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ABSTRACT 

A Finite Element-Boundary Integral Equation (FE-BIE) coupling method is proposed to investigate 

a flexible bar weakly attached to an elastic orthotropic half-plane. Firstly, the analysis focused on 

the case of a bar subjected to horizontal forces and thermal loads considering interfacial 

displacements linearly proportional to the tangential traction. Secondly, the debonding behaviour of 

a composite reinforcement glued to a substrate has been modelled. Using an incremental nonlinear 

analysis, a bilinear elastic-softening interfacial traction-slip law has been implemented simulating 

the delamination of pure Mode II. Finally, the influence of the anchorage length on the ultimate 

bearing capacity of the adhesive joint has been investigated. 
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1 INTRODUCTION 

In the last few decades, strengthening of existing concrete and masonry structures [1], and 

rehabilitation of steel structures [2] have emerged as a cutting edge issue in structural engineering. 

Particularly, the use of Fibre Reinforced Polymer (FRP) strips has become more and more common 

than ever before, as it has proved to be a rapid and efficient technical solution. Moreover, thin film-

based devices and coated systems have been widely employed, remarkably in fields of aerospace 

and electronic engineering. There are plenty of studies focused on the issue of strengthening 

Reinforced Concrete (RC) members with externally bonded FRP sheets [3]. For these applications, 

a simple reference model may be a straight elastic stiffener of prescribed length bonded to an elastic 

substrate in plane state that can debond in pure mode II only. Moreover, bending stiffness of the 

stiffener may be disregarded because of negligible thickness. Consequently, the stiffener is not able 

to sustain transverse loads and no peeling stresses can arise at the interface. 

In 1932, Melan studied the problem of a point force applied to an infinite stiffener bonded to an 

infinite linear elastic sheet [4]. Several authors have reconsidered and extended Melan's problem, 

especially for stiffened plate in aircraft structures and FRP strengthened RC structures. Early studies 

concerning stiffeners welded to an elastic substrate have adopted a series approximation method to 

solve singular integral equations including a proper Green function, see [5] and references cited 

therein. Perfect adherence hypothesis was relaxed in [6], where the adhesive interface was 

substituted by a set of independent linear elastic springs. This classical assumption [7] is frequently 

referred to as weak or imperfect interface and for a soft thin adhesive connecting two adherents was 

justified making use of asymptotic expansion methods of the corresponding three-dimensional 

elastic problem [8]. However, correction terms may be required at the adhesive ends [9]. For the 

case of an FRP plate glued to a rigid substrate, a closed-form analytical solution of shear-out test 

has been presented in [10], assuming an elastic-softening bilinear bond law at the adhesive interface 

and fracture behaviour in Mode II along the interface. In the same framework, the effect of the 

substrate elasticity has been considered in [11, 12], using a series approximation method. 
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Alternatively, a stress analysis combined with linear elastic fracture mechanics can be used to 

evaluate the critical delamination condition for RC beams strengthened with FRP strips [13]. 

Finite element procedures based on continuum damage models are required whenever the 

fracture behaviour involves the substrate [14, 15, 16]. Accurate results have been obtained in [17-

20] using a regularized extended FE approach to interpret delamination tests in FRP strengthened 

concrete. Nonetheless, the FE approach undergoes important limitations when applied to film-

substrate systems [21, 22] because a refined mesh has to be used to describe the thin layer of the 

film. Furthermore, to simulate the half-plane, FE meshes should be extended to a region 

significantly greater than the contact area; thus increasing the computational burden. 

Boundary Element (BE) techniques can be used to evaluate the mechanical behaviour of coated 

systems involving thin layers, provided that the nearly-singular integrals arising in the BE 

formulations are correctly handled [23, 24]. Symmetric Galerkin boundary element techniques for 

cohesive interface problems are presented in [25, 26], where the nonlinear behaviour has been 

localized at the interface only. Moreover, reference [26] considered both substrate and 

reinforcement as linear elastic bodies and showed that a bar model is computationally more efficient 

than that of a thin layer. 

For bars and beams resting on two-dimensional substrates, a Finite Element-Boundary Integral 

Equation (FE-BIE) coupling method is well suited to provide very accurate solutions at a low 

computational cost. To date, several problems have been analysed with the FE-BIE coupling 

method, such as thin films bonded to an isotropic elastic substrate subjected to thermal or axial 

loads [27] and Euler-Bernoulli and Timoshenko beams in frictionless [29, 30] or adhesive contact 

[31, 32] with an elastic half-plane, including buckling problems [33, 34]. 

In particular, the FE-BIE coupling method makes use of a mixed variational formulation 

including the Green function of the substrate, and assumes as independent fields both the nodal 

displacements and the contact tractions. It is worth noting that only the structure in contact with the 

substrate boundary has to be discretized. In addition, the mechanical response of the half-plane is 



4 

represented through a weakly singular integral equation, whose solution is given analytically, 

avoiding singular and hyper-singular integrals typically involved in the classical BE formulation. 

For the mixed problem at hand, useful mathematical references are [35, 36], where well-posedness 

of the variational problem and the corresponding Galerkin solution are set in the proper functional 

framework. 

In the present paper, the FE-BIE coupling method is used introducing a slip between a flexible 

bar and an elastic orthotropic half-plane. To the authors’ knowledge, the present proposal represents 

a new contribution. 

First, the slip is assumed linearly proportional to the interface reactions. The cases of a bar 

subjected to a point force or a uniform thermal variation are investigated. 

In the second part of this paper, incremental nonlinear analysis of the proposed model is 

adopted to investigate the delamination of an FRP strengthened RC substrate. The analysis of the 

interfacial reaction turns out to be important to predict the detachment phenomenon. The governing 

parameters of constitutive laws for adhesive interfaces must generally be estimated from 

experiments. However, the experimental determination of the mechanical properties of an adhesive 

is a complex task. These properties can be obtained by shear-out tests adopting different layouts, 

such as single slipping test with fixed back side or double pull-out shear schemes [37, 38]. Simple 

formulations for debonding analysis are generally based on a priori analytical expressions 

describing the interface bond-slip law calibrated from experimental results. In these formulations, a 

fracture process in pure Mode II is considered, disregarding the effects due to interface normal 

tractions (peeling) and out-of-plane displacements (uplift). The interface peeling stress and uplift 

develop due to eccentricity between applied force and interface and can be experimentally observed 

through advanced optical systems [39]. Although these components affect the ultimate bearing 

capacity of the adhesive joint, their influence on the distribution of interface slip throughout the 

contact region is negligible [40]. 
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In the present model, an incremental analysis with displacement control has been used 

assuming a bilinear bond-slip law, and the results have been compared with those of experimental 

tests and analytical formulations found in the literature. 

 

2 VARIATIONAL FORMULATION 

An elastic bar with length L and cross section A attached to an elastic half-plane is considered, as 

shown in Fig.  1. Reference is made to a Cartesian coordinate system (O, x, z) centred at the 

midsection of the bar, with the vertical axis z directed toward the half-plane and the x-axis placed 

along the interface. Both the bar and the semi-infinite substrate are made of homogeneous and 

isotropic solids. Elastic constants Eb and b respectively denote the Young modulus and the Poisson 

coefficient of the bar, whereas Es and s characterise the substrate. Generalised plane stress or plane 

strain regimes are considered. For plane strain, the width b of the half-plane will be assumed 

unitary. The thickness of the coating is assumed thin, so making possible to neglect its bending 

stiffness. In the absence of peeling stresses, only tangential tractions rx(x) occur along the contact 

region. The bar is subjected to a generically distributed horizontal load px(x) or thermal variation 

ΔT(x). 

Unlike the perfect adhesion case proposed in [27], the relaxed adhesion is representative of the 

mechanical characteristics of the adhesive connecting the bar with the substrate. This assumption 

involves the loss of continuity between bar displacement ux,b and half-plane displacement ux,s. 

 

2.1  Total potential energy for the bar 

The strain energy of a bar can be written as follows [28]:  

,d])([)(
2

1 2
0,0bar  

L bx xTxuxAEU  (1) 

where prime denotes differentiation with respect to x, and the Young modulus E0 and the coefficient 

of thermal expansion α0 of the bar are E0 = Eb, α0 = αb for a generalized plane stress, and E0 = 
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Eb/(1 2
b ), α0 = (1+b)αb for a plane strain state. Noteworthy, the axial force in the bar is N(x) = 

E0A(x)[u'x,b (x)α0ΔT]. The potential energy Π
bar

 can be written as the strain energy Ubar minus the 

work related to the external loads: 

.d)()]()([ ,barbar  
L bxxx xxuxrxpbU  (2) 

 

2.2  Total potential energy for the substrate 

The solution to the elastic problem for a homogeneous isotropic half-plane loaded by a point force 

tangential to its boundary is referred to as the Cerruti solution [41]. For a point force Px( x̂ ) applied 

to the half-plane boundary at the coordinates x̂  (Fig. 2), the closed form expression for the surface 

displacement ux,s(x) = g(x, x̂ ) Px( x̂ ), where the Green function g(x, x̂ ) is: 

.
ˆ

ln
2

)ˆ,(
d

xx

E
xxg




  (3) 

In Eq. (3), E = Es or E = Es/(1 2
s ) in the plane stress or plane strain, respectively, and d is an 

arbitrary length associated with a rigid displacement. The horizontal displacement ux,s(x) due to the 

interfacial tractions rx(x) acting along the boundary between the half-plane and the bar can be found 

as 

 L xsx xdxrxxgxu ˆ)ˆ()ˆ,()(, . (4) 

Making use of the theorem of work and energy for exterior domains [42], it can be shown that 

the total potential energy soil for the half-plane equals one half the work of external loads [27, 29]: 


L sxx xxuxr

b
d)()(

2 ,soil . (5) 

By introducing Eq. (4) into Eq. (5), one obtains 

 
L L xx xxrxxgxxr

b
.ˆd)ˆ()ˆ,(d)(

2soil   (6) 
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2.3  Total potential energy for the adhesive 

A displacement jump occurs when a stiffener is glued to a support by means of an adhesive. In the 

following, the transmission traction rx is assumed proportional to the slip ux = ux,b  ux,s between 

the bar and the half-plane displacements 

xxx ukr  , (7) 

where parameter kx summarizes the mechanical characteristics of the interface [8]. Making use of 

Eq. (7), the total potential energy for the adhesive can be written as 

 
L

x

x

L xxL xx x
k

xrb
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d
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2

2

spring . (8) 

 

2.4  Total potential energy for the bar-adhesive-substrate system 

Making use of Eqs. (2), (6) and (8), the total potential energy of the whole system turns out to be 

springsoilbar, ),(  xbx ru , (9) 

which is a mixed variational formulation represented by bar displacement ux,b and interfacial 

tangential tractions rx along the contact region. Consequently, making use of Eq. (7), the half-plane 

displacement ux,s = ux,b  rx/kx. 

For a bar attached to an orthotropic substrate having a plane of elastic symmetry coincident 

with the vertical plane xz, reference [32] showed that the orthotropic substrate behaves like an 

isotropic half-plane assuming an equivalent Young modulus E = 2 c1/(c2 R11), where parameters c1, 

c2, R11 are reported in Appendix. Obviously, the stress field within the orthotropic substrate differs 

from that of the isotropic case. 
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3 FINITE ELEMENT MODEL 

Both the bar and the substrate boundary are subdivided into FEs sharing the same mesh. The 

generic ith FE has a length li = |xi1  xi,| where xi and xi1 are the initial and end coordinates. 

Assuming a dimensionless local coordinate  = x/li, the nodal displacements uxi of the bar 

characterize completely the axial displacement field in the generic ith FE by means of the vector 

N() containing the shape functions: 

ux,b(ξ) = [N(ξ)]T ux,i , (10) 

In the following, either linear (N1 = 1 N2 = ) or quadratic Lagrange polynomials (N1 = 

1 N2 = 4, N3 =  are adopted. 

Piecewise constant functions are used to interpolate the tangential tractions 

rx(ξ)= [(ξ)]T rx,i , (11) 

where rx,i represents the vector of nodal tangential tractions and () is assumed to be unitary along 

the generic FE. 

Substituting Eqs. (10) and (11) into the variational principle (9) and assembling over all the 

elements, the potential energy takes the expression 

  xkxxxxxxxxxxxxxaxxx rGrrGrrHufuuKuru TTTTT

2

1

2

1

2

1
,   , (12) 

where Ka is the bar stiffness matrix and fx the external load vector, whose elements take the usual 

form 

 
1

0 0, ξd)ξ()ξ()(
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k , (13)  

  
1

0 00, d)()()()( TAENblpNf iixiix . (14)  

The components of matrices Hxx, Gxx and Gkx are given by the following expressions 
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Imposing the potential energy (12) to be stationary, the solution of the problem can be written 

in the following matrix form 

.
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The formal solution to the system of equations (18) provides the nodal displacements and tangential 

tractions 

rx = (Gxx+Gkx)
1 Hxx

T ux , (19)  

(Ka + Ksoil) ux = fx , (20) 

where Ksoil is the stiffness matrix for the substrate with weak interface, defined as: 

Ksoil = Hxx (Gxx+Gkx)
1 Hxx

T. (21) 

 

3.1 Prismatic bar subjected to uniform load and thermal variation 

A prismatic bar element subjected to uniform load px and thermal variation T is considered. In 

the case of linear Lagrange shape functions, bar stiffness matrix Ka, vector of equivalent external 

load fx and matrix Hxx for the ith FE become  
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whereas for quadratic Lagrange shape functions the same quantities take the expressions:  
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Piecewise constant functions are used to interpolate rx and the shape functions for the substrate 

tractions are assumed to be ρ(ξ) = 1. Consequently, the components of matrix Gxx are given by 

,ln
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where G(x) = x2/2 ln|x| and the contribution of the arbitrary length d has been omitted since rigid-

body displacements can be imposed in post-processing analysis. For instance, the horizontal 

displacement at one bar end or at the bar midspan can be set to zero. 

Finally, the interface adhesive represented by the independent springs is described by a 

diagonal matrix Gkx having the following components:  

jig
k

bl
g ijkx

ix

i
iikx  for  0, ,

,
, , (25a, b) 

where kx,i is the stiffness value for the generic ith FE. 
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3.2 Solution and post-processing 

The solution to the FE-BIE problem, i.e., the system of equations (18), gives nodal displacement of 

the bar ux and substrate traction rx. Once the nodal values of the primary variables are known, the 

axial force N = E0A ( bxu ,  0T) and the displacement of the substrate ux,s = ux,b  rx/kx. 

In summary, the general flow of the analysis of a reinforcement bar resting on an elastic 

substrate requires that the following steps be taken: 

-  discretize bar and substrate boundary into FEs; 

-  calculate element matrices Kai, Hxx,i and vectors fx,i for each element; 

-  assemble element matrices Kai and vectors fx,i into the global matrix Ka and vector fx; 

- assemble element matrices Hxx,i into the global matrix Hxx; 

- calculate global matrices Gxx and Gkx; 

-  solve the system of equations (18) for the primary variables ux and rx; 

-  compute secondary variables ux,s and N. 

 

4 NUMERICAL EXAMPLES 

Similarly to [4, 27], the elastic response of the bar-substrate system is characterised by the 

parameter  

.
0 AE

LbE
L   (26) 

Low values of βL characterise short bars stiffer than the substrate. In this case, the bar performs like 

an almost inextensible stiffener. Higher values of L describe long bars bonded to stiff substrate. 

With regards to the weak interface, the following parameter is introduced: 

AE

Lbk
L x

0

2

 . (27) 
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Low values of L characterise practically detached bars, whereas high values of L correspond to 

almost perfectly attached bars. 

In the present section, several loading cases of a bar weakly attached to the underlying half-

plane are considered and discussed. In subsection 4.1, some common problems are studied 

assuming a linear elastic behaviour of the bond-slip law and comparisons with the perfect bond case 

are made. In subsection 4.2, the debonding of an FRP plate glued on a concrete substrate is 

analysed. Numerical results are compared with solutions and experimental results found in the 

literature. 

 

4.1  Linear analysis  

In this section, 512 equal FEs with quadratic interpolation are used to model the elastic bar. A bar 

subjected to a horizontal concentrated force or a uniform thermal variation is analysed.  

 

4.1.1  Bar loaded by a horizontal point force Px at one end 

A flexible bar loaded by a horizontal point force Px at one end is investigated assuming L = 10, L 

= 5 and L = 10, L = ∞ (perfect adhesion). Dimensionless values of displacements, axial forces 

and tangential tractions along the bar are reported in Fig. 3. With reference to the weak interface 

case, bar displacement ux,b and substrate displacement ux,s along the whole contact region are greater 

and smaller, respectively, than those corresponding to the perfect adhesion case (Fig. 3a). Bar axial 

force is greater than that obtained for perfect adhesion (Fig. 3b) and singularities observed in 

tangential traction at the ends of a perfectly bonded bar disappear in the presence of a weak 

interface (Fig. 3c). Fig. 4 shows the maximum tangential reaction rx(L/2) versus parameter γL. 

Remarkably, the value of rx(L/2) depends on L almost linearly irrespective of the parameter L. In 

particular, rx(L/2) = C Px, where C = 1 for L ≥ 10 and L ≥ 3 and C = 1.19 for L = 1 and L ≥ 4. 
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4.1.2  Bar subjected to an uniform thermal variation  

In this subsection, an elastic bar subjected to a uniform thermal variation is investigated. This case 

is similar to that of a bar symmetrically loaded by two equal opposite forces applied at the ends [5]. 

In particular, the axial displacement and the interfacial tangential traction of a bar subjected to a 

uniform thermal load T coincide with those induced in the bar by two opposite axial forces of 

magnitude Px = E0A0T applied at the ends [5]. With regard to the discrete problem, assuming 

consecutive bar FEs leads the vector of equivalent external loads to be expressed as fx = Px [1, 0, 

..., 0, 1]T, see Eq. (23b). The axial force of a bar subjected to two opposite forces Px at the ends is 

equal to that of the same bar subjected to a thermal load T increased by the quantity E0A0T. 

Nondimensional values of ux, N and rx versus x/L are reported in Fig. 5 for L = 10, L = 5 and 

L = 10, L = ∞ (perfect adhesion). For the weak interface case, the absolute value of the bar 

displacement uxb is greater than that of the perfect adhesion case (Fig. 5a). Differently from what is 

observed for the concentrated force at one end, the axial force N is smaller than that obtained for 

perfect adhesion (Fig. 5b). Tangential traction rx varies almost linearly for |x/L|  0.2and rapidly 

grows toward the end sections. However, differently from the perfect adhesion case, no traction 

singularity occurs at the bar ends (Fig. 5c).  

 

4.2  Incremental nonlinear analysis of a shear-out test 

In the relevant literature, several shear-out tests are available, especially for FRP strengthened RC 

structures [37, 43]. The shear-out tests could be used to determine not only the ultimate bearing 

capacity but even the local bond-slip behaviour of the interface [44, 45]. The bilinear elastic-

softening bond-slip relationship (Fig. 6) is the function that is most commonly adopted [46]. 

In this section, the debonding process in shear-out tests due to an horizontal force Px applied at 

the right bar end is evaluated using an incremental analysis with displacement control. The 

debonding phenomenon occurs when the slip between the strip and the substrate attains a critical 

value that causes separation. Fracture behaviour in pure Mode II is assumed throughout the 



14 

interface that is characterised by a bilinear elastic-softening bond-slip relationship (Fig. 6). A linear 

ascending branch, described by the stiffness parameter kx,E, reaches the elastic limit rx,0 for ux,e = 

rx,0/kx,E. Afterwards, a softening behaviour is activated, described by a linear descending branch 

with slope kx,S. For slip values greater than ux,u = rx,0/kx,E + rx,0/kx,S, no bond tractions can be 

transferred trough the interface.  

The mechanical and geometrical properties proposed in [10, 46] are introduced based on the 

experimental results reported in [47]. In particular, the elastic modulus of the Carbon FRP (CFRP) 

plate is E0 = 100 GPa, while b = 25.4 mm and A = 25 mm2, resulting in a thickness of 0.98 mm.  

For the concrete substrate E = 30 GPa. Two specimens in plane stress state characterised by bond 

lengths 50 and 200 mm are analysed, with parameter L equal to 15 and 61, respectively. A number 

of 64 equal FEs based on linear interpolation are used to model the shorter bar (50 mm), while 128 

equal FEs are used for the second one (200 mm), which can describe the behaviour of a long bar. 

For convenience, in this case Cartesian coordinate system (O, x, z) is centred at the left bar end. 

Because of the randomness of the mechanical properties of the concrete substrate, the 

calibration procedure outlined in [45] assumes that each specimen has different interface properties. 

For the short anchorage, traction limit rx,0 = 6.9 MPa, stiffnesses kx,E = 135 N/mm3 (L = 1.9) and 

kx,S = 25 N/mm3, and ultimate slip ux,u = 0.33 mm are assumed. For the long anchorage, rx,0 = 5.0 

MPa with kx,E = 5000 N/mm3 (L = 38), kx,S = 100 N/mm3 and ux,u = 0.05 mm have been set. 

Fig. 7 shows diagrams of applied force Px versus end slip ux (Figs. 7a, d), FRP axial strain 

x,FRP versus coordinate x along the bonding length (Figs. 7b, e), and interface tangential traction rx, 

once again reported versus x (Figs. 7c, f), obtained from the proposed FE-BIE model for the short 

and long anchorages. The force-slip response computed for the short anchorage is compared in Fig. 

7a with the closed-form solution proposed in [10] (dashed line with symbol ×), which assumes a 

rigid substrate. The substrate deformability, taken into account by the proposed FE-BIE model, 

reduces the end slip compared with a rigid support. The corresponding values of the FRP axial 

strain x,FRP throughout the bond length are shown in Fig. 7b for the elastic state (solid line) and the 
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softening state (dashed line). An exponential shape of the axial strain x,FRP can be observed until 

the peak load Px,D (i.e. point D in Fig. 7a) is reached. Subsequently, the trend of x,FRP becomes 

linear, and decreases until a complete detachment is achieved. Poor agreement between numerical 

predictions and experimental results (solid diamonds in Fig. 7b) has been found. Indeed, the 

assumed bond law parameters take implicitly account of concrete strain field only in proximity of 

the interface and are more suited for the case of a rigid substrate [10]. Numerical models 

considering a two-dimensional substrate require an adjustment of the interface laws calibrated by 

using a one-dimensional model [26]. The main aim of the present example is to show how the 

proposed FE-BIE method is simple and effective. Nonetheless, a subsequent research may be 

devoted to find the most suitable interface law to be used in conjunction with the proposed FE-BIE 

method. The development of the interface tangential traction rx can be clearly drawn from Fig. 7c. 

In early stages, an exponential shape of the traction is shown along the contact region. A transition 

stage starts when traction rx(L) equals rx,0 (curve B in Fig. 7c), and continues until the traction limit 

rx,0 is exceeded at any point of the contact region (curve D in Fig. 7c). Finally, the tractions 

progressively decrease up to the complete debonding.  

The force-slip response computed for the long anchorage is shown in Fig. 7d, where a flat 

plateau is observed between stages E and G. Results similar to those reported in [10] have been 

obtained in terms of interface strength. However, different slip values have been obtained. This 

discrepancy may depend on different choices of stiffness parameters for the interface law, which are 

not clearly stated in [10]. Figs. 7e and 7f show the FRP axial strains x,FRP and the substrate 

reaction, respectively, for both the elastic (solid line) and the softening (dashed line) states. Points A 

in Fig. 7d characterises the end of the elastic states, whereas points B, C, D are typical of an elastic-

softening behaviours. Subsequently, the debonding states begin at points E and continue until points 

G. In the detachment zone, the FRP axial strain x,FRP remains constant. The tangential tractions rx 

are reported in Fig. 7f, where a progressive decrease in tractions occurs up to attainment of the 

complete debonding.  
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5  CONCLUSIONS 

A coupled FE-BIE model has been proposed to investigate problems of axially loaded bars weakly 

attached to a homogeneous elastic substrate in plane stress and plane strain state. Bar FEs have been 

used to simulate thin structures, the behaviour of the semi-infinite substrate has been represented 

using a BIE, whereas a slip between bar and substrate has been introduced using a set of 

independent springs. The computational advantages of the proposed coupled FE-BIE formulation 

can be summarized as follows: 

- the BIE has been evaluated analytically, so avoiding the singularities connected with its numerical 

evaluation; 

- a symmetric system of equations is obtained, thus avoiding the computational cost due to the lack 

of symmetry of the BE coefficient matrix of the classical FE-BE formulations; 

- only the contact surface underneath the bar has been discretized, dramatically reducing the 

computational cost. In fact, the resolving matrix has dimensions proportional to the number of the 

bar FEs, differently to the standard FE approaches in which the dimensions of the stiffness matrix 

describing accurately the bar-substrate system has to be several times the square of the number of 

the bar FEs. 

Some numerical examples have been presented to show the effectiveness of the proposed 

formulation. From the linear analysis of a bar subjected to a horizontal point force Px at one end, the 

following conclusions can be drawn: 

- bar axial force is greater for weak interface than for perfect adhesion (Fig. 3b);  

- singularities observed in interfacial tangential traction at bar ends for perfect adhesion disappear 

for weak interface (Fig. 3c); 

- for any given value of bar-substrate parameter L, the tangential traction at the loaded end 

increases linearly with interface parameter γL (Fig. 4). 
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From the linear analysis of a bar subjected to a uniform thermal variation T, the following 

conclusions can be drawn:  

- bar axial force is smaller for weak interface than for perfect adhesion (Fig. 5b); 

- once again, no singularity is observed in tangential traction at bar ends if a weak interface is 

assumed (Fig. 5c).  

From the incremental nonlinear analysis of a shear-out test on a CFRP-strengthened RC 

substrate, the following conclusions can be drawn:  

- the proposed FE-BIE model can be easily applied to study both short and long anchorages (Fig. 7); 

- the substrate deformability reduces the interface slip compared with the case of rigid support (Fig. 

7b); 

- with regard to axial strain of the CFRP plate, the discrepancy observed between present analysis 

and experimental results reported in [47] require an adjustment of the elastic stiffness to be used in 

the bond-slip law. This aspect is well known as the bond-slip law is particularly sensitive to the 

adopted numerical model. A subsequent research may be devoted to find a bond-slip model more 

suitable for use in the proposed FE-BIE method. 
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APPENDIX 

In plane stress state, the substrate coefficients c1, c2, R11 are given by 
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whereas in plane strain state the constants c1, c2, R11 become 
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where Ei denotes the Young modulus along the directions i = x, z, Gij and ij are the shear modulus 

and Poisson ratio, respectively, associated with directions i, j = x, y, z. In particular, due to this 

special kind of material symmetry, ij/Ei = ji/Ej. For an isotropic substrate, the coefficients reduce 

to c1 = 1, c2 = 2. 

 

REFERENCES 

[1]  Bakis C, Bank L, Brown V, Cosenza E, Davalos J, Lesko J, Machida A, Rizkalla S, 

Triantafillou T. Fiber-reinforced polymer composites for construction - State of the art 

review. J Compos Constr 2002;6(2):73–87. 

[2]  Zhao X L, Zhang L. State of the art review on FRP strengthened steel structures. Eng Struct 

2007;29(8):1808–23. 

[3] Teng JG, Chen JF, Smith ST, Lam L. FRP strengthened RC structures. Chichester: John 

Wiley & Sons; 2001. 

[4]  Grigolyuk EI, Tolkachev VM. Contact problems in the theory of plates and shells. Moscow: 

Mir Publishers; 1987. 



19 

[5] Lanzoni L. Analysis of stress singularities in thin coatings bonded to a semi-infinite elastic 

substrate. Int J Solids Struct 2011;48(13):1915–1926. 

[6] Lenci S. Melan's problems with weak interface, J Appl Mech - Trans ASME 2000;67(1):22–

28. 

[7] Goland M, Reissner E. The stresses in cemented joints. J Appl Mech - Trans ASME 

1944;11:A17–A27. 

[8] Geymonat G, Krasucki F, Lenci S. Mathematical analysis of a bonded joint with soft thin 

adhesive, Math Mech Solids 1999;4(2):201–225.  

[9] Rizzoni R, Dumont S, Lebon F, Sacco E. Higher order model for soft and hard elastic 

interfaces. Int J Solids Struct 2014;51(1):4137-4148. 

[10]  Caggiano A, Martinelli E, Faella C. A fully-analytical approach for modelling the response of 

FRP plates bonded to a brittle substrate. Int J Solids Struct 2012;49(17):22912300. 

[11] Franco A, Royer-Carfagni G. Cohesive debonding of a stiffener from an elastic substrate. 

Compos Struct 2014; 111:401–414. 

[12] Franco A, Royer-Carfagni G. Effective bond length of FRP stiffeners. Int J Non-Linear Mech 

2014;60:46–57. 

[13] Rabinovitch O. Fracture-mechanics failure criteria for RC beams strengthened with FRP 

strips – a simplified approach. Compos Struct 2004;64(3–4):479–492. 

[14] Wu Z, Yin J. Fracturing behaviors of FRP-strengthened concrete structures. Eng Fract Mech 

2003;70(10):1339–1355. 

[15] Lu XZ, Ye LP, Teng JG, Jiang JJ. Meso-scale finite element model for FRP sheets/plates 

bonded to concrete. Eng Struct 2005;27(4):564–575. 

[16] Benzarti K, Freddi F, Frémond F. A damage model to predict the durability of bonded 

assemblies. Part I: Debonding behaviour of FRP strengthened concrete structures. Constr 

Build Mater 2011;25(2):547–555. 



20 

[17] Benvenuti E, Vitarelli O, Tralli A. Delamination of FRP-reinforced concrete by means of an 

extended finite element formulation. Compos Part B Eng 2012;43(8):3258–3269. 

[18] Benvenuti E, Ventura G, Ponara N, Tralli A. Variationally consistent eXtended FE model for 

3D planar and curved imperfect interfaces. Comput Meth Appl Mech Eng 2013;267:434–457. 

[19] Benvenuti E, Orlando N, Ferretti D, Tralli A. A new 3D experimentally consistent XFEM to 

simulate delamination in FRP-reinforced concrete. Compos Part B Eng 2016;91:346–360. 

[20] Benvenuti E, Orlando N. Failure of FRP-strengthened SFRC beams through an effective 

mechanism-based regularized XFEM framework. Compos Struct 2017;172:345–358. 

[21] Zhang Y-M, Gu Y, Chen J-T. Internal stress analysis for single and multilayered coating 

systems using the boundary element method. Eng Anal Bound Elem 2011;35(4):708–717. 

[22] Zhang Y, Li X, Sladek V, Sladek J, Gao X. A new method for numerical evaluation of nearly 

singular integrals over high-order geometry elements in 3D BEM. J Comput Appl Math 2015; 

277:57–72.  

[23] Zhang Y-M, Qu W-Z, Chen J-T. BEM analysis of thin structures for thermoelastic problems. 

Eng Anal Bound Elem 2013; 37(2):441–452.  

[24] Gu Y,  Chen W,  Zhang B. Stress analysis for two-dimensional thin structural problems using 

the meshless singular boundary method. Eng Anal Bound Elem 2015;59:1–7. 

[25] Salvadori A. A symmetric boundary integral formulation for cohesive interface problems. 

Comput Mech 2003;32(4–6):381–391. 

[26] Freddi F, Savoia M. Analysis of FRP–concrete debonding via boundary integral equations. 

Eng Fract Mech 2008;75(6):1666–1683. 

[27] Tullini N, Tralli A, Lanzoni L. Interfacial shear stress analysis of bar and thin film bonded to 

2D elastic substrate using a couple FE-BIE method. Finite Elem Anal Des 2012;55:42–45. 

[28] Szabó B, Babuška I. Finite Element Analysis. New York: John Wiley & Sons; 1991. 



21 

[29] Tullini N, Tralli A. Static analysis of Timoshenko beam resting on elastic half-plane based on 

the coupling of locking-free finite elements and boundary integral. Comput Mech 2010;45(2–

3):211–225. 

[30] Baraldi D, Tullini N. Incremental analysis of elasto-plastic beams and frames resting on an 

elastic half-plane. J Eng Mech 2017; 134(9): Article number 04017101, 1-9. 

[31]  Tezzon E, Tullini N, Minghini M. Static analysis of shear flexible beams and frames in 

adhesive contact with an isotropic elastic half-plane using a coupled FE-BIE model. Eng 

Struct 2015;104:32–50. 

[32]  Tezzon E, Tullini N, Lanzoni L. A coupled FE-BIE model for the static analysis of 

Timoshenko beams bonded to an orthotropic elastic half-plane. Eng Anal Bound Elem 

2016;71:112–128. 

[33]  Tullini N, Tralli A, Baraldi D. Stability of slender beams and frames resting on 2D elastic 

half-space. Arch Appl Mech 2013;83(3):467–482. 

[34] Tullini N, Tralli A, Baraldi D. Buckling of Timoshenko beams in frictionless contact with an 

elastic half-plane. J Eng Mech 2013; 139(7): 824–831.  

[35] Kikuchi N, Oden J. Contact problems in elasticity: A study of variational inequalities and 

finite element methods, SIAM, Philadelphia, 1988. 

[36] Bielak J, Stephan E. A modified Galerkin procedure for bending of beams on elastic 

foundations, SIAM J Sci Stat Comput 1983; 4(2): 340352. 

[37]  Ferracuti B, Mazzotti C, Savoia M. A new single-shear set-up for stable debonding of FRP–

concrete joints. Constr Buil Mater 2008;23(4):1529–1537. 

[38]  Panigrahi S, Pradhan B. Onset and growth of adhesion failure and delamination induced 

damages in double lap joint of laminated FRP composites. Compos Struct 2008;85(4):326–

336. 

[39]  Czaderski C, Soudki K, Motavalli M. Front and side view image correlation measurements on 

FRP to concrete pull-off bond tests. J Compos Constr 2010;14(4):451–464. 



22 

[40]  Martinelli E, Czaderski C, Motavalli M. Modeling in-plane and out-of-plane displacement 

fields in pull-off tests on FRP strips. Eng Struct 2011;33(12):3715–3725. 

[41] Johnson K L. Contact Mechanics, University Press, Cambridge, 1985. 

[42] Gurtin ME, Sternberg E. Theorems in linear elastostatics for exterior domains, Arch Ration 

Mech Anal 1961;8(1):99–119. 

[43] Yao J, Teng JG, Chen JF. Experimental study on FRP to concrete bonded joints. Compos Part 

B Eng 2005;36(2):99113. 

[44]  Taljsten B. Defining anchor lengths of steel and CFRP plates bonded to concrete. Int J Adhes 

Adhes 1997;17(4):319–327. 

[45]  Lu XZ, Teng JG, Ye LP, Jiang JJ. Bond–slip models for FRP sheets/plates bonded to 

concrete, Eng Struct 2005; 27: 920–937. 

[46]  Faella C, Martinelli E, Nigro E. Direct versus indirect method for identifying FRP to concrete 

interface relationships. J Compos Constr 2009;13(3):226–233. 

[47]  Chajes MJ, Finch WW, Januska TF, Thomson TA. Bond and force transfer of composite 

material plates bonded to concrete. ACI Struct J 1996;93(2):208–217. 



23 

 

Fig. 1. Bar weakly attached to a semi-infinite substrate (a), and free-body diagram (b).  

 

 

Fig 2. Green’s function g(x, x̂ ) related to a point force Px( x̂ ) applied to the half-plane 

boundary. 
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Fig. 3. Bar loaded by a point force Px at one end. Nondimensional values of ux (a), N (b) and rx 

(c) versus x/L for L = 10, L = 5 (solid line) and L = 10, L = ∞ (dashed line - perfect adhesion). 
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Fig. 4. Bar loaded by a point force Px at one end. Nondimensional values of rx at the loaded end 

(x/L = 0.5) versus L. 
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Fig. 5. Bar subjected to a uniform thermal variation T. Nondimensional values of ux (a), N (b) 

and rx (c) versus x/L for L = 10, L = 5 (solid line) and L = 10, L = ∞ (dashed line - perfect 

adhesion). 
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Fig. 6. Bilinear bond-slip law. 
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Fig. 7. Incremental nonlinear analysis of a shear-out test on short (a, b, c) (L = 50 mm) and 

long (d, e, f) anchorage. Applied force Px vs. end slip ux (a, d), FRP axial strain x,FRP (b, e) and 

interface traction rx (c, f) along the bonding length. Comparison with analytical results reported by 

Caggiano et al. (dashed line with symbol (×) in (a)) and experimental results reported by Chajes et 

al. (solid diamonds in (b)). 

 


