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Abstract The present study employs patent data on
three groups of large energy-efficient appliances (i.e.
freezers/refrigerators, washing machines and dish-
washers) and provides a methodology for (i) mapping
components related to energy efficiency improvements,
(ii) mapping their evolution over time and (iii) testing
the technological fungibility of these components. Our
analysis model exploits an original patent selection pro-
cess and the concept of technological relatedness using
co-occurrence analysis of patent classes as input for self-
organising maps (SOMs), an unsupervised artificial
neural network able to represent high-dimensional data
in a visually attractive and two-dimensional distance-
based map. The results confirm the pervasive nature of
energy efficiency to be nested in many technological
components. In addition, we show that a dematerialisation
process has affected the evolution of energy efficiency
technologies over time, in a technology space
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characterised by a high level of complexity and variety.
Energy efficiency has links with information technologies
embodied in the appliances, which are far from their
maturity path. Consequently, innovation and information
policies are of utmost importance in order to achieve more
ambitious energy efficiency targets in the groups of
appliances analysed.
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Introduction

The reduction of primary energy consumption through
energy efficiency (EE) represents a cornerstone of the
transition towards a resource-efficient green economy in
Europe and an effective strategy to achieve energy inde-
pendence (EC, 2011). Nevertheless, energy saving and
EE are not completely overlapping terms since EE is a
sub-set of the energy saving (or energy conservation)
domain. The latter is a broader concept since energy
saving can be obtained through gains in EE or by simply
reducing the level of economic activity. According to
Patterson (1996), EE is the relationship between the
output and the energy consumed to produce it, often
called energy service. Thus, a general characteristic of
EE is the use of less energy inputs for an equivalent level
of economic activity or service (Gillingham et al., 2009)
so that achieving higher EE performances intrinsically
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relies on the dynamics of technological innovation as a
means for improving productivity of the energy input
and reducing the associated energy consumption
(Rennings and Rammer 2009; Florax et al., 2011).

The attention received by the residential sector in the
analysis of efficiency gain grew significantly in recent
years. The rise of household electricity demand driven
by penetration of electrical appliances of different nature
such as PCs, TV and portable ICT devices together with
socio-demographic changes (Bertoldi and Atanasiu,
2007 ; Atanasiu and Bertoldi, 2008) has raised govern-
ment concern across the EU because such an increase
can threaten their efforts to reach the targets set out
under the recent EU 20-20 strategy. At household level,
the widespread presence of traditional large appliances
(e.g. freezers, refrigerators, washing machines and dish-
washers) is still responsible for 25 % of households’
electricity consumption as opposed to other appliances
such as information and communication devices whose
energy needs are negligible with respect to the so-called
white goods (Saidur et al. 2007).

Even though traditional electrical appliances are
characterised by mature technologies, their potential
contribution to reducing aggregate energy consumption
is still very large if we consider the combined effect of
EE improvements in these technologies and the fact that,
since traditional appliances are crucial to fulfilling pri-
mary needs, they are largely widespread among house-
hold dwellings (IEA 2009, 2012; EC-JTR, 2012). Re-
cent studies have confirmed cost-effectiveness of EE
gains deriving from electrical appliances with respect
to those deriving from other sectors. In particular, cold
appliances (freezers and refrigerators), washing ma-
chines and dishwashers seem to have had a large impact
in terms of EE performances (McKinsey and Company
2009; Hyung et al., 2006)" and such an impact clearly
reflects the increased effort of governments in
implementing new EE regulation. Among others, it is
worth mentioning the Eco-design Directive (Directive
2009/125), the Energy Labelling Directive (Directive
92/75/EC, replaced by Directive 2010/30) and the Mon-
treal Protocol on Substances that Deplete the Ozone
Layer, agreed in 1987 within the Vienna Convention
and entered into force on 1989. This latter envisaged the

! The portfolio of energy services available for households has
massively increased over the last 20 years, with a strong penetra-
tion of new devices and appliances aimed at satisfying these
services. See Burwell and Sweezey (1990).
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gradual phasing out of chlorofluorocarbons largely
employed in older refrigerators and freezers®.

In this setting, the contribution of technical change
for increasing the efficiency of energy-intensive devices
is key to reducing the electricity consumption in the
residential sector. In this respect, several studies
analysed the economic implications of more efficient
appliances (Datta and Gulati, 2014; Filippini et al.,
2014; Galarraga et al., 2011a; b ; Galarraga et al., 2016
). A detailed and interesting attempt to measure the
impact of new efficient appliances is provided in Borg
and Kelly (2011), who used high-resolution demand
data reflecting the effects of EE improvements in appli-
ances in future years. As a consequence of the change-
over in favour of more efficient appliances, they esti-
mate an average reduction in electrical consumption of
23 % at 2020 for the households under investigation.

Although the evidence on the impact of energy-
efficient appliances signals a consistent and large bene-
ficial effect in terms of electricity saving, most of these
studies do not focus on the impact of technology, which
is often considered implicit (e.g. analysing energy classes
based on the performance of energy consumption or
some basic product characteristic) and with a raw repre-
sentation of the complex portfolio of available technolo-
gies. At the same time, it is acknowledged that traditional
electrical appliances have shown a growing level of
technology integration, as more and more appliances
incorporate information and communication technolo-
gies (ICTs) such as stand-by devices, real-time displays,
intelligent sensors, smart meters and advanced firmware
as well as many other improvements which allow for
more sophisticated food conservation and washing
processes. Martiskainen and Coburn (2011) emphasised
that ICTs can both enhance and decrease energy con-
sumption, the former through the use of energy to oper-
ate (Koomey, 2007) and the latter due to increased
awareness of households on their energy consumption
and improved EE performances. Moreover, the steady
technological advancement of electrical appliances is
strongly linked to the concept of Smart House, in which
a large use of ICTs is required to facilitate the interoper-
ability of household products and services (Peine, 2009).
In a smart house, different products are mutually linked
and controlled through a bus system, thus imposing the
presence of ICTs in addition to traditional mechanics. In

2 Our patent family sample starts from 1990 and captures such an
important regulation.
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this respect, Antonelli states that ‘no product or process
can be manufactured without the substantial application
of new information and communication technologies or
without substantial effects of the application of new
information and communication technologies’
(Antonelli 2003, pp. 598; see also Antonelli 1992a, b)
and identifies fungibility as a further element
characterising the ICTs. The concept of fungibility ap-
plies to technologies with applications that are useful to a
great array of new products and processes and is strictly
related to the concept of general-purpose technologies
(Bresnahan and Traitenberg, 1995; Rosenberg and
Trajtenberg, 2004; Bresnahan, 2010). In this regard,
Panzar and Willig (1981) highlighted some important
futures of general-purpose technologies, such as lower
production costs due to joint use of appliance compo-
nents and gains in production efficiency through scope
economies. According to Corrocher et al. (2007), ICTs
are largely seen as one of the most important general-
purpose technologies, able to spur the development of
new technologies and applications spreading across dif-
ferent sectors.

The higher degree of technological variety as well as
the increasing level of ICT integration raises a series of
questions and issues to be analysed which constitute the
object of this paper. In particular, given the increasing
technological complexity embodied in appliances and
their strong contribution to decreasing household energy
consumption, it is worth analysing the technological
structure and evolution of EE in energy intensive elec-
trical appliances. This implies a decomposition of the
technology space in which EE has nested and evolved
over time. In addition, we aim to analyse which role, if
any, ICTs have played in transforming the technology
space of energy-efficient domestic appliances.

Building on this debate and by employing an original
dataset of 688 unique triadic patent families®, we break-
down the technology space of three groups of energy-
efficient domestic appliances (i.e. freezers/refrigerators,
dishwashers and washing machines) into different

* Whereas patent families are collections of patents filed in differ-
ent patent offices and related to the same invention, Triadic Patent
Families are inventions protected in the main patent offices: Eu-
ropean Patent Office, Japanese Patent Office and US Patent and
Trademark Office. The use of Triadic Patent Families enhances the
quality of patent datasets since the influence of rule and regulations
of patent offices and patenting strategies are reduced (Dernis and
Khan, 2004). Further details are provided in the “Sample
selection” section.

technology clusters that are able to affect EE perfor-
mances. Subsequently, we map and identify these clus-
ters of patents related to EE technologies and unveil
their dynamics over time and across appliances. In doing
so, we exploit patent maps obtained through the imple-
mentation of self-organising maps (SOMs), a class of
unsupervised artificial neural network able to represent
high-dimensional data in visually attractive and low-
dimensional distance-based maps (Kohonen, 1990,
1998, 2001, 2013).

The rest of the paper is organised as follows. The
“Patent analysis model” section, after a brief introduction
of the main methods to build patent maps, describes the
sample selection and the patent analysis model, along
with the theoretical foundations of SOMs. The “Results
and discussion” section presents and discusses the re-
sults. The “Conclusions” section concludes the paper.

Patent analysis model

There are several possibilities for measuring technolog-
ical advances. As with most economic variables, the
problem of measurement is directly related to the avail-
ability and the quality of specific data. Patent data
provide a public wealth of information suitable to study
environmental technological change (Popp, 2005). The
role of patents has been largely exploited since they
allow specific technology features to be analysed
(among others: Griliches 1990; Archibugi and Pianta
1996; Leydesdorff et al. 2014). Indeed, patent data
include, among others, information on the geographical
location of the applicant or inventor, citations to prior
patents and, most importantly for the purposes of the
present study, the technological specification of each
invention for rather long time series. However, the use
of patents as a proxy of inventive activity was not
exempt from criticism regarding, for instance, heteroge-
neity in their technical and economic value (Griliches
1998; Hall et al. 2005) and differences in the propensity
of patenting across sectors and technologies (Arundel
and Kabla 1998). A further limitation of patent data is
represented by the partial and rough representation in
the set of international patent classification when tech-
nological domains characterised by high complexity
and rapid evolution are under scrutiny. Such an issue
becomes crucial in eco-innovation studies since a grow-
ing number of green technologies are being developed
and mapped by researchers and practitioners through ad
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hoc methodologies, as in the case of biofuels in
Costantini et al. (2013).

When patents or patent families are used to investi-
gate technology dynamics, the outcome usually takes
the name of patent analysis. The broad set of methods
and techniques related to patent analysis aims at identi-
fying coherent information for different purposes. Basi-
cally, patent analysis techniques automatically reduce
the large amount of information provided by patent
documents to useful low-dimensional information.
A taxonomy of the main patent analysis tools is pro-
posed by Abbas et al. (2014), which distinguishes be-
tween data processing using text-mining techniques and
visualisation maps. Indeed, the information in patent
documents is provided by structured and unstructured
patent item (Lee et al., 2009; Tseng et al., 2007). The
former includes standardised elements retrieved in pat-
ent documents, such as technological classes, priority
year or citations count, whereas the latter, i.e. unstruc-
tured patent items, contains free text strings. Since the
innovative content is enclosed in the text corpus of
patent documents, the analysis of unstructured data em-
ploys text-mining techniques as a means of knowledge
extraction. Tseng et al. (2007) emphasises that the cre-
ation of patent maps using unstructured items follows
different steps. After a first phase in which relevant
patents are collected, text mining techniques parse the
text corpus of patent documents from which representa-
tive keywords or phrases are extracted and indexed in
order to characterise each word. In the following step, a
clustering tool is applied to reduce the complexity of the
information retrieved, detecting the knowledge structure
of the dataset. Finally, visualisation methods are used to
show graphically the results of this process.

Unstructured items are usually analysed through
different approaches detailed by Abbas et al. (2014).
Some of them are (i) natural language processing
approach, usually employed to retrieve the grammat-
ical structure (e.g. keywords and their relationship)
in patent documents; (ii) property function-based
techniques, used to identify the technological con-
notations of patent and detect codified properties in
their textual data though natural language process-
ing; (iii) rule-based approach that measures associ-
ations between grammatical structures employing
inference rules and association rules among unstruc-
tured items; (iv) semantic analysis-based techniques
applied to identify similarity between patent techno-
logical contents through the creation of logical
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relationships between parsed grammatical structures
and (v) neural network-based technique used to filter
information in textual data through the use of back-
propagation neural networks.

Visualisation maps (patent mapping) also constitute
an important part in explorative patent data analysis,
especially with high information complexity and data
dimensionality (Vesanto 1999). In this respect, the rep-
resentation of patent analysis using maps is widespread
in the literature of patent analysis and there are numer-
ous techniques devoted to this aim. Broadly speaking, a
patent map” is able to show complex and invisible
relationships between different patent documents as
well as their peculiar features by exploiting a simpler
low-dimensional visualisation.

Furthermore, Abbas et al. (2014) classifies patent
maps as patent networks and cluster-based maps. In a
patent network, the relationship between objects is inves-
tigated by analysing the characteristics of nodes (e.g.
patent documents) and arches connecting them (e.g. ci-
tations between patents) (Barbera-Tomas and Consoli,
2012; Epicoco, 2013). Although network analysis was
initially employed in sociological studies, such method-
ology now represents a widespread technique in innova-
tion economics with a number of tools for visualising and
interpreting both structured and unstructured patent items
(Narin 2000; Huang et al. 2004; Yoon 2004; Verspagen
2007; Sternitzke et al. 2008; Lee et al. 2009, among
others). Finally, a patent map can also derive from a
clustering process in which observations are divided into
groups ‘internally homogeneous (internal cohesion) and
heterogeneous from group to group (external separation)
[...] reducing the space dimensionality’ (Giudici 2003,
pp.76; see also Kim et al. 2008). For instance, the prin-
cipal component analysis is a suitable technique to reduce
the number of keywords and therefore the size of the
keyword matrix from which the map is generated. Lee
et al. (2009), after listing keywords included in the patent
dataset through text mining, employed principal compo-
nent analysis to decrease the number of keywords in
order to build a patent map and detect new technology
development and new product creation trends.

Patent maps may also differ in the outputs they pro-
duce. Van Eck and Waltman (2010) distinguished be-
tween graph-based maps and distance-based maps. While
the focus of the former is on the presence of links

4 Map is here used as a generic term, being synonymous with
diagram, chart or graph.
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between items (e.g. patent networks), the latter captures
the strength of these relationships and projects them in a
spatially ordered space that captures the relatedness
between objects. In this class of maps, the similarity
between the input data is measured and represented in a
low dimensional space where, usually, the lower the
distance between the items, the greater their similarity.
A promising approach to build patent maps relies on the
use of artificial neural networks which have shown a high
level of efficiency in managing high-dimensional
observed data. Among the different types of artificial
neural networks (surveyed in Giudici, 2003), the present
study employs self-organising maps (SOMs), an unsu-
pervised neural network technique able to reduce the
dimensionality of the input data and represent them in a
two-dimensional space (Kohonen, 1990, 1998, 2001,
2013). SOMs are based on unsupervised learning
processes able to map every dimensional observation in
a spatial grid (see the “SOM implementation” section for
a comprehensive description of this method). Such a
feature makes the SOM particularly effective for
classification and clustering analysis. Indeed, nodes are
placed in such a way that adjacent ones will be more
similar than the distant output nodes, thus introducing a
topological dependence between clusters and preserving
spatial correlation between the input vectors and the
clusters.

The use of SOMs has been increasingly adopted in
several applications and for mapping different types of
data, such as, for instance, scientific journal networks
(Campanario, 1995), author co-citation data (White
et al. 1998), conferences (Silva Almendra et al. 2014),
firm technological efforts (Barbieri 2015) or industrial
districts (Carlei and Nuccio 2014). A version of the
SOM, i.e. WEBSOM, has been implemented to build
topically ordered maps in which large amounts of
documents are located in relation to their textual data
(Lagus et al. 2004). In addition, several papers
employed patent data to visualise technological land-
scapes (Park et al. 2013; Polanco et al. 2001; Lee et al.,
2009). Yoon et al. (2002) applied SOMs in order to
show complex relationships and dynamic patterns in
different technologies. They built technology vacuum,
claim point and technology portfolio maps to identify
technology-missing areas, potential infringements and
technology classifications, respectively. A further recent
contribution employing text-mining techniques and
SOMs is provided by Segev and Kantola (2012) who
used a term frequency-inverse document frequency

algorithm to extract patent knowledge then represented
by SOMs.

Despite the increasing number of studies that use
citation data and connectivity analysis (Verspagen 2007,
among others), the present paper relies on SOM to unveil
the domains of EE technologies. The reason for our
choice is twofold. First, the characteristics of EE technol-
ogies may permeate many technological domains
decreasing the usefulness of using citation data to detect
these domains. In addition, the use of citations would
underestimate the technological content in most recent
patents, considering that these show lower probability to
be cited than older patents (Jaffe and Trajtenberg, 2004).
In this respect, the choice of using patent classification
codes instead of citations allows us to exploit a longer
time series. Building on these contributions, our patent
analysis model (Fig. 1) is characterised by three phases.
The first phase, i.e. pre-processing, is devoted to
obtaining a set of patents belonging to energy-efficient
electrical appliances while the last two, i.e. processing
and post-processing, aim to identify the technological
clusters in which EE is nested, as well as analysing their
technological evolution over time.

Semantic search Class-based search

(keywords and boolean

(CPC-Y02 classes)

operators)

v v

Cleaning

Pre-processing . Lo
? > Selection of triadic patent

families
v

Patents sample

(688 triadic patent families on EE

apphances)

Batching
| Self Organising Map (SOM)

/

Clustenng\
K-means a'zmy

Nodes IdennﬁcQ

’ ‘Technology-specific clusters ‘

\

Processing

\/\/

Post-processing

Fig. 1 Patent analysis model
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Sample selection

By employing patents to study technological advances,
we are focusing on inventive activities that characterise
the early stages of technological change (Schumpeter,
1942) in which ideas are born. Even though this does
not imply that our set of patents have reached commer-
cial application, the paper aims to identify the main
technological advances in the field of energy-efficient
appliances which entails that excluding patent without
commercial application would limit the capabilities of
our analysis to understand the dynamics of more recent
technologies still in their early stage of development.
The coherent set of patent documents on which the
empirical analysis builds on is collected using an orig-
inal patent search process based on keyword and patent
classification codes’. Only since 2013 did the Coopera-
tive Patent Classification (hereafter referred to as CPC)
include classes related to EE technologies for domestic
electrical appliances®. According to Costantini et al.
(2014), the reason for such a lack is twofold. First, EE
appears a latent technological domain since improvements
in EE are not always explicitly mentioned by the main
unstructured items of patent documents, namely title,
abstract and claims. Consequently, the full document text,
including long patent descriptions, must be analysed. The
second reason lies with EE pervasiveness, the

> Patents were downloaded using ‘Thomson innovation database’
(December, 2014)

¢ The Cooperative Patent Classification was established in 2010 as
a joint partnership between the US Trademark and Patent Office
(USPTO) and the European Patent Office (EPO) to provide
harmonisation between the two classification systems developed
by each office, European Classification and US Patent Classifica-
tion, respectively. This classification system provides an interna-
tional classification standard aimed to harmonise the search pro-
cess of patents based on their technological content. When patents
are filed by, the patent office assigns the CPC codes in order to
describe the technological content of the invention. This classifi-
cation system is based on the International Patent Classification
(IPC) and it has a hierarchical structure. This means that as far as
the number digits of the CPC code increases, its technological
specification grows. For example, the four-digit code Y02B refers
to ‘Indexing scheme relating to climate change mitigation tech-
nologies related to buildings, e.g. including housing and appli-
ances or related end-user applications’ and the eight-digit code
Y02B0040 relates to “Technologies aiming at improving the effi-
ciency of home appliances’. Whereas the former includes the
latter, the specificity of Y02B0040 is higher than the one of
Y02B which includes a higher number of technologies, such as
‘integration of renewable energy sources in buildings’
(Y02B0010), ‘energy-efficient lighting technologies’
(Y02B0020), etc.
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Table 1 Energy efficiency triadic patent family sample, by
appliance

Patents Share
Dishwashers 66 9.60 %
Freezers/refrigerators 489 71.08 %
Washing machines 133 19.33 %

688 100.00 %

characteristic to be embodied in many components and
devices. Indeed, an analysis of the relationship between
EE and technological content shows that EE not only
operates in the most advanced technologies but, compar-
atively, in the entire panorama of technologies using en-
ergy. In the field of patent analysis, this means that EE
represents a complex cross-cutting technology space in
which many CPC classes are involved in order to increase
the efficiency of devices. Given the partial representation
of the new CPC classification, a specific methodology for
identifying EE technologies using patents is strongly
required (see also Noailly and Batrakova 2010).

The patent search process that we followed in the
paper combines a top-down and bottom-up approach for
catching patents filed at several patent offices. The top-
down search method employs the recent CPC-Y02B-40
classes, defined as ‘technologies aiming at improving
the efficiency of home appliances’. These include spe-
cific sub-classes referring to EE technologies in electri-
cal appliances such as thermal insulation for freezers or
heat recovery devices for dishwashers (see Appendix
Table Al). Nonetheless, CPC fails to capture different
technical expedients able to increase appliance efficien-
cy, such as for instance, lighter motion devices deriving
from the use of new materials or more efficient refrig-
erant liquid in cooling appliances. We filled this gap in
the bottom-up search approach by employing two levels
of searching with selected keywords together with Bool-
ean operators (AND, OR, NOT) as in Costantini et al.
(2014). Considering the latent nature of EE technolo-
gies, two search levels were performed on the full
patent-unstructured items (title, abstract, claims and de-
scription). The first level defines the EE macro-domain
with respect to the universe of patent applications in the
considered period, whereas the second level reduces the
macro-domain to an end-use level on those patents
classifiable as inherent to domestic electrical appliances
such as ‘refrigerator’, ‘washing machine’ and so on’.

7 Search strings are provided in Appendix Table A2
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Table 2 Number of patents
related to energy efficiency

technologies and their CPC code
standard deviation (SD) for each
sampling approach

Top-down approach Bottom-up approach Combined Approach
Number of patents 42 659 688
Full CPC code SD 4.490 9.748 9.567
8-digit CPC code SD 2282 3.152 3.122
4-digit CPC code SD 0.975 1.187 1.164

Therefore, we reduced the set of applications to three
groups of energy-intensive electrical appliances:
freezers/refrigerators (cooling appliances), washing ma-
chines and dishwashers (washing appliances).

The patents obtained by the combination of a top-
down and bottom-up approach are then used to collect
patent families®. Furthermore, in order to increase the
quality of our dataset with higher value patents and
improve their international comparability, the analysis
employs triadic patent families as unit of analysis
(Martinez, 2010; Dernis and Khan, 2004). The resulting
dataset includes triadic patent families whose patents are
applied to the main patent offices’, i.e. European Patent
Office, Japanese Patent Office and US Patent and Trade-
mark Office. Although the use of triadic patent families
reduces the patent sample, it positively affects the qual-
ity of the dataset since the cost for seeking patent pro-
tection in many countries is associated with higher
application fees that are not likely to be incurred for
low-value inventions. Patent application does not imply
that the patent will be granted because only a portion of
patent applications fulfils patenting criteria, such as
novelty, industrial applicability, etc. However, using
triadic patent families based on patent application, in-
stead of granted patents, would avoid a further reduction
of the patent sample and increase the timeliness of the
data. In this respect, Dernis and Khan (2004) emphasise
that focusing on triadic patent families calculated using
granted patents would further reduce the number of
patent families at the European Patent Office of at least
one quarter, with a larger reduction in other patent offices
(e.g. Japanese Patent Office). Moreover, using grant data

8 This procedure allows the double counting of patents that refer to
the same technology whose protection had been extended to many
patent offices to be dropped.

° Triadic patent families put together patent applications filed at
the European Patent Office and Japanese Patent Office. Due to the
fact that until 2001 the US Patent and Trademark Office did not
provide data on patent application but only on granted patents, the
latter is used as a proxy for patent applications in that office
(Dernis and Khan, 2004).

would affect patent time series since ‘the grant process
takes on average between 3 to 4 years at the US Patent
and Trademark Office and 5 years at the European Patent
Office (in some instances, the grants process last up to
ten years)’ (Dernis and Khan, 2004: pp. 19). Partially
related to this issue, the use of patent applications re-
duces the time lag between development and disclosure
of the invention improving the accuracy of the results.

We obtained a dataset of 688 energy efficiency triadic
patent families filed from 1990 to 2014 and related to
three groups of domestic appliances as shown in Table 1.
As a final step, we tested a sample of 15 % for each
appliance analysed as a further manual validation process.

The advantages of using both CPC-search and string-
search approaches are manifold. First, as shown in Ta-
ble 2, the results obtained from a combination of the two
methods are complementary since the use of only one of
them would not capture some EE patents in the consid-
ered appliances. In particular, when the search process
to collect EE patents is carried out using the top-down
approach, a large portion of patents is missed. This latter
is, on the other hand, captured by the bottom-up ap-
proach. Moreover, if we consider the number of CPC
codes per patent as a proxy for technological diversifi-
cation'?, the top-down approach shows a lower level of
variety as measured by the standard deviation of CPC
codes per patent, which is higher for those patents
collected through a semantic search (keywords). This
confirms the latent nature of the EE technological
domain and provides evidence of its pervasiveness,
given that the general objective of EE spreads across
several classes as already highlighted in Noailly and
Batrakova (2010) and Costantini et al. (2014).

A further validation method for capturing the perva-
siveness of EE in different technological areas is based

19 Breschi et al. (2003) employed the number of technological
classes (that patents belong to) as a proxy for firm technological
effort diversification. In our paper, we adopt a similar approach
using patents as the observation unit (instead of firms). We assume
that the higher the number of CPC codes assigned to each patent,
the greater their technological diversification.
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Fig. 2 Technology space
obtained through four-digit and
eight-digit CPC code co-
occurrence

* \,
[ 2

R i

!
oo

on a graphical analysis of the technology space of
freezers/refrigerators obtained with four-digit and
eight-digit CPC co-occurrence maps for the collected
sample. In Fig. 2, each map’s node represents a single
CPC class and it is located according to its similarity
with the other nodes. Figure 2 is a distance-based map
that captures the relative importance of the CPC codes
with respect to the other nodes (van Eck and Waltman,
2014). In this two-dimensional space, the similarity
between nodes constitutes the mapping rule. Smaller
(larger) distance indicates higher (lower) similarity be-
tween nodes''. Hence, more central nodes have greater
co-occurrence levels with other CPC classes. As shown,
the portion of the technology space captured by the

! The maps are built using VOS mapping technique (Van Eck and
Waltman, 2010) implemented in the freely available software used
to map bibliometric items called VOSviewer (http://www.
vosviewer.com). The construction of the map follows three main
steps. First, a similarity map is built using a normalised co-
occurrences matrix. Second, the VOS mapping technique is im-
plemented and each node is mapped so that the distance between
each pair of nodes reflects their similarity. Third, VOS performs
translations, rotations and reflections to the resulting map.
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bottom-up approach (red line) is larger than the one
obtained by using only a top-down approach (blue line),
the latter only representing a subset of the former. How-
ever, despite the fact that the top-down approach fails to
catch EE peripheral technological areas, it captures the
most important CPC classes, located in the central part
of the maps, since it is characterised by a high degree of
co-occurrence.

SOM implementation

In order to create the patent map, we apply the self-
organising map (SOM), a topological ordered mapping
technique firstly introduced by Kohonen (1990) (see
also Kohonen, 1998, 2001, 2013). This tool is an unsu-
pervised competitive artificial neural network able to
represent multidimensional data on a two-dimensional
topological grid (Kohonen, 2001). Such a technique
reduces complex non-linear statistical relationships into
a simpler, easy to understand and graphically attractive
low-dimensional map in which the topological relation-
ship between input data, which tend to be clustered, is
preserved (Kohonen, et al. 1996).
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Fig. 3 CPC codes counts and
number of CPC codes never
explored before over time (four-
digit CPC codes)
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By resembling the vector quantisation process'?, the
SOM is a suitable tool for multidimensional reduction
which provides a spatial and global order within the
output map since similar input data are placed closer in
the map and different input data gradually further away
(Kohonen, 2013). Such a feature is provided by the
adaptive units that form the map and are able to modify
their response in such a way that the position of the
nodes in the map becomes representative of the patterns
found in the inputs (Yoon et al., 2002). In addition,
SOMs are able to learn from input data for a more
effective representation and dimensionality reduction.

To build the SOM, we employed the SOM Toolbox '
using the batch algorithm that provides higher accuracy
as well as lower computational efforts (Kohonen, 2013).
The batch algorithm is calculated as follows:

1. Define map dimension'* and assign map node
weight vectors (initialization phase).
2. Select single input vector from the dataset.

12 A standard methodological tool in modern digital signal pro-
cessing in which n-dimensional input vectors are assigned to
contiguous regions, each of them represented, in an optimal way,
by codebook vectors

13 A free Matlab© function package developed by the SOM
Toolbox Team at the Helsinki University of Technology
(Vesanto et al., 1999). The SOM Toolbox is downloadable under
GNU General Public Licence at: http://www.cis.hut.
fi/projects/somtoolbox/. SOM Toolbox is copyright (C) 2000—
2005 by Esa Alhoniemi, Johan Himberg, Juha Parhankangas and
Juha Vesanto.

!4 We employed a heuristic formula proposed in the SOM Tool-
box: n = 5+/dlen, where n is the number of units that make up
the final map and dlen the number of observations that are
mapped. As stated above, the shape of the lattice is defined by
the two largest Eigen vectors of the training data, during the
initialization phase.
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3. Identify the most similar map node to each input
data (the one that minimises the Euclidean distance
between the input and map vectors) and track it as
best matching unit.

When all input data are assigned to their best
matching unit, update the weight of each map neu-
ron by computing the mean of the input data placed
in the kernel defined by the neighbourhood
function.

The batch algorithm differs from the classical sequen-
tial algorithm in the way input data are presented to the
grid of neurons since the whole set of input data is
presented to the map in one step, and only subsequently
are the map weights adjusted to reproduce the similarity
between them. In this way, the order in which the input
data are presented to the map does not influence the final
output (Kohonen, 2013). The SOM implementation pro-
vides a patent map that returns the technological clusters
in which inventive efforts in EE are grouped. The patent
map is run using eight-digit CPC codes assigned to each
patent as input data. This patent classification system
assigns codes to patent documents according to their
technological content based on a hierarchical, language-
independent classification system. Thus, it defines the
technological characteristics of the inventions in a
standardised way that allows comparison between pat-
ents. Thanks to these features, CPC codes can be used to
measure similarity between the technological content of
patents, i.e. the strength of their technological relatedness
(Scherer, 1982; Jaffe, 1986; Verspagen, 1997, among
others). In the related literature, many efforts have been
made to measure the technological relatedness between
patents. For instance, Leydesdorff et al. (2014) built a
matrix for measuring the number of times a patent

@ Springer
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Fig. 4 Trend of the radicalness 0.6

index over time
05
0.4
03

0.2

0.1

1990
1991

technological class is cited by other classes, using the
cosine index as a measure of similarity. Breschi et al.
(2003) and Nesta and Saviotti (2005), after describing
each patent through a set of technological classes, used a
matrix of co-occurrences to measure the strength between
technological fields. Accordingly, we use co-occurrences
of CPC codes assigned to each patent to define the
technological similarity between them. We assume that
the higher the number of shared CPC codes between two
patents, the higher their technological similarity is. There-
fore, the input data of the SOM is a matrix having, in each
column, the frequency of eight-digit CPC classes
assigned to each patent, with the univocal patent identi-
fication (publication number) in the rows. As a result, the
SOM generates a patent map in which patents with
similar (different) technological content are placed closer
(distant).

Once the SOM has been trained, a visualisation pro-
cess is required in order to show the resulting output.
More precisely, the process consists of a method for
locating the best matching units in an effective and
visually attractive map (projection). Among different
techniques (Vesanto, 1999), the unified distance matrix
(U-Matrix) is proposed here, choosing a grid with a
hexagonal lattice’® (Ultsch and Siemon, 1990). By
assigning different colour hues according to the distance
between each map node and its neighbour nodes,
distance matrices show the similarity level between
SOM nodes.

The main limitations in implementing the SOM
algorithm relates to the time and computational

15 The choice of the lattice only reflects aesthetical reasons since it
does not produce bias in the data representation.
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requirements needed to run the algorithm. Indeed, the
algorithm is rather heavy computationally. Even if this
problem affects most of the clustering techniques, the
computational performances required by the SOM
algorithm increase with the dimension of the map and
input data. In addition, the SOM does not allow
missing data for one or more dimensions of the input
data. Even though this problem does not affect the
present study, it may be the case in which it is
impossible to acquire all the data to build the dataset.
Lastly, Rauber et al. (2002) observed that conventional
SOMs are not suitable to identify hierarchical relations
between input data.

Based on the spatial order of input data, obtained
using the SOM, map nodes are clustered through the
non-hierarchical K-means algorithm (MacQueen 1967).
By applying the K-means method, the nodes are
partitioned into & groups and clustered according to the
method of centroids, i.e. points with a low distance
between them and the other elements in the cluster.
The number of clusters is defined by choosing & based
on the sum of squared errors. Finally, the Davis-Bouldin
index (Davies and Bouldin, 1979) is calculated for each
k, a clustering performance index that measures com-
pactness and separation between nodes and clusters. The
synergy that arises from the use of this two-stage meth-
od, i.e. SOM and clustering, produces more powerful
results than using them singularly (Chi and Yang, 2008;
Kuo et al., 2002).

By exploiting the topology-preserving feature of
SOMs and their geometrical properties (preservation of
the initial degree of CPC relatedness projected in a
Euclidean space), we calculated two additional mea-
sures within the maps: the average distance between
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Fig. 5 U-matrix and K-means
clustering for freezer/refrigerators

each cluster centroid (between distance) and the average
distance between the nodes included in each cluster
(within distance)'®. The between distance is here used
as a proxy for measuring the degree of spatial agglom-
eration captured by the cluster map. It is calculated for
each cluster using the average Euclidean distance that
separates the specific cluster centroid from all the other
clusters’ centroids. Accordingly, lower average dis-
tances imply a denser technology space since clusters’
centroids agglomerate closer to others. On the contrary,
higher average distance between clusters indicates that
the cluster is located far away in the clustering space
with respect to the others. On the other hand, the within
distance is calculated using the average Euclidean dis-
tance between each SOM node within each cluster and
captures the spatial density inside each cluster.

Results and discussion

Characteristics of the patenting activities in EE home
appliances

Before exploring the technology space of each appli-
ance, we provide some insights on the main character-
istics of patenting activities in energy-efficient home
appliances. We exploited information on the set of pat-
ents filed at the European Patent Office included in our
original dataset. In so doing, although the number of
observations on which the analysis is based does not

16 Whereas the within distance is calculated using the average
Euclidean distance between each node within each cluster, the
‘between’ distance is the average Euclidean distance between
cluster centroids. Here, the centroid is measured using the geomet-
ric centre of the cluster nodes.

decrease (each triadic patent family includes a patent
filed at the European Patent Office), we enhance the
comparability and reliability of results. The motivation
for this choice resides in the fact that each patent office
follows its own rules, regulations and patenting strate-
gies, and thus the international comparability of patent
documents may be affected by this heterogeneity. In
particular, the inclusion of citations in patents may differ
across patent offices (Michel and Bettels, 2001). For
instance, whereas citations at the US Patent and Trade-
mark Office are shared by patent applicants, the Euro-
pean Patent Office only includes citations by patent
examiners.

Figure 3 shows the evolution of the technology space
in terms of CPC codes. It can be observed that the
number of CPC codes included in our set of patent
families increases over time (black line)'”. This index
can be used as a proxy for complexity of the knowledge
space which grows in particular from 2007 onwards.
This evidence suggests that the community of technol-
ogists increasingly explored different technological
fields in order to overcome the hurdles which character-
ise energy consumption in domestic appliances. This
evidence is supported by the second grey line of
Fig. 3, which represents the number of CPC codes
entering the technology space for the first time. These
technological fields have never been explored before as
far as the technologies under investigation are con-
cerned. It can be noticed that at the beginning of the
1990s, the number of new, explored, CPC codes de-
creased over time with some fluctuations. However,
from 2007 onwards, this index follows the trend in the

17 We avoid double counting of CPC codes. This index measures
the number of CPC codes explored in 1 year.
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Table 3 Cluster identification for freezers/refrigerators

Refrigerators and freezers

Cluster no. Technology description

% patent share Average node distance Average distance

per cluster within the cluster between CLs

No. 7 Mechanical and electrical components (compressors, pumps etc.) 43.15 (1) 0.32(1) 0.53 (1)
No. 3 Refrigerant circulation systems 12.27 (2) 0.51 (6) 0.82 (6)
No. 5 Components for power and control management 12.07 (3) 042 (3) 0.77 (5)
No. 1 New refrigerators and freezers (as a whole) 11.45 4) 043 4) 0.55(2)
No. 4 Heat transfer and refrigerant compositions 8.18 (5) 0.35(2) 0.71 (4)
No. 2 Insulation panels and foams 6.54 (6) 044 (5) 0.647 (3)
No. 6 Lubricant oils 6.34 (7) 0.74 (7) 1.26 (7)

Total 100 Mean 0.46

Mean 0.76

Note: Cluster numbers are provided in the first column. The last two columns refer to average node distance within each cluster and average
distance between clusters (for further details see the “SOM implementation” section). For the average node distance within each cluster, we
tested the null hypothesis of equality between the mean node distance within each cluster and the mean node distance in the whole map. The
null hypothesis has been rejected at the 99 % level of confidence for each cluster

number of CPC included in patents. In particular, it rises
from 2007, highlighting that the increase in complexity
of the technology space is mainly driven by new tech-
nological fields never explored before. These issues
shed light on the presence of an explorative phase, in
which new technological fields are being explored as far
as the technologies advance. Further interesting evi-
dence derives from the analysis of patent quality. In this
respect, Squicciarini et al. (2013) provided a set of
indicators to measure different aspects of technological
trends using patent data. We employ the Radicalness
Index, proposed by Shane (2001), to measure the num-
ber of classification codes assigned to patents cited by a
given patent. The value added of this index is that it
takes into accounts only classification codes that are not

included in the patent under analysis. For instance, if
CPC codes A and B are assigned to patent 1 and B and C
to patent 2, the radicalness index for patent 2 (patent 2
cites patent 1) does not provide information on the
classification code B because it is included in both
patents. Instead, it takes into account the CPC code A
assigned only to the cited patent. The index is calculated
as follows:

p

CT;
Radicalness Index, = >— J. ; IPC,#IPC,,

J

where C7T; refers to the number of International
Patent Cla551flcat10n codes at four-digit IPC,; of

Fig. 6 U-matrix and K-means
clustering for washing machines 0.663

0.0439

e

'Q..

Clusters

U-matrix
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Fig. 7 U-matrix and K-means
clustering for dishwashers

0.0603

0.384 *

%

U-matrix Clusters

patent j cited by patent p that are not assigned to
patent p. n indicates the number of International
Patent Classification codes in the cited patents
calculated at the fifth hierarchical level.

High values of the radicalness index correspond to
greater diversification of the knowledge base upon
which the scrutinised patents build on. As we can ob-
serve from Fig. 4 the trend in the radicalness index is
positive. This result confirms that, over time, technolog-
ical advances in energy-efficient home appliances are
characterised by heterogeneous prior art and increased
complexity. It also provides evidence on the presence of
an explorative phase in which different bits of knowl-
edge (not necessarily strictly peculiar to the technologies
analysed) are being combined to develop technologies
with implications in terms of EE (Krafft et al., 2011).

Table 4 Cluster identification for washing machines

Experiment I—identification of EE niches

In this first experiment, we use the entire patent sample
to discover which technical components are related to
EE improvements. These components are presented on
the maps as clusters which include nodes with similar
technological content, previously identified by the
SOM. We repeat this experiment for each of the three
groups of appliances, providing a clear picture of the
pervasive nesting of EE in different appliance compo-
nents such as mechanical, electro-mechanical, digital
and chemical ones as well as in operational processes.
The resulting framework is thus characterised by high
technological complexity, generated by numerous clus-
ters referring to a wide array of scientific and industrial
contributions.

Washing machines

Cluster no.  Technology description % patent share  Average node distance ~ Average distance
per cluster within the cluster between CLs

No. 3 Mechanical and electromechanical components. 47.37 (1) 0.38 (2) 0.67 (2)

No. 5 Washing process/methods and washing machine as a whole  21.80 (2) 0.32 (1) 0.86(4)

No. 4 Digital components for energy management 12.03 (3) 045 (3) 0.95(5)

No. 2 Sensors 11.28 (4) 0.52 (5) 0.85(3)

No. 1 Motion and heating electrical controllers. 7.52(5) 0.47 (4) 0.61 (1)

Total 100 Mean 0.43 Mean 0.79

Note: Cluster numbers are provided in the first column. The last two columns refer to average node distance within each cluster and average
distance between clusters (for further details see the “SOM implementation” section). For the average node distance within each cluster, we
tested the null hypothesis of equality between the mean node distance within each cluster and the mean node distance in the whole map. The
null hypothesis has been rejected at the 99 % level of confidence for each cluster
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Table 5 Cluster identification for dishwashers

Dishwashers

Cluster no. Technology description

% patent share Average node distance Average distance

per cluster within the cluster between CLs
No. 4 Other components (mechanical, electromechanical and chemical) 40.91 (1) 0.352) 0.59 (1)
No. 3 New washing methods and dishwashers as a whole 24.24 (2) 0.35(1) 0.76(3)
No. 1 Components for energy management 22.73 (3) 0.53(4) 0.71(2)
No. 2 Controllers and sensors 12.12 (4) 0.44(3) 0.79(4)
Total 100 Mean 0.42 Mean 0.71

Note: Cluster numbers are provided in the first column. The last two columns refer to average node distance within each cluster and average
distance between clusters (for further details see the “SOM implementation” section). For the average node distance within each cluster, we
tested the null hypothesis of equality between the mean node distance within each cluster and the mean node distance in the whole map. The
null hypothesis has been rejected at the 99 % level of confidence for each cluster

In the case of freezers/refiigerators, we identified seven
clusters (Fig. 5). A first, generic cluster (no. 1) includes
patents on new freezers/refrigerators as a whole; excluding
this, the others constitute a set of specific technology
clusters which decompose the technology space of the
appliance under scrutiny. As shown in Table 3, clusters 7,
3,5, 4, 2 and 6, belong to various technological fields,
ranging from electrical components (i.e. energy manage-
ment systems, which include sensors, microprocessors,
displays and firmware) to chemical components (i.e. refrig-
erant compositions, insulating foams and lubricant oils).

The pervasiveness of EE appears, as in the previous
case, also when we repeat the experiment in the set of
washing appliances, i.e. washing machines and dish-
washers, whose results are represented in Figs. 6 and 7,
respectively. It is worth noting that, although the number
of patents belonging to these two appliances is lower, EE
still affects a variety of clusters. In particular, we identified
5 clusters (133 patents in total) for washing machines and

4 clusters (66 patents in total) for dishwashers shown in
Tables 4 and 5, respectively. The identification of these
clusters confirms the hypothesis on the presence of the
resource-pooling effect also in these two electrical appli-
ances. Indeed, the niches aimed at improving the level of
EE pool a variety of different industries that produce
technologies deriving from the application of several sci-
entific fields. Moreover, since each cluster includes a
different number of patents, we can also derive a measure
of innovation effort in each specific technological cluster.
In other words, it is possible to identify where most of the
efforts for EE gains have been addressed within each
single appliance over the entire period of analysis, speci-
fying that such a rank only assumes a qualitative nature
since an assessment of the technological patent value does
not constitute the main objective of this work.

Further investigation is based on a spatial analysis of
clusters. In the case of freezers/refrigerators, the core clus-
ter is graphically represented by cluster 7. This includes

Fig. 8 Percentage of triadic
patents in freezers/refrigerators
clusters over time
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Fig. 9 Histogram of patent distribution for freezers/refrigerators (1990-2014) and 3-year moving average trend (dotted line)

the highest number of patents (43 % of the sample) which
are related to mechanical and electromechanical compo-
nents. Such centrality is confirmed by comparing the
between distances, which is the lowest among the clusters
(0.53). The level of centrality approximates the degree of
technology integration and combination. Thus, peripheral
technologies (refrigerants, sensors, insulations panels)
seem to be complementary and to serve the core technol-
ogy (compressors, pumps and other mechanical compo-
nents). The low within distances in cluster 7 (mechanical
and electromechanical components) and cluster 4 (chem-
ical compositions for heat transfer and refrigerant liquids)
indicate more dense technological clusters characterised
by a high technological specificity.

Experiment [I—comparison over time

In the second experiment, we only take into account
patents for cooling appliances (freezers/refrigerators)
and divide the sample into two sub-samples by including
the first and last 100 patents sorted by publication date. It
is worth noting that the distribution of patenting activity
across years is not homogenous since the first 100 patents
are spread across 11 years (1990-2000), whereas the
second 100 refer only to a 3-year period (2012-2014).
As shown in Fig. 8, we moved to a more complex
framework of technology variety, which provides first
evidence of growing technological complexity due to
the different contents of clusters that increases over time,
expressed as percentages. Figure § highlights the emer-
gence of three main clusters from 2000 onwards, i.e.
heat transfer and refrigerant compositions (cluster 4),
components for power and control management (cluster

5) and lubricant oils (cluster 6)'%. By repeating experi-
ment I for the two sub-samples, we produce two temporal
sections of the domestic cooling appliances aimed at
comparing technological advances in EE components.
Figure 9 shows the histogram of the total distribution of
freezers/refrigerators patents in the years covered by the
two sub-samples (in dark grey). The number of new
patents belonging to energy-efficient freezers and refrig-
erators is clearly skewed toward more recent years, sig-
nalling increasing innovative efforts made by manufac-
turers to provide their appliances with more and more EE
improvements. When we look at the patent maps
(Fig. 10), we note an equal number of clusters, but when
the latter are under scrutiny, they unveil different techno-
logical content (Table 6).

Indeed, in the first period, the technology space is
mainly characterised by mechanical and electromechanical
components and more efficient appliances as a whole,
which together constitute almost 93 % of the total patent
families in the period analysed. On the contrary, in more
recent years, the massive presence of digital components
for energy management and motion control can be ob-
served together with an increasing share of patent families
related to new compositions for refrigerants. According to
Table 6, the analysis of the technology space between the
frame 1990-1999 and 20122014 highlights the introduc-
tion of a new cluster (no. 2) whose content includes 19 %
of the total patent families, all related to ‘components for

'8 We dropped 2014 from Fig. 8 in which only three clusters were
reported. The results for that year would be biased given the low
number of patent families in that year (as shown in Fig. 9), mainly
due to the time needed to disclose the invention, file and publish
patent applications.

@ Springer



Energy Efficiency

Fig. 10 Comparison of EE
technology clusters for freezers/
refrigerators in two different
periods (1990-1999 and 2012—
2014).
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power supply management’. The average within distance
of this cluster is 0.20, depicting a very dense space
characterised by digital devices and components enabling
a more efficient operation of freezers and refrigerators.
Although the presence of mechanical components
(cluster 4 of Table 6) still dominates the technology space,
this latter is characterised by a more complex structure
which gives rise to higher technological recombination'®
and accrues the resource-pooling effect. The result of this
part of analysis provides a clear picture on how the tech-
nology space for domestic EE technologies evolved,
showing a dematerialisation process from mechanical to
digital components and most likely improving the level of
EE jointly operating by relying on different technological
contributions. In addition, as far as the within and between
distance are concerned, we can observe that a decrease in

19 According to Antonelli (1999), the technological recombination
can operate both vertically (diachronic recombination) and hori-
zontally (synchronic recombination). The first refers to a recom-
bination of past elements of knowledge, while the second exploits
contemporary acquisition of new pieces of knowledge (Antonelli,
1999).

@ Springer

both the measures provides an insight into the growing
density in the technology space across time, although the
number of clusters remains the same.

Experiment ITIl—technological fungibility

The third experiment investigates the presence of techno-
logical fungibility between two different groups of appli-
ances by analysing the joint-use relationships of their EE
technological components. We used co-occurrence analy-
sis of CPC classes to identify multi-appliance patent fam-
ilies, i.e. patents related to more than one appliance. This
experiment focuses on patent families with technological
advances both in (i) freezers/refrigerators and washing
machines and (ii) washing machines and dishwashers.
We exploited the results of experiment I for keeping infor-
mation, in the SOM outputs, on each patent within nodes
and clusters. It was thus possible to detect not only multi-
appliance patents (i.e. patents employed in different appli-
ances) but also the technological clusters to which those
patents refer to. As a further step, the percentage of multi-
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Fig. 11 Technological fungibility
of EE components between
freezers/refrigerators and washing
machines

appliance patent families was calculated for each cluster.
Lastly, we used the SOM outputs of experiment I to
produce maps with a black-white visualisation scheme in
which the percentage of black is proportional to the per-
centage of multi-appliance patents found in each cluster.
The results in Figs. 11 and 12 clearly show in which
clusters technological fungibility of EE components is
nested. Specifically, both in the case of freezers/
refrigerator vs. washing machines, as well as in the case
of washing machines vs. dishwashers, the cluster contain-
ing digital components for energy management and mo-
tion control (no. 5 and no. 4, for freezers/refrigerators and
washing machines, respectively) has been identified as the
most pervasive and containing the highest level of fungible
components.

In our case, power management and control systems
include digital and communication devices as well as
firmware and microprocessors that can be employed in a

Fungibility Clusters

Fig. 12 Technological fungibility of EE components between
washing machines and dishwashers
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wide range of applications (general applicability) and
characterised by continuous improvements (technological
dynamism) considering the enormous growth of ICTs
which has occurred recently (Cecere et al. 2014). In these
dynamics, EE accommodates well and strongly exploits
the interchangeable technology space of domestic electri-
cal appliances.

Conclusions

The present work uses an original patent dataset belong-
ing to three groups of energy-efficient domestic appli-
ances (i.e. freezers/refrigerators, washing machines and
dishwashers) to develop, using SOMs, an analysis model
in order to test a series of theoretical hypotheses. These
hypotheses refer to (i) the pervasiveness of EE in different
technological components, (ii) the presence of a resource-
pooling effect as a result of growing technological variety
and development and (iii) the fungibility of EE techno-
logical components in different appliances.

In the first experiment, we find the technology clus-
ters in which EE is nested. This experiment is thus
repeated for each of the three groups of appliances,
providing a clear picture of the pervasive nesting of
EE in different appliance components such as mechan-
ical, electro-mechanical, digital and chemical ones as
well as in operational processes. Our results confirm that
EE is affected by pervasiveness and tends to be nested in
many different technological fields, thus admitting hy-
pothesis (i). By also comparing the number of inven-
tions belonging to each cluster, we derived a measure of
innovation effort in each specific technological field,
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making it possible to identify where most of the efforts
for EE gains are addressed in each single appliance.
Considering the entire sample of patent families, dating
from 1990 to 2014, such innovative efforts seem to be
concentrated in mechanical and electrical components,
without exceptions among the three groups of
appliances.

In the second experiment, we compared the technol-
ogy space between two different periods, finding higher
levels of complexity along with a strong presence of the
resource-pooling effect due to the growing technologi-
cal variety. Technology space dynamics show a
dematerialisation process initially characterised by the
almost exclusive presence of mechanical components
and, over time, moving toward an increasing complexity
dominated by a growing presence of digital components
of a different nature.

Our third experiment is devoted to investigating the
hypothesis of technological fungibility, finding that
technology clusters containing patent families
pertaining to different appliances were particularly evi-
dent between two different couples of appliances, name-
ly between freezers/refrigerators and washing machines
and between washing machines and dishwashers. As a
result, in both cases, we identified a single cluster that
includes patents for energy management and digital
motion control. This technological cluster, characterised
by the highest level of fungible components and rapid
growth, can be referred to the group of ICTs, defined by
many authors as a general purpose technology, that is, a
technology showing general applicability, technological
dynamism and able to generate lower reproducibility
costs for manufacturers. In light of this, we conclude
that this technological cluster, including the set of com-
ponents referring to power management and digital
motion controllers, appears not only particularly able
to embrace the aim of EE, but it also constitutes an
interesting case of technological fungibility when do-
mestic electrical appliances are under scrutiny.

The results obtained across the three experiments
allow us to derive some useful implications for policy
makers and stakeholders. First, although the set of white
goods analysed constitute mature technologies, the lit-
erature suggests that significant EE improvements were
obtained in the last 20 years, with associated energy
reduction. Even though the identification of the causal
link between policy implementation and saving impacts
goes beyond the scope of our analysis, we point out that
the complex instrument mix of environmental,

innovation and energy policies have had a role in shap-
ing the rate and pattern of the technology space here
analysed. In this respect, our research identifies the
technology clusters and their dynamics through which
these EE improvements took place, signalling the rele-
vant role of information-technology devices such as the
integration with microprocessors, digital sensors, fuzzy
operational approaches, digital displays and more com-
plex firmware, which are more and more integrated in
the electrical appliances. Since these components are
characterised by a high fungibility (a more general ap-
plicability to different appliances, e.g. a firmware for a
fridge can be easily re-programmed and employed in a
dishwasher), R&D incentives and other supply-push
innovation policies matter in the portfolio of EE poli-
cies. These latter should go hand in hand with the inven-
tive performance of appliance manufacturers. Second,
given the growing resource-pooling effect characterising
modern traditional appliances, incentives should also be
targeted toward firms characterised by horizontally inte-
grated industries and industrial partnerships, a character-
istic often found in multinational appliance manufac-
turers. For the same reason, the characteristic of being
vertically integrating at industrial level should also fa-
vour firms to save costs. Third, it is worth considering
that modern white goods are able to ‘communicate’ with
end-users much more than in the past, thanks to the
increasing integration of displays and operating options
deriving from the ICT sector. These new appliance
features provide consumers with useful consumption
and operation feedbacks. In light of this, there is room
for further demand-pull EE policies aimed at promoting
appliances characterised by higher interactivity and con-
trol options, combined with a more active role of tech-
nicians and sellers suggesting these product categories.
This would increase the pace at which policies aimed at
replacing older energy-intensive appliances with new
ones operate (Hyung et al., 2006), which represents an
effective policy tool to reduce the electricity consump-
tion if we consider that the efficiency performance of
household appliances deteriorates over time.
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Appendix

Table 7 List of CPC-Y02B 40 classes and related descriptions

Y02B 40—technologies aiming at improving the efficiency of
home appliances

YO02B 40/30 Relating to refrigerators
or freezers

Y02B 40/32
Y02B 40/34

YO02B 40/40 Relating to
dish-washers

Y02B 40/42
Y02B 40/44

YO02B 40/50 Relating to
washing machines

Y02B 40/52
Y02B 40/54
Y02B 40/56
Y02B 40/58

Table 8 List of search strings

Electrical appliance First-level keywords Second-level keywords
Freezers and refrigerators energysav* OR energy efficien* OR energy conservation refrigerator OR refrigerators

OR high efficien* OR low energy OR low-energy OR fridge OR fridges
Washing machines OR low electricity consumption OR energy reduction washingmachine*

OR energy economis* OR energy economiz* OR energy
performanc® OR less electric energy OR less electricity

OR less energy OR energy use manage* OR energy ADJ
use control* OR energy manage*) AND (residen* OR hous*
OR domestic OR hom* OR dwellin* OR famil*)

Dishwashers dishwash*
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Table 9 List of clusters and associated content of patent families

Appliance Cluster Description
Dishwasher CL1  Energy management systems, communication devices, methods and systems for managing energy supply,
demand and usage

CL2  Methods and apparatus for monitoring and measuring energy usage
CL3 Improvement in the appliance as a whole and methods, such as drying, rinsing and sorption methods, etc.
CL4 Components such as water storage tanks, thermal insulation materials, etc.

Freezers and CL1 Freezer and refrigerator devices and apparatus. New appliance design and architecture

refrigerators CL2  Thermal insulator devices, refrigerator cabinets and insulating boxes, vacuum heat insulator material

CL3  Refrigeration circuit including compressors, method and apparatus for the sensing of refrigerant temperatures

and control of refrigerant loading

CL4  Composition comprising tetrafluoropropene and difluoromethane or other components

CL5 Power supply/demand control systems, energy management systems.

CL6  Lubricant oil compositions

CL7  Devices and apparatus such as electric power systems, lighting apparatus, compressors, electric motors, etc.

Washing machine ~ CL1

Power supply and demand control system, power supply systems, voltage controls

CL2  Monitoring apparatus to control energy consumption

CL3 Mechanical and electromechanical components such as electric motor, inverters, stators, etc.

CL4  Energy management system which can increase the awareness of energy saving

CL5  Washing machine design as a whole
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