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Abstract: A synergic integration of Synthetic Aperture Radar (SAR) and optical time series offers
an unprecedented opportunity in vegetation phenology monitoring for mountain agriculture
management. In this paper, we performed a correlation analysis of radar signal to vegetation
and soil conditions by using a time series of Sentinel-1 C-band dual-polarized (VV and VH) SAR
images acquired in the South Tyrol region (Italy) from October 2014 to September 2016. Together
with Sentinel-1 images, we exploited corresponding Sentinel-2 images and ground measurements.
Results show that Sentinel-1 cross-polarized VH backscattering coefficients have a strong vegetation
contribution and are well correlated with the Normalized Difference Vegetation Index (NDVI)
values retrieved from optical sensors, thus allowing the extraction of meadow phenological phases.
Particularly for the Start Of Season (SOS) at low altitudes, the mean difference in days between
Sentinel-1 and ground sensors is compatible with the acquisition time of the SAR sensor. However,
the results show a decrease in accuracy with increasing altitude. The same trend is observed for
senescence. The main outcomes of our investigations in terms of inter-satellite comparison show
that Sentinel-1 is less effective than Sentinel-2 in detecting the SOS. At the same time, Sentinel-1 is as
robust as Sentinel-2 in defining mowing events. Our study shows that SAR-Optical data integration
is a promising approach for phenology detection in mountain regions.

Keywords: Sentinel-1 and Sentinel-2; time series analysis; start of season, harvest, mountain region

1. Introduction

Agricultural management in European mountain regions is a key strategy for preserving
ecosystem stability and regional economies [1,2]. Phenology is defined as “the study of the timing
of recurring biological events, the causes of their timing regarding biotic and abiotic forces, and the
interrelation among phases of the same or different species” [3].Vegetation phenology is a relevant
indicator of crop productivity and health. Phenological stage monitoring is therefore crucial in the
decision-making process of the agricultural management [4]. In mountainous regions, agricultural
areas are generally of small size and the vegetation is characterized by a heterogeneous distribution.
In addition, mountain crops are vulnerable to climate variability [5–7]. Satellite imagery plays a unique
and important role in monitoring crop and soil conditions for farm management [8–10]. In the past
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years, most studies using satellite imagery for crop and natural vegetation monitoring have focused on
the use of optical imagery. By exploiting the reflectance of visible and Near Infra-Red (NIR) radiation
and the emittance of thermal Infra-Red (IR) radiation, canopy characteristics have been mapped over
large areas [11]. The Normalized Difference Vegetation Index (NDVI) [12] has been widely used
to detect phenological phases [13–18]. In this case, cloud contamination and topographic effects in
mountain regions compromise data significantly in the optical domain [19].

Microwave wavelengths have important advantages over optical remote sensing for agricultural
applications, because they pass through the atmosphere and clouds with negligible attenuation [20].
This allows frequent measurements over the short growing season of mountain crops. Conversely,
the radar signal can be difficult to interpret as the total radar backscatter is a complex sum of the
backscatter from vegetation and soil. The radar beam can penetrate both the canopy and soil to a
difficult-to-determine depth, making it complicated to determine if the signal is dominated by either
vegetation or soil conditions [21,22].

Reliable ground measurements of crop growth stages and soil moisture throughout the growing
season are therefore important to understand the relative influence of these factors on the microwave
signal. Additionally, dense time series are necessary to understand the Synthetic Aperture Radar
(SAR) signal behavior with regards to crops. From the first attempt to monitor rice crops [23],
relevant results were found by combining different SAR sensors [24], incidence angles [25], different
polarizations [26–31], and Interferometric SAR technique [32]. A data fusion approach was developed
using a dynamical framework based on particle filter (PF). This approach has shown that the
incorporation of additional sources to the NDVI time series can improve the phenological monitoring.
The inclusion of SAR images in particular increases the sensitivity to crop dynamical development
and improves results in the process of estimating specific phenological states [33]. Furthermore, the
grassland mowing event detection were explored by applying coherence estimation on interferometric
acquisitions [34] and using radar polarimetry [35,36]. Crop structure, dielectric properties of the
canopy, soil roughness, and moisture influence the backscattering coefficients. Moreover, the crop
structure and plant water content vary depending on phenological stages and crop condition. With
multipolarization, it is possible to explore the sensitivity of waves to different orientation, shape
and dielectric properties of elements in the scattering field [37]. Both the HH and VV polarizations
operating in C-band are sensitive to soil moisture variations, whereas the cross-polarized backscatter
is primarily associated with volume scattering of vegetation [38]. The different attenuation of VV and
HH polarization is useful for discriminating crop types and the cross-polarized channel with a higher
dynamic can improve the crop separability. Moreover, grassland and crop discrimination is achievable
by using multitemporal SAR images [39]. Also, for phenology and its parameters, the cross-polarized
channel gives a higher contrast between high and low productivities [38,40]. The trends in radar
backscatter, measured on different dates, can be correlated with soil moisture content, since the effects
of spatial roughness variations are smoothed [41]. To reduce these factors, [42] suggested that the
ratio of backscatter measured on two close successive dates might be a simple and effective way to
decouple the effect of vegetation and surface roughness from the effect of soil moisture changes, when
volumetric scattering by the crop canopy is not dominant.

For robust retrieval methods, the temporal change of backscattering coefficients on mountain
ecosystems still needs to be documented. Moreover, an integration of multisensor time series has to be
evaluated on meadow phenology detection.
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Within the Copernicus programme we now have the possibility to explore different sensors. Both
Sentinel-1A and 1B satellites with their SAR sensors provide time series of medium and high resolution
of C-band data [43], simultaneously Sentinel-2A and 2B optical sensors acquire 13 spectral bands in
the visible, the NIR, and the Short Wave IR (SWIR) [44]. Combining the two Sentinel satellites with a
revisiting time of six and five days, respectively, offers an unprecedented opportunity to monitor crop
in mountain regions.

In this study, we analyzed time series from the Sentinel-1 (S-1) and Sentinel-2 (S-2) together
with proximal sensors to understand their temporal behavior for mountain meadow areas. The main
objectives of this paper are: (1) to understand and quantify the impact on multi temporal SAR images
of different grassland types and soil conditions in the perspective of data integration; (2) exploit the
synergic use of SAR and optical data to retrieve maps of mountain phenology (start of the season and
harvesting time).

With respect to the above presented studies, the novelties of this work are:

1. Detection of phenological stages of meadows in mountain ecosystem using multitemporal
SAR imagery;

2. Mapping of phenology with SAR data using a statistical approach.

For the first time, S-1 and S-2 are evaluated in synergy in the phenological retrieval process.
A multisensor methodology is presented and compared to establish a common and complementary
approach for the detection of mountain phenology.

2. Study Area and Datasets

2.1. Study Area

The study area is the South Tyrol region located in northern Italy (Figure 1). South Tyrol has an
area of 7400 km2 and is situated in the center of the Alps with steep elevation gradients stretching
from 190–3890 m a.s.l. Typical agricultural land-use types are meadows, pastures, orchards, and
vineyards. Around 79% of the region is above 1200 m a.s.l., with small valley floor surfaces and steep
slopes. Moreover, around 50% (3228 km2) of South Tyrol is covered by forest and about 30% is used
for agriculture [45,46].

Within the MONALISA project (http://www.monalisa-project.eu/en/home/Pages/default.aspx)
several environmental stations were installed in the area with the main aim to monitor vegetation
and soil properties. Figure 1 shows the land-cover types, the elevation of the area and the stations
used in our study as ground reference. Each name of the station includes information about location,
vegetation cover type, and slope of the area. Moreover, the names include the altitude of the stations.
For a comprehensive description of the acronyms see Table 1. The list of the stations can be viewed at
the following website: http://monalisasos.eurac.edu/sos/static/client/helgoland/index.html#/map.

Table 1. Acronyms of ground stations used in this study.

Ground Station Acronym

domef 1500 do = Dolomites, me = meadow, f= flat, 1500 = 1500 m a.s.l.
domef 2000 do = Dolomites, me = meadow, f= flat, 2000 = 2000 m a.s.l.
vimef 2000 vi = Vinschgau/Venosta valley, me = meadow, f= flat, 2000 = 2000 m a.s.l.
vimes 1500 vi = Vinschgau/Venosta valley, me = meadow, s= steep, 2000 = 2000 m a.s.l.

http://www.monalisa-project.eu/en/home/Pages/default.aspx
http://monalisasos.eurac.edu/sos/static/client/helgoland/index.html#/map
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Figure 1. Corine Land-cover map (CLC 2012) of South Tyrol and Digital Terrain Model (DTM 20 m).
On each map we overlaid four ground stations.

2.2. Datasets

The analyzed data sets are composed of 59 S-1A images acquired from October 2014 to September
2016. The data belongs to track 168, which covers the region almost entirely, every 12 days. The 78
S-2A images span from June 2015 to November 2016, with a temporal coverage of 10 days. Although
the number of S-2 images is higher than S-1, the presence of clouds reduced the data availability in
our time series. Clouds generated missing data in the optical images especially during the winter
period and at high altitudes. Out of 78 S-2 scenes we were able to use an average of 39 scenes in the
areas at 1500 m and 31 images in the areas at 2000 m a.s.l. On the contrary, in the microwave domain
the images were consistent during the seasons, except for the missed acquisitions caused by onboard
satellite problems. S-1A instrument was unavailable during 2016, between 8 June and 14 July [47].
Together with satellites images, ground data were available for meadow and pasture areas. Most
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of the stations are equipped with sensors providing information on Soil Water Content (SWC), Soil
Temperature (ST), and NDVI-PRI from the Spectral Reflectance Sensor (SRS, Decagon Devices Inc.,
Pullman, WA, USA). The data have been recorded since 2015 with a time step of 15 min. SWC is
available at different depths from 2 to 20 cm (Soil Water Content Reflectometer, Campbell Scientific,
Edmonton, AB, Canada). A few of these are further equipped with PhenoCams acquiring both an RGB
and a combined RGB + IR image in 30-min intervals with 1296 × 960-pixel resolution. The cameras
used were StarDot Hybrid IP 1.3 Megapixel Netcams (StarDot Technology, Buena Park, CA, USA)
mounted atop the MONALISA stations in 2015.

In this study, we selected four representative stations, fully equipped with SWC, ST at 2, 5, 20 cm,
NDVI & PRI and PhenoCam and located at 1500 and 2000 m a.s.l. For the detailed description of the
four selected ground stations see Table 2.

Table 2. List of the stations and related measurements available: SWC (Soil Water Content), ST
(SoiL Temperature), PAR (Photosynthetic Active Radiation), NDVI (Normalized Difference Vegetation
Index), PRI (Photochemical Reflectance Index).

Ground Station Parameters Latitude Longitude Altitude

domef 1500 SWC & ST 2, 5, 20 cm, PAR, NDVI & PRI, PhenoCam 46.401002 11.454211 1500 m a.s.l.
domef 2000 SWC & ST 2, 5, 20 cm, PAR, NDVI & PRI, PhenoCam 46.556687 11.614836 2000 m a.s.l
vimef 2000 SWC & ST 2, 5, 20 cm, PAR, NDVI & PRI, PhenoCam 46.745151 10.788845 2000 m a.s.l
vimes 1500 SWC & ST 2, 5, 20 cm, NDVI & PRI, PhenoCam 46.686163 10.579881 1500 m a.s.l

3. Methodology

The overall scheme of the proposed methodology is illustrated in Figure 2. The central aim of the
procedure is to derive from time series of S-1 and S-2 images the main phenological features. The whole
procedure is divided into four main steps. After a preprocessing of the S-1 and S-2 images, they are
co-registered as to refer to the same area of interest. Then the S-1 and S-2 time series are extracted over
the selected areas where also ground data are available. Subsequently, the backscatter from S-1 and the
NDVI from S-2 and ground sensors are modeled to extract the main features of the phenocycle such as
start of the season and mowing event. Finally, maps are produced, and the validation is carried out.
In the following, each step of the procedure is described in detail.

3.1. Preprocessing of S-1, S-2 Images and Ground Observation

The S-1 data preprocessing encompasses several standard steps to derive geocoded intensity
images starting from the Ground Range Detected (GRD) data.

These operations were performed using the tools provided by SNAP (Sentinel Application
Platform) and custom algorithms developed in Python. Beside the standard operations, a spatial and
temporal speckle filter was used [38]. The S-2 images were preprocessed using the Sen2Cor processor
(v.2.3) without cirrus or topographic correction. All non-vegetated areas were masked using the
CORINE 2012 (CLC 2012) land-cover information. Both S-1 and S-2 data were corrected to eliminate
layover/shadow zones and to reduce the contamination due to cloud presence based on the Sen2Cor
scene classification, respectively. The values recorded by the ground sensors were averaged according
to intervals of time, averaging four values each interval. The SRS sensor has wavebands centered at
650 nm (Red) and 810 nm (NIR) [48]. To calculate the NDVI, we used the formula [12]:

NDVI =
NIR − Red
NIR + Red

(1)

Subsequently, we calculated average of measurements around 10:00 a.m. (Sentinel-2 acquisition
time, UTC time zone). To define the start, maximum and the end of the growing season at the four
stations we did a visual analysis of the images from the PhenoCams. We used a common protocol
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as in [49], defining the Start Of the growing Season (SOS) as 50% green leaves developed, time of
maximum (MAX) as full-size leaves and the End Of the growing Season (EOS) as 50% yellow leaves.
In addition, we recorded the harvesting time.

Figure 2. Flow chart of the proposed approach to detect the main features of the phenocycle for the
selected areas.

3.2. Statistical and Electromagnetic Modeling

The correlation and modeling analyses are a preparatory phase to detect the phenocycle features
from S-1 time series. The aim is to understand the temporal behavior of S-1 imagery and correlate
this trend to soil and vegetation parameters. Even though the current study focuses on meadows
phenology, as a first step, S-1 backscattering coefficients in VV and VH polarization were extracted over
different crops and land-cover types to understand the radar signal dynamics to different vegetation
types. A stack of images has been created and, considering a land-cover map of the area (CORINE
Land Cover 2012), several regions of interest (around 10 for each land-cover type) were extracted for
the following land-cover classes: meadow, pasture, orchard, vineyard, and cereal. Coniferous and
deciduous forest have also been considered for the sake of comparison with the other classes. The size
of each area of interest (around 200 m2) was selected as a compromise between homogeneity of the
area and number of pixels. Trends in VH and VV were analyzed for the different land-cover classes.

Subsequently, time series of S-1, in areas of interest corresponding to the ground stations, were
compared with other sources of information. In detail, they are compared with time series of NDVI
derived from S-2 and SRS, and with soil parameters such as ST and SWC. This analysis is carried out
for meadows, which are the target land-cover type observed by the ground stations. The analyses were
done for the season 2016, considering the data availability of the different sensors. For comparing the
backscatter with point data, the areas of interest were extracted close to the station, in homogeneous
areas. After obtaining time series of values from the selected areas, a -correlation between both
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optical and SAR sensors was performed and noise-reduction filters were applied depending on the
investigation purpose. The cross-correlation analysis was performed by using the t-series v0.1-2
package [50] on R (v. 3.4.3.). After with analyzed the SAR signal for different land-cover types, as
a last step, a simulation with electromagnetic models were carried out, specifically for meadows.
The simulation was performed to understand in a quantitative way the impact of the different
parameters (soil and vegetation) on the SAR signal.

The total scattering from vegetated soils was simulated by using the Water Cloud Model
(WCM) [22]:

σ0
pq,tot =

A cos(θ)
2bNDVI

(1 − exp(−2bNDVI sec(θ)) + σ0
pq,b exp(−2bNDVI sec(θ)) (2)

where in Equation (1) the dependence on the vegetation is expressed through NDVI as a proxy of
vegetation water content; θ is the local incidence angle, σ0

pq is the scattering from bare soil that for the
VH polarization was simulated with the Oh model [51]. A and b are parameters for crop type and
were fitted against ground data. A range of crop parameters were tested to determine the best-fitting
combination. The simulated backscatter was analyzed through linear regressions. Subsequently,
the influence of the signal components were examined through a dominant factor analysis [52].

3.3. Phenological Phases Extraction

A Best Index Slope Extraction (BISE) [53] filter was applied on optical and SAR time series to
extract phenological parameters; BISE filter was chosen to remove the noisy points affected by the
mowing that could interfere with the detection of annual vegetation cycle. Then, four filter techniques
were tested: Savitzky Golay, Double-logistic, Linear Filter and Fast Fourier Transform (FFT). For each
of the modeled time series we extracted the SOS and EOS, with a threshold of 50% and the maximum
(MAX) of the curve [15]. The analyses were performed using the Phenex package [54] on R (v. 3.4.3.).
Then, the results were validated by using the phenological information derived by PhenoCams and
SRS sensors. Subsequently, a phenological map of the SOS was created as a final product for the
season 2016, using a Linear Filter both for SAR and optical images, on codes developed in Python
(v. 2.7). To detect the SOS we applied a pixel-by-pixel-based method used in [55] and discussed in [56].
The optical map was created as a reference for the SAR one.

Conversely, to identify the harvest time, a linear filter was applied. This filter allowed to preserve
unaltered seasonal trend of a given time series. Based on the maximum (MAX), obtained from the
previous analysis, a minimum between intervals of time was used to detect the first and, eventually,
the second mowing. Next, S-1 and S-2 maps of the harvest time were produced and compared to
PhenoCam images through a visual interpretation, to detect the date of mowing.

4. Results

First, the trends of VV and VH polarization are obtained over different crop types. Next,
the capability of the WCM to reproduce vegetation characteristics is evaluated and discussed. Then, in
the selected areas, the phenological phases extraction is performed both for S-1 and S-2 time series
and compared with the observations of the fixed stations. Finally, phenological maps of SOS and
harvesting time are produced on large scale.

4.1. Statistical and Electromagnetic Modeling

Both VH and VV polarization signals show a strong correlation in C-band for all different land-use
types, as a result of the high sensitivity to vegetation biomass with respect to SWC. The highest σ0

values in both polarizations were associated with the period in which the crop green biomass generally
reaches its maximum. The trends belonging to vineyards, orchards, and deciduous forest show a
higher level of the signal, ranging from −11.5 dB to −7.5 dB and from −18.5 dB to −13.5 dB for VV and
VH polarization, respectively. Forests of conifer show a lower signature in both polarizations. Cereals
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present a similar trend in the VV and VH channel, while meadows and pastures exhibit seasonal
changes in the dynamic range, depending on the polarization. In the VV channel, pastures show a
high dynamic range, from −14 dB to −6.5 dB, with a peak in November and lower values during the
summer due to the scarcity of water, which was particularly strong in 2015 (http://weather.provinz.bz.
it/historical-data.asp). Conversely, in the VH polarization the σ0 values demonstrate less sensitivity to
seasonal dynamics, with value ranging from −17 dB to −21 dB. The signature of meadows, which
are strongly managed in terms of fertilization, irrigation, and mowing in this area, varies between
−14.5 dB and −8.5 dB and from −24.5 dB and −15.5 dB for VV and VH polarization, respectively.
In the VH polarization, the trend of meadows shows the highest dynamic and is clearly distinguishable
from pastures and from the other classes. Figure 3 illustrates an example of the S-1 backscatter trend
for different land-use types. The smoothing lines show a local polynomial regression fitting (loess),
done using neighboring values, weighted by their distance to the point [57].

(a) (b)

Figure 3. Trends of S-1 backscatter for different land-use types: orchards, meadows, crops, deciduous
forest, coniferous forest, and pastures. (a) VV polarization over the area of interest. (b) VH polarization
over the area of interest. The smoothing lines are obtained with a local polynomial regression fitting.

The relationship between Sentinel-2 NDVI and backscattering coefficients was compared for four
meadow areas with NDVI measured at the ground (SRS sensor). The strongest correlation between S-1
and S-2 in semi-natural habitats was found in the VH channel (R2 = 0.52).

For illustration purposes, the results are presented for a single area, while Tables 3 and 4
summarizes the statistics. Figure 4a,b illustrates time series of sensors in the area of vimef 2000,
where a similar trend is visible during the entire acquisition period with an increase of VH signal of
around 4–6 dB in the summer period as the NDVI advances from 0.5 to 0.8 after the snow melting.
The NDVI from Sentinel-2 shows a higher value during all the temporal profile compared to the
ground sensors, with values around 0.8–0.9, during the summer peak. Figure 4c illustrates a similar
trend between σVH and temperature, while Figure 4d demonstrates a shift in the lag between SWC
and scattering coefficients.

http://weather.provinz.bz.it/historical-data.asp
http://weather.provinz.bz.it/historical-data.asp
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(a) (b)

(c) (d)

Figure 4. Temporal evolution of the mean backscattering coefficient VH (red)—Sentinel-2 NDVI
(dark green) (a), VH (red)—NDVI from the SRS ground sensor (green) (b), VH (red)—soil temperature
at 2 cm (violet) (c) and VH (red)—SWC (blue) (d), for the area domef 1500, during the acquisition
period 2015–2016.

To understand the evolution of the VH signal in respect of the NDVI of both S-2 and SRS sensors,
a temporal analysis of the season 2016 was computed. First, we analyzed the interaction between these
three series of data through a cross-correlation function. The correlation was positive between sensors
in all the areas. As shown in Table 3, for the areas of domef 2000 and vimes 1500 there is a minor shift
in lags (h) for all the cross correlations. Conversely, the most dominant cross correlations in the area
domef 1500 occur between lags −10 and −12 among S-1 and S-2, and lags 19 and 22 among S-1 and
SRS. Furthermore, due to a high cloud cover contamination in the S-2 time series, the vimef 2000 area
shows a shift in the lag both for the S-2/SRS and the S-1/S-2 correlation. The most dominant cross
correlations occurred instead between lags −1 and 1 for S-1/SRS.

Additionally, Table 3 demonstrates a high Pearson’s product-moment correlation between each
sensor. There is a positive relationship, in the range 0.69 to 0.84, between Sentinel-1 σVH and Sentinel-2
NDVI, and a strong positive relationship between both the NDVI (from 0.54 to 0.69) as well as between
SRS and Sentinel-1 (from 0.45 to 0.88). Due to the cloud contamination at high altitude in the optical
domain, the Pearson’s product-moment produces higher values between SAR and ground sensor time
series in the areas domef 2000 and vimef 2000.
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Table 3. Pearson’s product-moment correlation and the most dominant cross correlations at lags = h,
between S-1 VH backscatter, S-2 NDVI and SRS NDVI of the areas of interest.

Ground Station S-2/SRS
(Person Correlation and Lags)

S-1/S-2
(Person Correlation and Lags)

S1/SRS
(Person Correlation and Lags)

domef 1500 0.54, h = [−2, 0] 0.70, h = [−10, −12] 0.51, h = [19, 22]
domef 2000 0.69, h = [−5, −3] 0.80, h = [−6, −4] 0.88, h = [−3, 0]
vimes 1500 0.66, h = [−1, 1] 0.84, h = [−2, 0] 0.45, h =[−2, 0]
vimef 2000 0.57, h = [13, 15] 0.69, h = [6, 8] 0.71, h = [−1, 1]

Based on the output of our analysis, σ0 VH time series follow the trend of the NDVI during
all seasons in the selected areas thus indicating the possibility of phenological phases extraction.
To complete the analysis, we investigated the impact of soil and vegetation on this signal for meadows,
through simulations with the WCM. The crop parameters have been fitted to achieve the best match
between backscatter coefficients and WCM. After testing a permutation of A and b variables (100
samples each) in Equation (1), A = 0.001 and b = 0.002 were the combination that best fitted the
WCM for meadows. The simulated backscatter from vegetated soil follows the trend of the measured
σVH in domef 1500 (Figure 5a) and vimes 2000 (Figure 5b). Conversely, the poor result of vimes 1500
(Figure 5c) is due to problems in the ground data acquisition. For the season 2015 the NDVI reaches
a saturation on July 20 and remains with values around 0.98 until December. Therefore, this station
cannot be involved in the analysis of the results. Moreover, the station domef 2000 starts to acquire the
ground NDVI only from May 2015. This reduces the output of the simulation (Figure 5d).

(a) (b)

(c) (d)

Figure 5. Measured VH backscatter and simulation through the WCM: the four panels show the
stations domef 1500 (a), vimef 2000 (b), vimes 1500 (c) and domef 2000 (d). The smoothing lines are
obtained with a local polynomial regression fitting.
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Table 4 summarizes the results of model fitting between σVH and different parameters (WCM,
NDVI and SWC) for the four areas. The linear regression between simulation and VH signal has an
adjusted R2 of 0.52 and 0.55 for the stations domef 1500 and vimes 2000, respectively. In addition,
the Root-Mean-Square Error (RMSE) corresponds to 1.40 dB and 1.64 dB. The relation between the
model and the σVH drops to an R2 of 0.23 in domef 2000 station, while the RMSE rises to 2.40 dB.
The ground NDVI shows on average a higher adjusted R2 (R2 mean of 0.6) in the linear model with the
VH backscatter, than the SWC (R2 mean of 0.37). By comparing the resulted linear relations, through
the method of dominant factors, the influence of vegetation expressed in terms of NDVI on the WCM
is greater than the soil component.

Table 4. Summaries of the results of linear model fitting between parameters.

Linear Model Ground Station Adjusted R2 p-Value (<) RMSE (dB)

VH∼WCM domef 1500 0.52 1.369 × 10−8 1.40
VH∼WCM domef 2000 0.23 0.001 2.40
VH∼WCM vimes 1500 0.04 0.096 1.90
VH∼WCM vimef 2000 0.55 3.39 × 10−9 1.64
VH∼NDVI domef 1500 0.32 2.20 × 10−5

VH∼NDVI domef 2000 0.68 1.15 × 10−10

VH∼NDVI vimes 1500 0.05 0.071
VH∼NDVI vimef 2000 0.80 2.2 × 10−16

VH∼SWC domef 1500 0.47 2.82 × 10−8

VH∼SWC domef 2000 0.17 0.006
VH∼SWC vimes 1500 0.04 0.096
VH∼SWC vimef 2000 0.47 9.24 × 10−9

4.2. Phenological Phases Extraction

4.2.1. SOS

The retrieved phenological phases from the four areas are compared with the information
extracted from the PhenoCams in the field. Figure 6 shows an example of the SAR modeled time
series with the phases of SOS (red line), MAX (yellow line) and EOS (blue line). Meanwhile Table 5
summarizes the results, expressed in Day Of Year (DOY), of sensors and PhenoCams.

Figure 6. Example of modeled time series using Savitzky Golay, Double-logistic, Linear, and FFT filters.
The figure shows the phenocycle phases extraction in vimes 1500 area using the normalized S-1 VH
backscatter (N-dB).
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Table 5. Day Of Year (DOY) of phenological phases for all the filtered time series. In bold the DOY
extracted from PhenoCams.

Area Phenophase Filter Phenocam (DOY) S-1 (DOY) S-2 (DOY) SRS (DOY)

domef 1500 SOS 102
SOS Sav-Gol 66 106 106
SOS D-Log 151 101 101
SOS Linear 90 76 105
SOS FFT 94 82 106

MAX 185
MAX Sav-Gol 191 246 241
MAX D-Log 186 198 111
MAX Linear 208 245 115
MAX FFT 290 247 127

EOS 301
EOS Sav-Gol 246 307 301
EOS D-Log 265 317 312
EOS Linear 259 306 218
EOS FFT 253 309 236

domef 2000 SOS 147
SOS Sav-Gol 96 38 149
SOS D-Log 64 90 151
SOS Linear 67 92 23
SOS FFT 75 82 79

MAX 205
MAX Sav-Gol 230 124 242
MAX D-Log 229 124 201
MAX Linear 208 189 166
MAX FFT 196 145 272

EOS 282
EOS Sav-Gol 298 230 284
EOS D-Log 260 230 288
EOS Linear 318 270 284
EOS FFT 318 252 289

vimes 1500 SOS 99
SOS Sav-Gol 127 95 96
SOS D-Log 147 96 96
SOS Linear 89 97 97
SOS FFT 81 104 97

MAX 180
MAX Sav-Gol 179 210 137
MAX D-Log 164 176 261
MAX Linear 160 219 175
MAX FFT 181 229 139

EOS 306
EOS Sav-Gol 265 309 313
EOS D-Log 306 300 330
EOS Linear 309 295 327
EOS FFT 303 282 290

vimef 2000 SOS 140
SOS Sav-Gol 122 154 128
SOS D-Log 154 162 131
SOS Linear 110 156 131
SOS FFT 75 149 139

MAX 199
MAX Sav-Gol 145 209 210
MAX D-Log 162 235 192
MAX Linear 159 188 169
MAX FFT 163 191 217

EOS 284
EOS Sav-Gol 217 273 285
EOS D-Log 258 269 285
EOS Linear 250 266 286
EOS FFT 249 271 274
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To better explain the results, Table 6 shows the averages of the days of difference between the
sensors and PhenoCams. The first three items correspond to the total average between the areas, while
the last four items are divided based on the altitude.

Table 6. Average number of days of difference between sensors and PhenoCams.

Sensor Areas SOS (day) MAX (day) EOS (day)

S-1 all 10 10 20
S-2 all 4 10 8

RSR all 1.5 18.5 2
S-1 1500 9 1 18.5
S-1 2000 14 19.5 21
S-2 1500 1.5 8.5 4
S-2 2000 9 12 11.5

Moreover, Figure 7 shows the DOY of the SOS extracted from each sensor (a) and percent error (b)
on the SOS date estimation for all the areas. In Figure 7a, S-1 (light blue bars) detects the SOS before S-2
in stations at 1500 m, while it is delayed at 2000 m a.s.l. On the other hand, when comparing satellites
with ground sensors, S-1 is less effective than S-2 in almost all stations, as illustrated in in Figure 7b.
Only in the domef 2000 area, S-1 has a better result than S-2.

(a) (b)

Figure 7. DOY detected and percent errors between sensors in the analysis of the SOS: in (a) the
different color bars represent the results for each sensor; in red are shown in (b) the percent difference
between S-1-PhenoCams ([S-1,P]) and S-1-SRS ([S-1,SRS]), in yellow between S-2-PhenoCams ([S-2,P])
and S-2-SRS ([S-2,SRS]), while in orange the percent difference between S-1-S-2 ([S-1,S-2]).

Finally, we mapped the SOS with S-1 and S-2 time series, by using a linear filter. The first map
is obtained from S-1 σVH time series with a backscatter threshold of 0.9 (Figure 8a), and the second
one from S-2 NDVI time series using a NDVI threshold of 0.7 (Figure 8b). Each class corresponds to a
different SOS interval of time for a total of 10 classes, from DOY 61 to DOY 210. All non-vegetated
areas are masked using CORINE 2012 land-cover information. Above a certain elevation though,
as indicated in the statistical analysis, the σVH loses the sensitivity to vegetation and gave unreasonable
results. For this reason, the SAR map (Figure 8a,c) is masked above 2100 m of altitude. A detail of the
map is shown in Figure 8c,d, where the station domef 1500 is located.
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(a) (b)

(c) (d)

Figure 8. Time of start of the growing season in the South Tyrol region, using S-1 σVH (a) and S-2 NDVI
(b) time series. The SAR map is masked above 2100 m of altitude while only a non-vegetated area mask
is applied on the optical one. In the bottom panel a detail of the maps of meadows areas around domef
1500 station, obtained with S-1 (c) and S-2 (d).

4.2.2. Harvest

In our study, first we automatically detected the harvest time in all the sensors, we compared
them visually with images from PhenoCams, and finally we retrieve S-1 and S-2 harvest time maps.
Figure 9 shows the detected timings of mowing for each sensor. In domef 1500 and vimes 1500 areas
(Figure 9a,c) both optical sensors catch two mowing events; conversely, S-1 VH backscatter recognizes
an individual event in between. In Figure 9d, S-2 detects two events instead of one due to a heavy
snowfall corresponding to the day of acquisition of the optical satellite.
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(a) (b)

(c) (d)

Figure 9. Detection of the harvest time (red line) using S-2, SRS, and S-1 time series. In the upper panel
domef 1500 (a) and domef 2000 (b), in the bottom panel vimes 1500 (c) and vimef 2000 (d).

Table 7 illustrates the results from the S-1, S-2, and SRS compared with the harvest time detected
from PhenoCams. S-1, as shown in Figure 10a, compared to both ground sensors and S-2, is delayed in
the definition of the first mowing event, in low altitude stations. Conversely, S-1 is in advance in areas
at 2000 m a.s.l., except for domef 2000, where S-1 and S-2 give the same result. In terms of percent error
(Figure 10b), the results of S-1 are less accurate compared to S-2, except for the area domef 2000.
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Table 7. Harvest time retrieved by PhenoCams, SAR and optical sensors.

Area Phenocam (DOY) S-2 (DOY) SRS (DOY) S-1 (DOY)

domef 1500 198 and 252 205 and 248 201 and 238 220
domef 2000 230 220 230 220
vimes 1500 188 and 250 189 and 252 191 and 254 208 and 268
vimef 2000 210 221 and 271 220 195

(a) (b)

Figure 10. First mowing event detected by the different sensors: in (a) the different color bars represent
the results of each sensor; in light blue are shown in (b) the percent error between S-1/PhenoCams
([S-1,P]) and S-1/SRS ([S-1,P]), in orange between S-2/PhenoCams ([S-2,P]) and S-2/SRS ([S-2,SRS]),
while in purple the difference between S-1/S-2 ([S-1,S-2]).

Figure 11a,b illustrates the harvest time between DOY 180 and DOY 221 of meadow areas close to
the station vimes 1500. The first map (a) is obtained from Sentinel-1 VH time series, while the second
map (b) is generated from Sentinel-2 NDVI. The SAR map shows a harvesting time between DOY 201
and 220 for most of the meadow areas (green and yellow color); conversely, the optical map presents
an earlier harvest among DOY 180 and 200 (pink and violet color). Except for the area where the
mowing is beyond DOY 220, the two maps give a result that do not correspond, with a shift in time of
the SAR result. SAR and optical time series give a corresponding result from DOY 221, as we can see
in orange on the maps.

(a) (b)

Figure 11. Harvest maps of the first mowing event generated from S-1 and S-2 (summer 2016).
The maps show a detail of the surrounding vimes 1500 area: on the left panel (a) the map obtained
from σVH backscatter; on the right panel (b) the map obtained from Sentinel-2 NDVI.
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5. Discussion

Our investigation revealed that time series of Sentinel-1 C-band allows phenological dynamics
detection in different vegetation land-cover types. As shown in previous studies [58,59], VV and VH
polarizations have a clear seasonal dynamic, with a peak that might correspond to the maximum of
biomass production. It seems also possible to discriminate the signal of different vegetation classes.
Moreover, the results achieved in the current study suggest that the backscatter of mountain meadows
has a high dynamic range.

In pastures class, backscattering profiles are stable in VH polarization, while changing trend was
observed in the VV channel. It might be possible that the contribution of bare soil and vegetation
structure (short and thin leaves) for this class increases the sensitivity to variations in the water content
of soil, instead of vegetation cover, as demonstrated in [60]. Furthermore, at high altitudes, there are
limitations on SAR σ0 VH sensitivity: the presence of low biomass with narrow leaves might increase
the absorption effect, causing a flat trend in the backscatter coefficients [61].

Conversely, the VH channel better describes meadow phenology. As previously demonstrated [62],
the correlation between σ0 coefficients and NDVI is stronger in the VH channel in meadows areas,
due to the volume scattering of vegetation. Similar results were found in [63], where σ0 VH sharply
raises during the phase of green-up, it is stable during the vegetation reproduction, and decreases
rapidly due to the harvest. The cross-correlation between S-1 σ0 VH backscatter and S-2 NDVI
for the season 2016, shows a positive correlation for the selected areas. Moreover, the Pearson’s
product-moment correlation between S-1 and the SRS ground sensor reveals that in areas where the
cloud cover limits S-2 data acquisition, backscattering coefficients can support the phenological phase
detection. Our analyses were limited to one year, 2016. Since, time series contain a combination of
seasonal, gradual and abrupt changes [64], a decomposition analysis should be applied to longer time
series. A seasonal-trend analysis could therefore be useful in further studies when multiple years of
Sentinel data will be available.

To derive useful quantitative information regarding the contribution of the vegetation to the SAR
backscatter, we used the WCM. This semi-empirical model represents the power backscattered by the
whole canopy as the incoherent sum of the contribution of the vegetation and soil [65]. Including NDVI
in the model allows understanding the vegetation contribution to the VH channel. As emphasized
by [66], in the VH channel, the vegetation contribution to the backscattering coefficient is higher than
the soil component, when the vegetation is well developed [67].

The results of the comparison between the values predicted by the WCM and σ0 VH time series
show that the model is adequate to describe vegetation in mountainous areas. The statistical results
are in line with previous studies for both Adjusted R2 and Root-Mean-Square Error [68,69]. Moreover,
the altitude does not seem to interfere with the simulation, giving a RMSE of 1.63 dB in an area at
2000 m a.s.l. Furthermore, through the analysis of R2, sigmaVH is more influenced by the vegetation
growth than SWC. Hence, our results confirm that VH C-band SAR data combined with optical data
may be applicable to estimate the vegetation phenology in mountain meadows.

To obtain the best mapping results, we evaluated different filter techniques, based on previous
studies [70,71]. It is important to underline that in the validation phase, there are significant limitations
in comparing satellite sensors and ground observation [72]. Whereas the NDVI is a direct measure
of radiation absorption by the canopy [19], PhenoCam visual analysis, has different sources of
uncertainties, especially to track when the first leaves appear from the surrounding vegetation and the
mixture of senescence leaf colors [49,73,74]. For this reason, we evaluated the accuracy of our results
through both the NDVI ground sensor (SRS) and PhenoCam images. The two results were in good
agreement, with a mean of 1.5 day of difference for the SOS and 2 days for the senescence. Phenocams
resulted essential to detect the harvesting time, by directly observing the mowing operations.

All four filters clearly describe the trend of the growing season in each area and none show
better performance compared to the others. As expected, each filter applied to SRS NDVI time series
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approximates well the seasonal phenology, even though, despite BISE noise-reduction techniques,
the mowing events interfere with the detection of the EOS.

The days of difference of S-1 with respect to the dates extracted from the PhenoCams and SRS
sensor increase with the altitude of the areas. For the SOS, at 1500 m a.s.l., the distance between the
field data and the SAR data is compatible with the time of acquisition of the satellite. Conversely, in the
areas at 2000 m, the distance in days exceeds the temporal resolution of the SAR satellite. The same
tendency is repeated for the EOS, where, however, the difference increases with respect to the ground
data. The optical data follows the trend of the SAR, with fewer days of difference. In this context, the
percent error ranges between −10% in the worst scenario and 8% in the best one for S-1 and ground
sensors; −7% and 2% of error respectively, for S-2 and ground sensors. In this analysis we do not
consider the SOS extracted from both S-1 and S-2 time series in the area domef 2000; this exception is
determined by the fact that in this area:

• a heavy snowfall in April, corresponding to the day of S-1 acquisition, caused a signal drop and
consequently errors in filter modeling;

• in the optical domain, during the period January–October 2016, only 13 images were cloud free in
this area.

Although the results of S-1 are in most cases less accurate than those of S-2, we expect that applying
our detection method on flat areas and/or with different vegetation cover and leaves structure, we
could have consistent results among SAR and optical sensors. Furthermore, we think that by increasing
the temporal resolution, with the S-1B and S-2B acquisitions, the accuracy in the phenology estimation
process would increase for both sensors.

In the mapping process, since from our comparative test the filters perform equally well, to have
an identical approach in the optical and microwaves domains, and for simplicity reason, we applied
a Linear Filter to both the time series. In both maps the growing season follows an altitude-based
gradient, with an early start of vegetation growth at valley floors, anticipated in the wider areas,
which is gradually delayed at high altitudes and especially in narrow valleys. For the vegetation
that is covered by snow several months during the year, i.e., above 2500 m a.s.l., the green-up starts
between the end of May (DOY 147) and the start of August (DOY 210). The map obtained from the
σVH shows less sensitivities at high altitude, where the vegetation decreases in height and biomass.
Furthermore, the presence of bare soil strongly influences the SAR signal. The optical map shows
an earlier start at the bottom of the valleys (around DOY 60–70), compared to the SAR detection
(around DOY 80–90) and emphasizes the green-up gradient going from low to high altitude. When
we zoomed in the map, the S-1 backscatter gave a delay in the SOS of around 10 days in some areas.
However, the S-1 backscatter seems to be more sensitive than the S-2 NDVI, diversifying more SOS
periods. The comparison between the SOS maps of South Tyrol, obtained from S-1 and S-2, illustrates
that SAR data can be used to detect the onset of the growing season in meadow areas. However,
as demonstrated in the vegetation type analyses, the same procedure is not applicable to pasture areas.
In this class the σVH time series, with a flat trend, does not allow the phenology detection. A sensitivity
analysis of VV channel and the ratio VV/VH needs to be further investigated to understand a possible
contribution to phenology detection of pasture class. In addition, both maps should be validated at
different altitude and on different vegetation cover types (i.e., forest classes).

In mountain regions, there is a transition from fertilized to unfertilized meadows and pastures.
Grasslands located at low altitudes or in the valley are usually mowed several times during the
growing season. With increasing elevation, agriculture is less intensive, and the mountain meadows
are mown once a year and mostly grazed in autumn [75]. Our areas of interest located at 1500 m a.s.l.
are usually mowed twice a year, while those at 2000 m a.s.l. only once. Starting from the assumption
that optical sensors well describe the radiation changes related to physiological conditions of plants,
but they do not explain modification of the vegetation geometry [33], we expected to obtain a better
harvest time detection with SAR time series. However, the S-1 GRD products were missing for the
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season 2016 because of an onboard anomaly recorded between 8 June and 14 July [47]. This led to
errors in the definition of the first mowing event. In terms of percent error, the results of S-1 are less
accurate compared to S-2, with a range of error between −11% to 11% in the areas at lower altitude.
Conversely, when there is only one mowing, in August at high altitudes, S-1 data give promising
results (percent error between −8% to 4%) as well as S-2 (percent error between −5% to 4%). In these
areas the mowing maps follow, indeed, the same trend. This demonstrates that S-1A instrument
unavailability caused errors in the first mowing detection. Concurrently, the result suggests that in the
presence of time series without missing data, S-1 gives results similar to S-2, allowing to overcome the
problems of cloud cover in optical images. Having consistent data is indeed decisive in the definition
of a mowing event. Furthermore, the advances/delays in the harvesting time detection are derived by
the averaging of the selected areas which include different time of mowing. An example is shown in
Figure 12 where in (a) at the top left we can see the start of mowing operations on DOY 220 and in (b)
the end of them on DOY 235. Therefore, even in the case of mowing detection, using images from S-1B
and S-2B, would improve our results.

Optical remote sensing provides a powerful tool to monitor phenology in mountain ecosystems
and, our investigation has shown that SAR data might be effective in meadows phenology detection as
well as complementary to the optical information. However, to test the applicability of the method on
different vegetation classes more validation points are needed as well as a threshold’s optimization. We
cannot expect to obtain the same results in microwave and optical domains, due to different physical
mechanisms: the first based on the structure, roughness, dielectric constant, and slope/orientation
of scattering surfaces [22,76], and the second one on the reflectance properties of leaves, illumination
angle, leaf orientation, and background [77]. In this context, our approach aims at understanding the
behavior of the backscattering coefficients in meadow areas to complement the optical data with SAR
images to reduce missing information caused by clouds contamination and atmospheric effects in the
optical domain.

(a) (b)

Figure 12. Images from the PhenoCam at the domef 2000 station. In (a) the DOY 220: at the top left the
start of the mowing. In (b) DOY 235 the mowing right in front of the PhenoCam.

6. Conclusions

The paper describes multitemporal Sentinel-1 C-band and Sentinel-2 NDVI application on
mountain meadows monitoring. The main aim was to test the feasibility of phenocycle phases
retrieval from SAR time series and compare the results with the optical sensors, in the perspective of
data integration.

From our analysis:

• The statistical analysis of σ0 time series showed that the SAR signal can detect phenological cycles
in different vegetation cover types.
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• The significant correlation, with a negligible shift in lags, between σVH and the NDVI from optical
sensors, allowed the extraction of the phases of start, maximum and EOS, in addition to the
mowing period.

• SAR data can be used to detect the phenological phases in meadows areas, with an accuracy
compatible with the temporal resolution of S-1 until 1500 m a.s.l.

This result appears promising in the SAR-Optical data integration process for phenology detection.
However, it needs to be confirmed for different altitudes and vegetation types. The data unavailability
during the mowing period led to errors in the definition of the first harvest time. For this reason, future
studies should be considered Sentinel-1B and Sentinel-2B acquisitions to increase the data consistency.
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