
Improved Filtering for the Euclidean Traveling Salesperson Problem in CLP(FD)

Alessandro Bertagnon, Marco Gavanelli
Department of Engineering, University of Ferrara

Via Saragat 1, 44122 Ferrara, Italy
{alessandro.bertagnon, marco.gavanelli}@unife.it

Abstract

The Traveling Salesperson Problem (TSP) is one of the best-
known problems in computer science. The Euclidean TSP is
a special case in which each node is identified by its coordi-
nates on the plane and the Euclidean distance is used as cost
function.
Many works in the Constraint Programming (CP) literature
addressed the TSP, and use as benchmark Euclidean in-
stances; however the usual approach is to build a distance ma-
trix from the points coordinates, and then address the problem
as a TSP, disregarding the information carried by the points
coordinates for constraint propagation.
In this work, we propose to use geometric information,
present in Euclidean TSP instances, to improve the filtering
power. In order to have a declarative approach, we imple-
mented the filtering algorithms in Constraint Logic Program-
ming on Finite Domains (CLP(FD)).

1 Introduction
The Traveling Salesperson Problem (TSP) is one of the best
known problems in computer science: given a graph with
a set of nodes, the objective is to find a path that visits all
the nodes exactly once and minimizes the traveled distance.
Currently, the best solver for the TSP is the mathematical
programming solver Concorde (Applegate et al. 2001), ex-
ploiting several techniques amongst which Integer Linear
Programming and Local Search.

The TSP is a Constraint Optimization Problem (COP); an
important technique developed in Artificial Intelligence to
solve such problems is constraint propagation (Mackworth
1977). The idea was so successful that new languages were
embedding it as part of their operational semantics; for ex-
ample the Constraint Logic Programming (CLP) (Jaffar and
Maher 1994) class of languages was defined to declaratively
address constraint problems, and many languages of this
class exploited constraint propagation to solve efficiently
constraint problems. The CLP research area was later ex-
tended to include also imperative and object-oriented pro-
gramming languages, generating the Constraint Program-
ming (CP) research area.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The TSP was also addressed in the CP literature (Caseau
and Laburthe 1997; Kaya and Hooker 2006; Benchimol et
al. 2012; Fages and Lorca 2012; Fages, Lorca, and Rousseau
2016; Deudon et al. 2018), but Concorde is still the state of
the art, in particular for large instances. Nevertheless, also
efficiently solving small or medium size instances is impor-
tant in various applications (Caseau and Laburthe 1997).

CP approaches are also more flexible: while Concorde can
address only pure TSPs, i.e., no further side constraints are
allowed, in CP many variants can be easily cast, such as the
TSP with Time Windows (TSPTW) (Caseau and Koppstein
1993; Pesant et al. 1998; Focacci, Lodi, and Milano 2002b;
2002a), in which cities must be visited within given temporal
intervals. Finally, improving the performance of CP models
is an important target per se.

Some significant sub-classes of the general TSP are the
Metric TSP, in which the distance function between cities
satisfies the triangle inequality, and the Euclidean TSP,
in which the nodes of the graph represent points in the
plane and the distance function is the Euclidean distance.
These are reasonable assumptions in many cases, and vari-
ous instances in the TSPLIB (Reinelt 1991) fall into these
classes. From the computational complexity point of view,
both the Metric and the Euclidean TSP are NP-hard (Garey,
Graham, and Johnson 1976); nonetheless, differently from
the general TSP, the Euclidean TSP admits a Polyno-
mial Time Approximation Scheme (PTAS) (Arora 1996;
Mitchell 1999). Notwithstanding these theoretically impor-
tant results, solvers that address the general TSP (e.g., Con-
corde) are faster in practice.

In CP, no specialized pruning algorithms tailored to the
Euclidean TSP have been proposed, and the usual way to
tackle Euclidean TSPs is to compute the distance matrix and
address the problem as a general TSP. It is worth noting
that in the Euclidean TSP more information is available than
in the general TSP: the coordinates of the points to be vis-
ited are known, and geometrical concepts (straight line seg-
ments, angles, etc.) can be defined in the Euclidean plane.
Such knowledge has been exploited to improve the search
effectiveness: Deudon et al. (2018) train a Deep Neural Net-
work with points coordinates to learn efficient heuristics to
explore the search space.

This paper, instead, is the first attempt (to the best of our
knowledge) to exploit geometric information to obtain fur-
ther pruning in CP during the solution of Euclidean TSPs.
We address the pure Euclidean TSP (with no side con-
straints), and propose new constraints that reduce the search
space. We also show that the pruning we introduce is not
subsumed by that of important works in the area (Benchimol
et al. 2012). A further added value is that all constraints and
algorithms presented here were implemented in a declarative
language, namely CLP on Finite Domains (CLP(FD)).

The rest of the paper is organized as follows. After some
preliminaries, we discuss related works (Section 3), we pro-
pose new constraints to avoid crossings (Section 4) and to
exploit convex hull reasoning (Section 5). We show experi-
mental results in Section 6 and, finally, we conclude.

2 Preliminaries and notation
Let G = (V,E,w) be a weighted graph, where V is a set
of nodes, E is a set of edges, and w : E 7→ R+. A path
in G is a sequence pvs0 -vsk = vs0es0,s1vs1 . . . esk−1,skvsk
such that (i) vs0 , vs1 , . . . , vsk ∈ V and are all distinct, and
(ii) es0,s1 , . . . , esk−1,sk ∈ E. Since a path is uniquely iden-
tified by the sequence of its nodes (or of its edges) in the
proper order, to simplify the notation we will often write
paths as sequences of nodes. The length of a path p is the
sum of the weights of its edges: L(p) =

∑k−1
i=0 w(esi,si+1

).
Given a path pvs0 -vsk , the sequence obtained by appending
esk,s0 to a path pvs0 -vsk is also called a circuit c.

In the Euclidean case, let P = {P1, . . . , Pn} be a set of
points, where Pi = (xi, yi). The graph associated with P
is GP = (P, EP , wP), where EP = {ei,j ≡ (Pi, Pj) |
Pi, Pj ∈ P, i 6= j} and w(Pi, Pj) = d(Pi, Pj), where d is
the Euclidean distance.

We denote with PiPj the segment in the plane with end-
points Pi and Pj . Since in the Euclidean case each edge of
a graph corresponds to a segment in the plane between the
corresponding endpoints, we will often confuse the edge ei,j
with the corresponding segment PiPj . Also, we will some-
times confuse the index i ∈ V with the corresponding point
Pi in the plane. We denote with

←−→
PiPj the (infinite straight)

line passing through points Pi and Pj , and with ∠PiPjPk
the counterclockwise angle formed by the segments PiPj
and PjPk with vertex in Pj from Pi to Pk.

The convex hull of a set of points in a Euclidean space
is the minimum convex set containing all the points. In the
plane it corresponds to a convex polygon and it is completely
defined by its vertices. Given a set of points P , we denote
with H(P) = 〈H0, H1, . . . ,H|H(P)|−1〉 the sequence of
vertexes of the convex hull in clockwise order.

3 Related work
In the CP literature, three main representations have been
devised for defining variables in the Hamiltonian circuit
problem and the TSP: the permutation representation, the
successor representation and the set variable representation
(Benchimol et al. 2012). The last was also extended to the
graph representation (Dooms, Deville, and Dupont 2005;

Fages and Lorca 2012; Fages, Lorca, and Rousseau 2016), in
which also the set of nodes has a lower and an upper bound;
however in the TSP case the set of nodes is fixed. In this
paper, we use the successor representation, but we will test
other representations in future work.

In the successor representation, n variables Next i are de-
fined; variable Next i represents the node that follows node i
in the circuit, and its initial domain is {1, . . . , n} \ {i}. The
constraint model includes an alldifferent(Next) con-
straint (Régin 1994) on the Next array of variables, that en-
sures that each node has exactly one incoming edge, as well
as a circuit(Next) (Beldiceanu and Contejean 1994;
Caseau and Laburthe 1997; Kaya and Hooker 2006) con-
straint (sometimes called nocycle) that avoids sub-tours,
i.e., cycles of length less than n. In some cases, the con-
straint model includes, as redundant representation, also a
set of Prev variables: Prev i represents the node that pre-
cedes node i in the circuit.

Usually, CP formulations are not as effective in exploit-
ing the objective function as Integer Programming models.
Various works use relaxations of the TSP to prune sub-
optimal branches; the classical relaxations of the TSP are
the assignment problem and the one-tree relaxation. Caseau
and Laburthe (1997) propose a simple and effective rule for
the circuit constraint, and also filter values using the
assignment-based and the spanning tree relaxation. Kaya
and Hooker (2006) propose a new filtering rule, based on
graph separators, for the circuit constraint. Francis and
Stuckey (2014) consider various propagation algorithms for
circuit and provide for each explanations in the context
of a lazy clause generation solver.

Pesant et al. (1998) address the TSPTW and exploit
the circuit constraint together with the minimum span-
ning tree relaxation. Focacci, Lodi, and Milano (2002a;
2002b) propose reduced costs filtering to optimization con-
straints, and in particular use the assignment problem and
the minimum spanning forest relaxation.

The groundbreaking work in this area is that by Benchi-
mol et al. (2012): it is the first in which a CP model was
able to solve large TSP instances. They propose an imple-
mentation of the Weighted Circuit Constraint (WCC) that
includes the Held and Karp (1970) scheme, iterates a La-
grangian relaxation to obtain a high-quality one-tree, and
uses it to remove edges similarly to reduced costs filter-
ing. It also identifies as mandatory those edges that, if re-
moved, would increase the current lower bound over the
quality of the incumbent solution. To find quickly a solution,
they first run the Lin-Kernighan-Helsgaun (LKH) algorithm
(Lin and Kernighan 1973; Helsgaun 2000). Fages, Lorca,
and Rousseau (2016) further improve by casting the problem
in CP(Graph) and by means of improved search heuristics.

Fages and Lorca (2012) model Asymmetric TSPs by
means of a reduced graph, whose nodes are the Strongly
Connected Components of the original graph. In the reduced
graph, transitive arcs can be safely removed, and the Mini-
mum Spanning Tree relaxation can be made tighter.

After the paper submission deadline, another paper was
published (Isoart and Régin 2019) introducing a new struc-
tural constraint in the WCC based on k-cutsets.

b

b

b

b

Pi

Pj
Pl

Pk

pj-kpi-l

Q

Figure 1: A self-crossing circuit.

4 Avoiding crossings
A well known result in the literature (Flood 1956; Arora
1996) is that the optimal solution of a Metric TSP in the
plane cannot include two edges that cross each other.
Theorem 1. (Flood 1956). Let c∗ be an optimal tour of
a Metric TSP. Then, for each ei,j , ek,l ∈ c∗ such that
{i, j, k, l} are all different, the segments PiPj ∩ PkPl = ∅.

Proof. (sketch). In Fig. 1, instead of taking PiPj and PkPl,
a shorter tour chooses the dotted edges PiPk and PlPj .

The nocrossing constraint
Theorem 1 suggests to avoid, during the search for an opti-
mal TSP, those paths that include crossing edges. We pro-
pose the nocrossing constraint, that imposes that a pair
of segments in the TSP should not cross each other (except,
possibly, in one endpoint). In the successor representation, it
is defined as follows:

nocrossing(i,Next i, j,Nextj) =(
PiPNexti ∩ PjPNextj

)
⊂ {Pi, Pj}.

(1)

A possible propagator for the nocrossing constraint
would be activated each time a value is removed from the do-
main of Next i and would remove inconsistent values from
the domain of Nextj . Such propagator would be naive in
terms of time complexity: propagating it would have the
usual cost of arc-consistency propagation for a single con-
straint of O(d2) (if d is the size of the domains) in each
activation of the constraint.

However, from the definition of arc-consistency and
Eq. 1, a value v can be removed from the current domain
Dom(Next i) only if PiPv intersects all possible segments
originating from Pj . A necessary condition for this is that
all segments originating from Pj lie on the same half-plane
with respect to the line

←−→
PiPj .

Theorem 2. Let o, u ∈ Dom(Next i) such that Po and Pu
do not lie on the line l passing through Pi and Pj and are in
different half-planes with respect to the line l.

Then, any value k ∈ Dom(Nextj) such that
Pk 6∈ l is arc-consistent with respect to the constraint
nocrossing(i,Next i, j, k).

Proof. By contradiction, suppose there exists k ∈
Dom(Nextj) that is inconsistent with the constraint
nocrossing(i,Next i, j, k). Since it is inconsistent, the seg-
ment PjPk must cross all the segments PiPz such that

z ∈ Dom(Next i), so in particular it crosses both PiPo and
PiPu. But the intersection Io ≡ PiPo∩PjPk lies on a differ-
ent half-plane from the one that hosts Iu ≡ PiPu∩PjPk, so
Pk lies in both half-planes, meaning that Pk ∈ l: absurd.

Theorem 2 does not cover the case in which one of the
points Po, Pu lies on the line

←−→
PiPj . The following proposi-

tion takes care of the cases in which three points are aligned.

Proposition 1. Given a graph G whose nodes do not lie all
on the same line; let a, b and c be three nodes of G such that
Pc ∈ PaPb. Then, segment PaPb is not in the optimal TSP.

Proof. Omitted, based on the triangle inequality.

Given Proposition 1, it is possible to remove from the do-
main of each variable Nexta all the values b such that the
segment PaPb contains another node of the graph G. In the
rest of the paper, we will assume that such pre-processing
step has been done before the search starts; this assumption
simplifies the following exposition.

Algorithm 1 sketches the algorithm of a propagator for the
nocrossing constraint; it is awakened when the domain
of variable Next i is reduced, and it performs propagation to
possibly reduce the domain of Nextj ; to fully implement the
constraint, another symmetric propagator would be imposed
on the reverse direction (from Nextj to Next i). In the first
phase the propagator is suspended waiting that all elements
in the domain of Nextj lie on the same half-plane with re-
spect to PiPj . To do so, one element Over ∈ Dom(j) and
one Under ∈ Dom(j) that lie, respectively, over and un-
der the line

←−→
PiPj are selected. If one of them does not exist,

all possible segments originating from Pj lie on the same
half-plane and the control passes to the next phase; other-
wise, the propagator suspends waiting that one of the two
elements Over and Under is removed from Dom(Nextj).
This strategy mimics, in a sense, the idea of watched liter-
als proposed in SAT solvers (Moskewicz et al. 2001) (and
currently used also in other solvers).

In case all elements in the domain of Next i lie on the same
half-plane with respect to the line

←−→
PiPj , the algorithm steps

to phase 2 (line 9). Also in phase 2, there is a necessary con-
dition for arc-consistency of the nocrossing propagator
to remove values from the domain of Nextj ; it is based on
comparing angles with vertex in Pj and subtended by seg-
ments originating from Pi:

Theorem 3. For each k ∈ Dom(Next i) ∪ Dom(Nextj),
let αk = ∠PiPjPk. If all the elements q ∈ Dom(Next i) lie
on the same half-plane with respect to the line

←−→
PiPj , then

a necessary condition for a segment PjPt originating from
Pj and reaching an element t ∈ Dom(Nextj) to cross all
segments PiPq originating from Pi is that αt ≤ α, where
α = min{αq | q ∈ Dom(Next i)}.

Proof. Consider a coordinate system centered into Pj , with
the abscissa pointing toward Pi and such that all the points
in Dom(Next i) have non-negative ordinate (see Figure 2).

Algorithm 1 nocrossing propagator
1: function NOCROSSING PROP(i,Next i, j,Nextj)
2: Under ← select one element in Dom(Next i)

s.t. PUnder is under the line
←−→
PiPj

3: if there is no such element then
4: phase2(i,Next i, j,Nextj)
5: else Over ← select one element in Dom(Next i)

s.t. POver is over the line
←−→
PiPj

6: if there is no such element then
7: phase2(i,Next i, j,Nextj)
8: else suspend waiting for either Over or Under

to be removed from Dom(Next i)

9: function PHASE2(i,Next i, j,Nextj)
10: α← min{αx | x ∈ Dom(Next i)}
11: xiα ← value in Dom(Next i) corresponding to α
12: β ← max{βx | x ∈ Dom(Next i)}
13: xi

β
← value in Dom(Next i) corresponding to β

14: for all yj ∈ Dom(Nextj) s.t. αyj < α do
15: if βyj > β then
16: remove yj from Dom(Nextj)

17: if |Dom(Next i)| > 1 ∧ |Dom(Nextj)| > 1 then
18: suspend waiting for either xiα or xi

β
to be removed

from Dom(Next i)

b b

PiPj

Ptb

b

b

αt

Pz

α

b

Figure 2: Thm 3. An arrow from Px to Py means that y ∈
Dom(Nextx). Dashed lines are plotted to show the angles.

By contradiction, suppose that αt > α; we prove that
there is a segment originating from Pi that does not intersect
with PjPt. Let z ∈ Dom(Next i) such that α = ∠PiPjPz .

In polar coordinates, the segment PiPz is seen from Pj
with angles between 0 and α. All the points on the segment
PjPt are seen under the angle αt. Since αt > α, there is no
intersection between PiPz and PjPt.

Clearly, the condition of Theorem 3 is not sufficient, as
shown in Figure 3. A sufficient condition is Theorem 4.

Theorem 4. For each k ∈ Dom(Next i)∪Dom(Nextj), let
βk = ∠PkPiPj . Assume all the elements q ∈ Dom(Next i)

lie on the same half-plane with respect to the line
←−→
PiPj . Sup-

pose there exists t ∈ Dom(Nextj) such that αt < α.
Then a sufficient condition for segment PjPt to cross all

segments PiPq such that q ∈ Dom(Next i) is that βt > β,
where β = max{βq | q ∈ Dom(Next i)}.

Proof. By contradiction, suppose ∃k ∈ Dom(Next i) such

b b

PiPj

b

αt

Pt

α

b

PzPk

b
b

Figure 3: The condition in Thm 3 is not sufficient: αt < α
but PjPt does not cross all segments exiting from Pi.

that PiPk does not intersect PjPt (Figure 4). Since αt <
α ≤ αk, Pk and Pi lie on different sides of the ray

−−→
PjPt.

In order not to have crossing between PiPk and PjPt,
both Pj and Pt must lie on the same half-plane with respect
to
−−→
PiPk. Since βj = 0, and all points in the domain of Next i

are above the x axis, βj < βk, thus to be on the same half-
plane, also βt < βk. But βt > β ≥ βk: contradiction.

Thanks to Theorems 3 and 4, we can obtain a better com-
plexity with respect to the naive algorithm. Note that all an-
gles can be pre-computed before starting the search, thus
avoiding to compute trigonometric functions during search.
It is also possible to pre-compute and store in a linked list
the elements in the (initial) domains of the two variables
sorted with respect to their α angle. In this way the com-
putation of the minimum in line 10 of Algorithm 1 amounts
to finding the first element in the linked list that belongs to
Dom(Next i); assuming that domain membership is checked
in constant time, the search for the minimum in line 10 can
be done in O(d) amortized time on one branch of the search
tree. The same can be done with a linked list containing the
elements in Dom(Next i) sorted with respect to their β an-
gle: also line 12 is executed in O(d) amortized time on one
branch of the search tree. The loop in lines 14-16 scans the
linked list and is stopped as soon as one element is found
whose angle is greater than or equal to α; assuming that
the removal of a domain element is done in constant time,
and since the comparison in line 15 takes constant time, the
whole loop has O(d) complexity per each activation of the
propagator of phase 2 (to be compared to the O(d2) of the
naive propagator). Since the propagator is activated when at
least one element is removed from Dom(Next i), such prop-
agator is awakened at most O(d) times in a branch of the
search tree, giving phase 2 an overall complexity of O(d2)
amortized time over one branch of the search tree.

b b

PiPj

Pk
b

b

αt

Pt

α

b

b

βk

βt

β

αk

Figure 4: Thm 4. An arrow from Px to Py means that y ∈
Dom(Nextx). Dashed lines are plotted to show the angles.

5 Convex Hull Reasoning
One consequence of Theorem 1 is that if the nodes of the
graph do not lie on the same line, nodes on the boundary of
the convex hull are always visited in their cyclic order in the
optimal TSP (Deineko, van Dal, and Rote 1994).

To simplify the exposition, we will present the following
pruning in the context of symmetry breaking constraints, al-
though similar reasoning could be performed also without
breaking symmetries.

In the successor representation, the same TSP can be rep-
resented by two symmetric solutions that differ only for the
order (clockwise or counterclockwise) in which the nodes
are visited. One way to break this symmetry is to fix one
direction (e.g., clockwise); in such a case, the convex hull
reasoning is an effective way to impose the clockwise order.

To compute the convex hull H(P), we used Andrew
(1979) monotone chain, with complexityO(n log n). We de-
vised three ways to exploit the information about the hull for
propagation.

The simplest is to impose that the successor of a convex
hull vertex cannot be another member of H(P) except for
the one that immediately follows it: ∀i ∈ [0, |H(P)| − 1],
Dom(NextHi)∩H(P) ⊆ {H(i+1) mod |H(P)|}. These con-
straints are unary, so they are equivalent to a domain reduc-
tion, without any overhead during search.

The second is reasoning on the angle formed by the in-
coming and the outgoing arcs in hull vertexes: in order to
visit nodes in a clockwise order, the angle between the in-
coming edge and the outgoing edge ofHi cannot be positive
(it must be between −π and 0) or, stated otherwise, it must
correspond to a right turn. In case the constraint model in-
cludes also the Prev variables, one can observe that the an-
gle formed by the outgoing edge and any reference direction
must be less than the angle formed by the incoming edge
with the same reference direction. This produces a propaga-
tor in the same spirit of the classical less-than propagator:
simply compute the minimum angle in Dom(Nexth) and
remove from Dom(Prevh) the elements associated with a
smaller (or equal) angle (Algorithm 2). A symmetric prop-
agator takes care of the opposite direction (from Prevh to
Nexth). Again, note that all angles are pre-computed before
search, and the search for the minimum takes O(d) amor-
tized time over one branch of the search tree.

If the constraint model does not include the Prev vari-
ables, then one can wait for Nexth to become ground; when
the arc outgoing from Ph is fixed, the value h is removed
from the domain of all other variables Next i such that the
angle ∠PiPhPNexth would correspond to a left turn.

The third is obtained by imposing that each vertex in a
path originating from a point Hi cannot reach any vertex in
H except forH(i+1) mod |H(P)|. The propagator is imposed
for each pair (Hi, H(i+1) mod |H(P)|). The implementation
of this propagator is inspired by the circuit constraint
(Caseau and Laburthe 1997), but performs more powerful
pruning thanks to the convex hull reasoning. If a partial path
has been defined starting from Hi up to a node j, and such
path does not contain vertex H(i+1) mod |H(P)|, then the
variable Nextj cannot take any value in H(P) except for

Algorithm 2 clockwise angle propagator
Require: Ph to be in the perimeter of the convex hull

1: function CLOCKWISE ANGLE PROP(h,Next ,Prev)
2: m← min{αv | v ∈ Dom(Nexth)}
3: Dom(Prevh)← Dom(Prevh) \ {i | αi ≤ m}
4: if Nexth and Prevh are not ground then
5: suspend until m is removed from Dom(Nexth)

Algorithm 3 hull path propagator
Require: PEnd to be in the perimeter of the convex hull.

1: function HULL PATH PROP(Start, End,H(P),Next)
2: if Start == End then
3: return true
4: if NextStart is ground then
5: hull path prop(NextStart, End,H(P),Next)
6: else
7: remove (H(P) \ {End}) from Dom(NextStart)

8: suspend waiting for NextStart to become ground

H(i+1) mod |H(P)| (Algorithm 3). If the partial path reaches
the next vertex of the convex hull, the constraint is entailed
and exits the constraint store (line 3). In the propagator for
the circuit constraint (Caseau and Laburthe 1997), in-
stead, from the domain of the variable Nextj only the initial
value (in our case, Hi) of the path is removed.

Extensions of the convex-hull reasoning
Now that we have propagators that exploit the knowledge
about the convex hull, we wish to extend their applicability
also to points that lie in the interior of the hull.

A consequence of the absence of crossings is that the op-
timal TSP is a simple polygon, and it divides the plane into
exactly two areas: an internal and an external area. Imagine
now to cut the optimal TSP with two vertical lines (paral-
lel to the y axis): the stripe between the two lines will con-
tain alternate internal and external regions. The borders (i.e.,
the parts of the circuit inside the stripe) will be alternatively
visited left-to-right (or clockwise) and right-to-left (or coun-
terclockwise). In order to exploit this informal intuition for
pruning, we provide the following theorem:

Theorem 5. Suppose that (e.g., during search) a partial
path ps-e has been defined, starting in node s and ending
in node e. Consider the polygon Q delimited by such path
and by the segment PsPe, and suppose that such polygon is
a simple polygon, i.e., no two edges intersect. Suppose that
the partial path ps-e touches its vertexes in clockwise order.

Let F ⊂ V be the set of nodes whose corresponding
points lie in the interior of polygonQ, I = F ∪{s, e} and let
H(I) = 〈HI

0 ≡ e,HI
1 , . . . ,H

I
k−1, H

i
k ≡ s〉 be the sequence

of vertexes of its convex hull, in counterclockwise order.
Suppose that the convex hull H(I) does not intersect the

path ps-e, except for the endpoints Ps and Pe.
Then any non self-crossing tour containing the path ps-e

reaches the vertexes inH(I) in the order HI
0 , . . . H

I
k .

Proof. By contradiction, suppose that a non self-crossing

circuit c∗ ⊇ ps-e reaches the vertexes of HI in an order dif-
ferent from their sequence order. W.l.o.g., suppose that after
vertex HI

j , the next vertex of HI reached by the tour c∗ is
HI
j+2; i.e., vertex HI

j+1 is not reached in the order of HI .
Let pHI

j -HI
j+2
⊂ c∗ be the path connecting HI

j and HI
j+2.

Consider the polygon R (dotted, in Fig. 5) delimited by:
(i) the path ps-e (ii) the perimeter of the convex hull H(I)
from Pe to HI

j (iii) the path pHI
j -HI

j+2
(iv) the perimeter of

the convex hullH(I) from HI
j+2 to Ps.

Clearly, the pointHI
j+1 lies in the interior ofR. In order to

reach it without self-crossings, c∗ cannot pass through ps-e
nor pHI

j -HI
j+2

. On the other hand, c∗ cannot cross the bound-
ary of the H(I) between Pe and HI

j (and from HI
j+2 to Ps)

because, by definition of convex hull, there are no vertexes
to be visited that are interior to polygon Q and that do not
belong toH(I). So, c∗ cannot reach HI

j+1.

If we find an internal hull H(I), we can then apply the
previous propagators (Algorithms 2 and 3) also to the ver-
texes of H(I), with the obvious care that if ps-e reaches
points in clockwise order, then the vertexes of theH(I) will
be reached in counterclockwise order (and vice-versa). We
maintain all partial paths during the search, and we com-
pute a convex hull for each of these paths. In this way, we
are orthogonal to heuristics (we can use any search heuristic
without invalidating our propagation).

In the implementation, we applied the pruning on internal
hulls only when the polygon Q is convex (differently from
theQ polygon depicted in Figure 5). Checking the convexity
amounts to check that each turn in the path is on the same
side (a right turn, in case of a clockwise path), simplifies
finding if a point is inside the polygon, and also lets us avoid
the check that H(I) does not intersect ps-e. In future work,
we will experiment also with non-convex polygons.

The time complexity of our implementation of the ex-
tended convex hull is O(n2) to compute the points inside
the polygon, then we use Andrew (1979) monotone chain
(O(n log n)) to find the hull. We currently recompute H(I)
from scratch after each decision.

b

b b

b

b

b

b
b

b

b

b

b

b

b

b

Ps

Pe

ps-e

HI
j

HI
j+1HI

j+2

H(I)

Q
b

b

b
R

b

Figure 5: From Theorem 5: the path ps-e is the current as-
signment. Polygon Q is delimited by ps-e and the (dashed)
segment PePs. I contains the points inside Q plus Ps and
Pe; H(I) (gray in the picture) is its convex hull. Polygon R
is delimited by ps-e and the dotted segments.

6 Experimental evaluation
To assess the effectiveness of the proposed algorithms, we
devised experiments based on randomly-generated TSPs and
structured instances.

All algorithms are implemented in the ECLiPSe CLP lan-
guage (Schimpf and Shen 2012). All constraint models are
based on the successor representation (with the circuit
constraint and alldifferent (Puget 1998) for improved
pruning) with both Next and Prev variables, that are linked
through the inverse constraint.

The constraint model named Geometric includes also
the nocrossing constraint, the removal of aligned points
according to proposition 1, and the clockwise constraint
that implements the propagation described in Section 5, that
also acts as symmetry breaking constraint in this model.

We compare our model with a simple model
(named CLP(FD) in the following) that (besides the
alldifferent, circuit and inverse constraint) in-
cludes as symmetry breaking the constraint Next1 < Prev1

used by Benchimol et al. (2012).
In order to show that the pruning we provide is not sub-

sumed by that of state of the art techniques, we imple-
mented in ECLiPSe, in the successor representation, also
the Held and Karp bound with pruning based on reduced
and marginal costs, as proposed by Benchimol et al. (2012)
(shown with BvHRRR in the following).

Concerning search strategies, we use the max-regret
(Caseau and Laburthe 1997) and the state-of-the-art
LC FIRST MAX COST (Fages, Lorca, and Rousseau 2016),
based on Last Conflict (Lecoutre et al. 2009). As (Benchi-
mol et al. 2012), we also experimented injecting the upper
bound given by the LKH (v. 2.0.7) algorithm.

All tests were run on ECLiPSe v. 7.0, build #48, with a
time limit of 1800s on Intel R© Xeon R© E5-2630 v3 CPUs
running at 2.4GHz, using only one core and with 1GB of
reserved memory.

Structured instances
We consider all the instances taken from the TSPLIB, the
Concorde website1 and the CITIES dataset2 up to 100 nodes.
These sources provide various types of instances, amongst
which Euclidean ones, represented as sets of points in the
plane, and geographical ones, represented as sets of points
(with latitude and longitude) on the surface of the Earth. We
selected all the Euclidean instances and also added those ge-
ographical instances in which the cities to be visited lie on
a limited part of the geoid, so that the geographical distance
can be approximated with the Euclidean distance.

Table 1 reports the results; we omitted those instances in
which no algorithm was able to reach the optimal solution
within the time limit of 1800s. Except for easy instances, the
constraint models containing geometric filtering are the ones
that solve the instances to optimality in the shortest time.
These results show the positive interaction between the geo-
metric filtering and that performed by BvHRRR alone.

1http://www.math.uwaterloo.ca/tsp/world/countries.html
2https://people.sc.fsu.edu/∼jburkardt/datasets/cities/cities.html

20 30 40 50

100

101

102

103

nodes

lo
g
1
0

tim
e

[s
]

(a)

200 400 600 800

300

600

900

1,200

1,500

1,800

solved instances

tim
e

[s
]

maxregret

lkh lcfirst

lkh maxregret

CLP(FD)

Geometric

BvHRRR

Geom.+BvHRRR

(b)

Figure 6: Experimental results on randomly-generated Euclidean TSP instances. (a) Average solving time of filtering algorithms
varying the size of the instances and the search strategies. (b) Number of solved instances varying the solving time. In both
graphs, the mark distinguishes the various search strategies, solid (opposed to dotted) lines represent usage (resp. not usage) of
the BvHRRR pruning, while thick (resp. thin) lines represent usage (or not usage) of Geometric filtering.

Analyzing instances that were not solved to optimality, we
found that our additional pruning is most effective during the
proof of optimality, rather than on finding good solutions.

Table 1: Comparing filtering algorithms on structured in-
stances with time limit 1800s. For each instance we report
total solving time and number of explored nodes to reach
the optimal solution and prove its optimality.

lkh lcfirst lkh maxregret
BvHRRR Geo+BvH BvHRRR Geo+BvH

instance time nodes time nodes time nodes time nodes
uk12 0.04 12 0.05 12 0.04 0 0.04 0
burma14 0.06 14 0.07 14 0.05 0 0.07 0
ulysses16 0.07 16 0.09 16 0.07 0 0.08 0
ulysses22 0.12 22 0.15 22 0.12 0 0.16 0
wg22 0.14 22 0.18 22 0.13 0 0.17 0
bayg29 0.45 30 0.44 35 0.41 3 0.43 2
wi29 0.23 29 0.32 29 0.23 0 0.32 0
dj38 0.42 38 0.65 38 0.42 0 0.65 0
dantzig42 2.16 48 1.60 43 4.83 28 2.11 3
att48 3.21 66 2.38 55 8.02 36 3.10 10
uscap50 0.64 50 1.22 50 0.64 0 1.22 0
eil51 T/O - 523.92 1384 313.53 916 84.43 195
berlin52 0.86 52 1.67 52 0.84 0 1.52 0
kn57 8.53 180 5.67 120 8.24 38 5.14 18
wg59 1.13 59 1.92 59 1.35 1 1.80 0
st70 1411.63 3934 327.79 985 T/O - T/O -
eil76 72.56 227 33.20 156 160.09 230 31.80 26
rat99 T/O - T/O - T/O - 436.97 574
rd100 25.81 117 21.79 107 52.99 80 21.94 22

Random instances
We used the generator of the DIMACS challenge (John-
son and McGeoch 2007), which provides instances in two
classes: uniform and clustered. We randomly generated in-
stances from 20 to 50 nodes in steps of 2, in both classes.
For each size and class we generated 30 instances.

Figure 6a shows the geometric mean of the runtime of
the four algorithms varying the size of the instance and the
search strategy. The addition of the filtering on geometric

properties roughly halves the runtime, both with respect to
the simple CLP(FD) and to the advanced pruning based on
the Held and Karp (BvHRRR). Cactus plots (Figure 6b) show
that, when the LKH bound is used, the two search strategies
perform in a quite similar way. The introduction of geomet-
ric filtering (represented with thick lines in Figure 6) allowed
us to solve almost all the instances within the given timeout.

7 Conclusions
In this paper, we proposed to use the geometric information
present in Euclidean TSP instances to provide additional
pruning with respect to the techniques already available in
CP. This, to the best of our knowledge, is the first attempt to
exploit such additional information to prune the search space
in constraint programming. Note that all algorithms were
implemented for a declarative language, ECLiPSe, without
reverting to external imperative languages.

We showed that the pruning we perform is orthogonal
with respect to that obtained by Benchimol et al. (2012) in
their seminal work, and that adding reasoning on geometri-
cal properties can further reduce the running time. Despite
the results that we have achieved and presented in this paper,
our approaches are still not competitive with Concorde.

One limitation in the current work is that it is applica-
ble to the pure Euclidean TSP, but not to all its variants,
such as the TSP with time windows (Pesant et al. 1998;
Focacci, Lodi, and Milano 2002b; 2002a) or the Vehicle
Routing Problem (VRP), since their optimal solutions may
contain crossings. However, for some problems, extensions
of the proposed techniques could be beneficiary; for exam-
ple in the optimal solution of a Euclidean VRP, the tour of
each vehicle is not self-intersecting (although it can cross the
path of other vehicles).

Acknowledgments
We are deeply indebted with Joachim Schimpf for helping
us in the implementation of some of the constraints. This
work was partially supported by GNCS-INdAM.

References
Andrew, A. 1979. Another efficient algorithm for convex hulls in
two dimensions. Information Processing Letters 9(5):216–219.
Applegate, D.; Bixby, R. E.; Chvátal, V.; and Cook, W. J. 2001.
TSP cuts which do not conform to the template paradigm. In
Jünger, M., and Naddef, D., eds., Computational Combinatorial
Optimization, Optimal or Provably Near-Optimal Solutions [based
on a Spring School, Schloß Dagstuhl, Germany, 15-19 May 2000],
volume 2241 of Lecture Notes in Computer Science, 261–304.
Springer.
Arora, S. 1996. Polynomial time approximation schemes for eu-
clidean TSP and other geometric problems. In Proceedings of 37th
Conference on Foundations of Computer Science, 2–11.
Beldiceanu, N., and Contejean, E. 1994. Introducing global con-
straints in CHIP. Math. Comput. Model. 20(12):97–123.
Benchimol, P.; van Hoeve, W. J.; Régin, J.; Rousseau, L.; and Rue-
her, M. 2012. Improved filtering for weighted circuit constraints.
Constraints 17(3):205–233.
Caseau, Y., and Koppstein, P. 1993. A rule-based approach to a
time-constrained traveling salesman problem. In 2nd Int. Symp. on
AI and Mathematics 1992. Bellcore Technical Memorandum.
Caseau, Y., and Laburthe, F. 1997. Solving small TSPs with con-
straints. In Naish, L., ed., Logic Programming, Proceedings of the
Fourteenth International Conference on Logic Programming, Leu-
ven, Belgium, July 8-11, 1997, 316–330. MIT Press.
Deineko, V. G.; van Dal, R.; and Rote, G. 1994. The convex-hull-
and-line traveling salesman problem: A solvable case. Inf. Process.
Lett. 51(3):141–148.
Deudon, M.; Cournut, P.; Lacoste, A.; Adulyasak, Y.; and
Rousseau, L. 2018. Learning heuristics for the TSP by policy
gradient. In van Hoeve, W. J., ed., Integration of Constraint Pro-
gramming, Artificial Intelligence, and Operations Research - 15th
International Conference, CPAIOR 2018, Delft, The Netherlands,
June 26-29, 2018, Proceedings, volume 10848 of Lecture Notes in
Computer Science, 170–181. Springer.
Dooms, G.; Deville, Y.; and Dupont, P. 2005. CP(Graph): Intro-
ducing a graph computation domain in constraint programming. In
van Beek, P., ed., Principles and Practice of Constraint Program-
ming - CP 2005, 11th International Conference, CP 2005, Sitges,
Spain, October 1-5, 2005, Proceedings, volume 3709 of Lecture
Notes in Computer Science, 211–225. Springer.
Fages, J., and Lorca, X. 2012. Improving the asymmetric TSP by
considering graph structure. CoRR abs/1206.3437.
Fages, J.; Lorca, X.; and Rousseau, L. 2016. The salesman and the
tree: the importance of search in CP. Constraints 21(2):145–162.
Flood, M. M. 1956. The traveling-salesman problem. Operations
Research 4.
Focacci, F.; Lodi, A.; and Milano, M. 2002a. Embedding relax-
ations in global constraints for solving TSP and TSPTW. Ann.
Math. Artif. Intell. 34(4):291–311.
Focacci, F.; Lodi, A.; and Milano, M. 2002b. A hybrid ex-
act algorithm for the TSPTW. INFORMS Journal on Computing
14(4):403–417.
Francis, K. G., and Stuckey, P. J. 2014. Explaining circuit propa-
gation. Constraints 19(1):1–29.
Garey, M. R.; Graham, R. L.; and Johnson, D. S. 1976. Some NP-
complete geometric problems. In Proceedings of the Eighth Annual
ACM Symposium on Theory of Computing, STOC ’76, 10–22. New
York, NY, USA: ACM.

Held, M., and Karp, R. M. 1970. The traveling-salesman problem
and minimum spanning trees. Operations Research 18:1138–1162.
Helsgaun, K. 2000. An effective implementation of the Lin-
Kernighan traveling salesman heuristic. European Journal of Op-
erational Research 126(1):106–130.
Isoart, N., and Régin, J.-C. 2019. Integration of structural con-
straints into tsp models. In International Conference on Principles
and Practice of Constraint Programming, 284–299. Springer.
Jaffar, J., and Maher, M. J. 1994. Constraint logic programming:
A survey. J. Log. Program. 19/20:503–581.
Johnson, D. S., and McGeoch, L. A. 2007. Experimental analysis
of heuristics for the stsp. In The traveling salesman problem and
its variations. Springer. 369–443.
Kaya, L. G., and Hooker, J. N. 2006. A filter for the circuit con-
straint. In Benhamou, F., ed., Principles and Practice of Con-
straint Programming - CP 2006, 12th International Conference,
CP 2006, Nantes, France, September 25-29, 2006, Proceedings,
volume 4204 of Lecture Notes in Computer Science, 706–710.
Springer.
Lecoutre, C.; Saı̈s, L.; Tabary, S.; and Vidal, V. 2009. Reason-
ing from last conflict(s) in constraint programming. Artif. Intell.
173(18):1592–1614.
Lin, S., and Kernighan, B. W. 1973. An effective heuristic al-
gorithm for the traveling-salesman problem. Operations Research
21(2):498–516.
Mackworth, A. K. 1977. Consistency in networks of relations.
Artif. Intell. 8(1):99–118.
Mitchell, J. S. B. 1999. Guillotine subdivisions approximate
polygonal subdivisions: A simple polynomial-time approximation
scheme for geometric TSP, k-MST, and related problems. SIAM J.
Comput. 28(4):1298–1309.
Moskewicz, M. W.; Madigan, C. F.; Zhao, Y.; Zhang, L.; and Ma-
lik, S. 2001. Chaff: Engineering an efficient SAT solver. In Pro-
ceedings of the 38th Annual Design Automation Conference, DAC
’01, 530–535. New York, NY, USA: ACM.
Pesant, G.; Gendreau, M.; Potvin, J.; and Rousseau, J. 1998.
An exact constraint logic programming algorithm for the travel-
ing salesman problem with time windows. Transportation Science
32(1):12–29.
Puget, J. 1998. A fast algorithm for the bound consistency of alldiff
constraints. In Mostow, J., and Rich, C., eds., Proceedings of the
Fifteenth National Conference on Artificial Intelligence and Tenth
Innovative Applications of Artificial Intelligence Conference, AAAI
98, IAAI 98, July 26-30, 1998, Madison, Wisconsin, USA, 359–366.
AAAI Press / The MIT Press.
Régin, J. 1994. A filtering algorithm for constraints of difference
in CSPs. In Hayes-Roth, B., and Korf, R. E., eds., Proceedings
of the 12th National Conference on Artificial Intelligence, Seattle,
WA, USA, July 31 - August 4, 1994, Volume 1., 362–367. AAAI
Press / The MIT Press.
Reinelt, G. 1991. TSPLIB - A traveling salesman problem library.
INFORMS Journal on Computing 3(4):376–384.

Schimpf, J., and Shen, K. 2012. Eclipse - from LP to CLP. TPLP
12(1-2):127–156.

