = h0(OCt,k∪E∪χ(t+ k))−
(

t+k+3
3

)

. Since
(

t+k+2−c
2

)

−
(

t+k−1
2

)

= t+ k+1− c,
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we have β ≤ (c − 1)(c − 2)/2 + t + k + 1 − c. Then we continue from the critical
value t+ k to the critical value t+ k + 2 and so on.

At the end we obtain some B ∈ U(t, k, ad, b) with h0(IB(m − 1)) = 0 if 1 +

d(m− 1)− g ≥
(

m+2
3

)

+ β. In particular it is sufficient to assume d ≥ d(m, g)min +

⌈β/(m − 1)⌉. We have c ∼
√
2t, because deg(Ct,k) ∼ t2 and

(

t+k+2
2

)

∼ 2t2.

Hence β ∼ (c − 1)(c − 2)/2 ∼ t2. Since t ≤ m/4, it is sufficient to have roughly
d ≥ d(m, g)min +m/4.

Lemma 13. Fix t and k ∈ {t − 1, t} such that y ≡ t + k − 1 (mod 2) and let

gt,k + g(t + k + 5, t, k) ≤ g ≤ −1 + gt+1,k+1 + g(t + k + 7, t + 1, k + 1). Then we

have y ≤
√
20t− 1. In particular, if t ≥ ⌊m/

√
20⌋ − 5 then y ≤ m− 6.

Proof. We have gt+1,k+1−gt,k = 2t2−2 if k = t and gt+1,k+1−gt,k = 2t2−2t−1 if
k = t− 1. By definition of y, we have y ≥ k+ t+5 and g ≥ gt,k + g(y, t, k) = gt,k +

c(y, t, k)−c(t+k+1, t, k)−3(y−t−k−1)/2−3 = gt,k+
∑(y−t−k−1)/2

i=1 (t+k+1+2i+
3)/2−3(y−t−k−1)/2−3 = gt,k+1/8(t+k+y+9)(y−t−k−1)−3(y−t−k−1)/2−3.
On the other hand, we have g ≤ −1 + gt+1,k+1 + g(t + k + 7, t + 1, k + 1) ≤
−1 + gt+1,k+1 + 3(t + k + 7). Hence we get 1/8(t + k + y + 9)(y − t − k − 1) ≤
gt+1,k+1− gt,k +3(y− t−k− 1)/2+3− 1+3(t+k+7) and in particular (y+1)2 ≤
20t2. �

Proof of Theorem 1: We fix the integer g and we perform the above construction
in both the odd and the even case, by taking either k = t or k = t − 1. We have
h1(O(Ct,k(t− 1) = 0, hence we get h1(O(CX(t − 1) = 0 by a repeated application
of Mayer-Vietoris and semicontinuity. For every t ≥ 27 such that g ≥ gt+3,k+3 ≥
gt,k + g(t + k + 5, t, k) we get an integer y ≡ t + k − 1 such that the statement of
Theorem 1 holds for every m ≥ y + 6 with m ≡ y (mod 2). By Lemma 13, the

condition m ≥ y + 6 is satisfied for every t ≥ ⌊m/
√
20⌋ − 5, hence we obtain our

statement for every g with 2g30 = 17052 ≤ g ≤ ϕ(m). �

Proof of Corollary 1: Let m be the minimal non-negative integer such that

(15) md+ 1− g ≤
(

m+ 3

3

)

The minimality of m gives

(16) (m− 1)d+ 1− g >

(

m+ 2

3

)

,

in particular d ≥ (m+2)(m+1)m
6(m−1) ≤ m2

6 . From (15) and (16) we get d ≤
(

m+2
2

)

. Since

g ≤ Kd3/2 − 6ǫd, we have

g ≤ 2

3

(

1

10

)3/2 (
m+ 2

2

)3/2

− 6ǫd

≤ 2

3

(

1

10

)3/2 (
(m+ 2)2

2

)3/2

− 6ǫd

≤ 2

3

(

1

20

)3/2

(m+ 2)3 − ǫm2 ≤ ϕ(m)
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(notice that the coefficients of m3 are controlled by our choice of K and the coeffi-
cients of m2 are controlled by our choice of ǫ). Since g ≤ ϕ(m), Theorem 1 covers
all degrees d0 in the interval d(m, g)min ≤ d0 ≤ d(m, g)max. In order to check that
d is in this interval, just notice that d ≥ d(m, g)min by (16) and d ≤ d(m, g)max by
(15). �

References

[1] E. Ballico and Ph. Ellia, The maximal rank conjecture for non-special curves in P
3. Invent.

Math. 79 (1985), 541–555.
[2] E. Ballico and Ph. Ellia, Beyond the maximal rank conjecture for curves in P

3, in: Space
Curves, Proceedings Rocca di Papa, pp. 1–23, Lecture Notes in Math. 1266, Springer, Berlin,
1985.

[3] E. Ballico and Ph. Ellia, A program for space curves. Conference on algebraic varieties of
small dimension (Turin, 1985). Rend. Sem. Mat. Univ. Politec. Torino 1986, Special Issue,
25–42 (1987).

[4] E. Ballico, G. Bolondi, Ph. Ellia and R. M. Mirò-Roig, Curves of maximum genus in the
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