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Abstract: This paper presents a novel adaptive fault-tolerant neural-based control design for wind 
turbines with an unknown dynamic and unknown wind speed. By utilizing the barrier Lyapunov 
function in the analysis of the Lyapunov direct method, the constrained behavior of the system is 
provided in which the rotor speed, its variation, and generated power remain in the desired bounds. 
In addition, input saturation is also considered in terms of smooth pitch actuator bounding. 
Furthermore, by utilizing a Nussbaum-type function in designing the control algorithm, the 
unpredictable wind speed variation is captured without requiring accurate wind speed 
measurement, observation, or estimation. Moreover, with the proposed adaptive analytic 
algorithms, together with the use of radial basis function neural networks, a robust, adaptive, and 
fault-tolerant control scheme is developed without the need for precise information about the wind 
turbine model nor the pitch actuator faults. Additionally, the computational cost of the resultant 
control law is reduced by utilizing a dynamic surface control technique. The effectiveness of the 
developed design is verified using theoretical analysis tools and illustrated by numerical 
simulations on a high-fidelity wind turbine benchmark model with different fault scenarios. 
Comparison of the achieved results to the ones that can be obtained via an available industrial 
controller shows the advantages of the proposed scheme. 

Keywords: adaptive constrained control; barrier Lyapunov function; fault-tolerant control; 
Nussbaum-type function; pitch actuator; power regulation; robustness evaluation 

 

1. Introduction 

The key factor for the enhancement of the efficiency of a wind turbine is how to develop the 
control structure. Specifically, the pitch control design is a vital step in variable pitch wind turbines 
working in high wind speed, i.e., so-called full load region, to avoid hazardous operation as well as 
to avoid conservative power generation, i.e., less than nominal power [1]. This objective is often 
known as power regulation for nominal power generation [2]. Accordingly, the control design of 
wind turbines in power regulation has gained significant importance during the last decades [3]. 
Several industrial controllers for power regulation use the Proportional-Integral-Derivative (PID) 
type control, as the linear controller [4,5]. However, as wind turbines are complex nonlinear dynamic 
processes, linear controllers may not accurately render the expected performance [6]. Consequently, 
in the last decade, modern and advanced controller schemes have been adopted to regulate power 
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generation accurately, e.g., linear parameter varying control [7], gain scheduling [8], adaptive 
nonlinear control [9], optimal control [10], evolutionary algorithms [11], robust control [12], and fuzzy 
logic systems [13]. A detailed review of power regulation controllers designed for wind turbines can 
be found in [14]. 

Wind turbine operation in the presence of high wind speed variation may lead to pitch actuator 
faults, which in turn leads to poor power regulation and catastrophic operation [4,15]. These faults 
can be considered as pitch actuator bias, effectiveness loss, and dynamic change [2]. Also, the debris 
build-up and blade erosion change the aerodynamic characteristics of the blades [16]. The presence 
of faults can increase the need for maintenance operations and downtimes, which may lead to a 
decrease of the power generation and increase of the cost, particularly for offshore wind farms, 
installed in remote places that are sometimes difficult to reach [17,18]. Thus, it is desirable to integrate 
the fault tolerance capability into the pitch actuator controller to attenuate the fault effects and keep 
the performance at the desired level, especially for large rotor and offshore deployments [7]. 
Therefore, in the development of the wind turbine control structure, the fault-tolerant pitch controller 
design has been considered, and different approaches have been proposed, such as fuzzy control [19], 
adaptive sliding mode control [4], and robust linear parameter varying control [16]. 

In reality, the wind turbine’s aerodynamic torque is a nonlinear function of wind speed [20]. On 
the other hand, the pitch angle variation adjusts the speed via regulating the aerodynamic torque. 
However, the wind speed is a highly stochastic variable. Accordingly, it can be stated that the control 
function, from the pitch angle to the aerodynamic torque, is not completely known. This leads to the 
unknown control direction problem. Therefore, considering uncertain wind speed variation in the 
pitch angle control design of wind turbines is a significant challenge [21]. In [22], a nonstandard 
extended Kalman filter is developed to estimate the wind speed for maximum power extraction of 
variable speed wind turbines. In [23], a comparative study using soft computing methodologies for 
the estimation of wind speed was presented. A review of the effective wind speed estimation-based 
control of wind turbines can be found in [24]. Even though numerous methodologies have addressed 
wind speed estimation of wind turbines, the presented structures are still found to be very 
complicated and ineffective in practice. 

On the other hand, in the full load region, if the wind turbine speed increases and violates the 
predefined limits, the mechanical brakes, located on the rotor, are engaged [15]. This leads to 
generated power reduction considerably lower than the nominal one. Also, excessive rotor speeds in 
wind turbine operation may lead to a hazardous situation. Thus, to ensure safe operation of wind 
turbines, the rotor speed and its variation must be constrained within the safe-to-operate bounds. By 
that means, the variation of the generated power around the nominal power can be constrained at 
some predefined bounds. These bounds are designed within which the engagement of the mechanical 
brake is avoided. However, there are very limited works available in the literature that consider the 
constrained power generation. To fill this gap in the past literature, the authors recently developed a 
new strategy for constrained power generation [5], which can be viewed as an extension of the direct 
Lyapunov method to constrained systems. The core of this method consists of developing a barrier 
Lyapunov function (BLF) to constrain the generator speed and the generated power. An essential 
advantage of the BLF is that it guarantees that the corresponding arguments are constrained [25]. The 
algorithm proposed by the authors in [5] uses the logarithm-type BLF for nonlinear wind turbines to 
constrain the generator speed and thus to generate the constrained power. However, in the authors’ 
study, constrained performance was not guaranteed in the presence of faults. Also, the uncertain 
wind speed variation was not considered in designing the previous constrained control scheme. 

Motivated by the aforementioned considerations, the primary objective of this paper was to 
design the pitch actuator control of wind turbines under uncertain wind speed variation to constrain 
the rotor speed and the generated power within the safe-to-operate bounds. These bounds were 
defined in order to avoid the engagement of the mechanical brake. In this manner, the overspeeding 
as well as the conservative power generation problems are resolved. The main idea consists of 
developing the BLF-based control to provide constrained behavior and further utilizing a Nussbaum-
type function to cope with the unknown wind speed variation. The former is utilized to keep the 
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generated power within the given desirable constraints, provided by the designer, and the latter is 
exploited to regulate the power without requiring accurate wind speed measurement, observation, 
or estimation. The controller is further developed to tolerate the pitch actuator faults for nonlinear 
wind turbine models. This considerably increases the reliability and efficiency as well. Thanks to the 
dynamic surface control (DSC) technique, the computational complexity of the control scheme is 
reduced by avoiding the repetitive differentiation of virtual control in the controller structure. In 
addition, the pitch actuator effort is smoothly bounded to avoid pitch actuator saturation. The second 
objective of the paper was to design a fault identification scheme to investigate the estimated fault 
signal, and then accurately generate fault information, which consists of fault detection, isolation, 
and type/size estimation. The fault identification task may be employed, for example, for planning 
effective and timely maintenance of offshore deployments, thus reducing the downtime of plants and 
the cost. Also, the availability is enhanced. In addition, to estimate the uncertain aerodynamic torque, 
a radial basis function (RBF) neural network is used, whose weights are automatically tuned without 
requiring any early training scheme. Finally, the numerical simulation is conducted to evaluate the 
proposed controller performance. Also, a comparison between the proposed controller and the 
available industrial PID controller is made considering the numerical control criteria, which are used 
to quantify the performance of both controllers. Accordingly, the contribution of this paper can be 
summarized as follows. 

1. With the adoption of BLF-based constrained control, the rotor speed and its variation are 
constrained, and consequently, the variation of generated power around the nominal power will 
not violate the predefined constraint. This guarantees safe desirable nominal power generation, 
and less mechanical brake engagement. 

2. The Nussbaum-type function is adopted to handle the unknown control direction problem, 
which stems from an uncertain wind speed and consequent uncertain aerodynamic torque 
variation. Accordingly, the need for accurate wind speed measurement is avoided. 

3. The pitch actuator fault effects, including effectiveness loss, pitch angle bias, hydraulic leak, high 
air content in the oil, and pump wear, are compensated for automatically via an adaptive fault-
tolerant controller design. Also, the effect of blade aerodynamic characteristic changes, due to 
debris build-up and erosion, is considered and mitigated. The fault information, including fault 
type, size, and time, is estimated, which can be used for maintenance operations. 

4. Smooth pitch actuator saturation is designed to avoid the harsh and fast pitch actuator saturation 
phenomenon, which may increase the structural load on the wind turbine and result in 
performance degradation. Also, a neural network estimator is adaptively augmented in the 
proposed controller to obtain the uncertain aerodynamic torque. 

5. The control design is fulfilled in the backstepping framework, utilizing the virtual control 
concept. In this regard, the repeated differentiation of virtual control is required, which increases 
the complexity of the designed controller order. The DSC technique is used to eliminate this 
problem by introducing a first-order filter [25]. 

The rest of this paper is organized as follows. In Section 2, the wind turbine model is 
summarized. In Section 3, pitch actuator saturation and faults are introduced. In Section 4, the desired 
operational mode and objectives are introduced. Accordingly, the proposed controller is designed in 
Section 5, and the fault identification scheme is described in Section 6. The numerical evaluation of 
the proposed controller is addressed in Section 7 and the results are discussed. Finally, concluding 
remarks and open problems are given in Section 8. 

2. Nominal Wind Turbine Model 

The wind kinetic energy is captured by the blades and transferred into the rotor, rotating at ω୰. 
The effective wind speed, V୰, causes an induced aerodynamic torque, Tୟ, and thrust, F୲, modelled as 
[2]: Tୟ = ଵଶ ρaπRଷV୰ଶC୯ሺβ, λሻ, F୲ = ଵଶ ρaπRଶV୰ଶC୲ሺβ, λሻ, (1) 
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where ρୟ is the air density and R is the blade length. Also, C୯ and C୲ are the torque and thrust 
coefficients. These coefficients are functions of the blade pitch angle, β, and tip speed ratio, λ, defined 
as λ = Rω୰/V୰ [2]. Considering the long elastic tower, Tୟ causes a fore-aft oscillation of the nacelle, 
i.e., a bending oscillation of the tower. This motion is modelled as [7]: M୲xሷ ୲ = F୲ − B୲xሶ ୲ − K୲x୲, (2) 

where B୲, K୲, and M୲ represent the damping ratio, and the elasticity coefficient of the tower and 
nacelle mass, respectively. Also, the nacelle displacement from its equilibrium position is represented 
by x୲. The effective wind speed at the rotor plane is then obtained as V୰ = V୵ − xሶ ୲, where V୵ is the 
free wind speed, which itself is the wind speed before encountering the blades [9]. The captured 
aerodynamic power by the wind turbine is then written as: Pୟ = ଵଶ ρaπRଶV୰ଷC୮ሺβ, λሻ, (3) 

where, C୮ represents the power coefficient. Also, considering Pୟ = Tୟω୰, the relation between the 
power and torque coefficients is C୮ = C୯λ. The empirical equation of C୮ is stated as [26]: C୮ሺβ, λሻ = CଵሺCଶ/λ୧ − Cଷβ − Cସሻe(ିେఱ/஛౟) + C଺λ, (4) 

where 1/λ୧ = 1/(λ + 0.08β)  −  0.035/(βଷ + 1) , Cଵ = 0.5176 , Cଶ = 116 , Cଷ = 0.4, Cସ = 5 , Cହ = 21 , 
and C଺ = 0.0068. Also, C୲ can be approximated as [27]: C୘(β, λ) = 0.5C෨୘ ቀ1 + sign൫C෨୘൯ቁ,  C෨୘ = Aଵ + Aଶ(λ − Aଷβ)eି୅రஒ + Aହλଶeି୅లஒ + A଻λଷeି୅ఴஒ,  

(5) 

where Aଵ = 0.006, Aଶ = 0.095, Aଷ = −4.15, Aସ = 2.75, Aହ = 0.001, A଺ = 7.8, A଻ = −0.00016, and A଼ = −8.88. The drive train is used to increase the rotor speed, ω୰, and transfer the kinetic energy 
into the generator shaft, rotating at ω୥. The drive train is modelled as a two-mass system. The rotor 
and generator shafts have an inertia of J୰ and J୥, respectively. The elastic gear meshing is considered, 
with the inclusion of the torsion stiffness, Kୢ୲ , and the torsion damping, Bୢ୲ . This elastic gear 
meshing leads to a torsional angle of twist, θ୼, defined as: θ୼ = θ୰ − ஘ౝ୒ౝ, (6) 

where θ୰  and θ୥  are the rotation angle of the rotor and generator shafts, respectively. Also, the 
viscous friction at the bearings of the rotor and generator shafts are modelled with coefficients B୰ 
and B୥, respectively. The drive train efficiency is ηୢ୲. So, the drive train is modelled as [15]: J୰ωሶ ୰ = Tୟ − Kୢ୲θ୼ − (B୰ + Bୢ୲)ω୰ + Bୢ୲N୥ ω୥, 

J୥ωሶ ୥ =  ஗ౚ౪୏ౚ౪୒ౝ θ୼ + ஗ౚ౪୆ౚ౪୒ౝ ω୰ − (B୥ + ஗ౚ౪୆ౚ౪୒ౝమ )ω୥ − T୥, θሶ ୼ = ω୰ − ଵ୒ౝ ω୥. 

(7) 

The generator speed, rotor speed, and their time derivative sensors are modelled as, ω୥,ୱ = ω୥ +νனౝ, ω୰,ୱ = ω୰ + νன౨, and ωሶ ୰,ୱ = ωሶ ୰ + νனሶ ౨, where νனౝ, νன౨, and νனሶ ౨ are noise contents [2]. 
The generator shaft kinetic energy is converted into electrical energy in the generator. Also, a 

converter is located between the generator and the electrical grid to adjust the generated power 
frequency [7]. The generator internal electronic controller is much faster than the mechanical dynamic 
behavior of wind turbines. So, it is assumed that the generator torque, T୥, is adjusted at the generator 
reference torque fast enough to ignore the generator dynamic response. Also, the generated electrical 
power, P୥, is approximated as a static function given by [7]: P୥ = η୥ω୥T୥, (8) 

where η୥ is the generator efficiency. 
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The hydraulic pitch actuator rotates the blades to regulate β at the desired one, β୳, tuned by 
the pitch controller. The pitch actuator is modelled as [4]: βሷ = −ω୬ଶβ − 2ω୬ξβሶ + ω୬ଶβ୳, (9) 

where ω୬ and ξ are the natural frequency and the damping ratio of the pitch actuator, respectively. 
The pitch actuator operational ranges are limited as βሶ ୫୧୬ ≤ βሶ ≤ βሶ ୫ୟ୶,β୫୧୬ ≤ β ≤ β୫ୟ୶. Note that in 
this paper, (•)୫ୟ୶ and (•)୫୧୬ stand for the maximum and minimum allowable value of the variable (•), respectively. The pitch angle and its time derivative sensors are modelled as βୱ = β + νஒ, βሶ ୱ =βሶ + νஒሶ  and βሷ ୱ = βሷ + νஒሷ , where νஒ, νஒሶ , and νஒሷ  are the noise contents [15]. The numeric values of the 
wind turbine benchmark model parameters are given in Table 1 [7,15]. 

Table 1. Wind turbine benchmark model parameters. ρୟ R J୥ J୰ Kୢ୲ 
1.225 kg/mଷ 57.5 m 390 kgmଶ 55 Mkgmଶ 2.7 GNm/rad Bୢ୲ B୥ B୰ N୥ ηୢ୲ 

945 kNm/(rad/s) 3.034Nm/(rad/s) 27.8 kNm/(rad/s) 95 0.97 M୲ B୲ K୲ η୥ ω୬ 
484 ton 66.7 N/(m/s) 2.55 MN/m 0.92 11.11 rad/s ξ βሶ ୫୧୬ βሶ ୫ୟ୶ β୫୧୬ β୫ୟ୶ 

0.6 −10°/s 10°/s −2° 30° P୥,୒ T୥,୒ ω୥,୒ ω୰,୒ Full load region 
4.8 MW 32.107 kNm 162.5 rad/s 1.71 rad/s 12.3 m/s −  25 m/s νன౨ νனౝ νஒ   0.025 rad/s 0.0158 rad/s 0.2°   

3. Pitch Actuator Saturation, Faults, and Blade Aerodynamic Characteristics Change 

In reality, the achievable pitch angle range is bounded. Hence, the practical operational range of 
the pitch actuator is limited. So, the high wind speed variation and the consequent high pitch angle 
variation may lead to pitch actuator saturation, which consequently causes violation of the 
constrained power regulation. So, the pitch angle saturation phenomenon should be considered in 
the pitch angle controller design to avoid any abrupt and long-lasting saturation, and smoothly pass 
any possible saturation period of the pitch actuator. For the given wind turbine model, the pitch 
actuator saturation, H(β୳), can be considered as: 

H(β୳) = ൝ β୫ୟ୶,β୳ > β୫ୟ୶ β୳,β୫୧୬ ≤ β୳ ≤ β୫ୟ୶β୫୧୬,β୳ < β୫୧୬ , (10) 

where β୫ୟ୶ = 30° and β୫୧୬ = −2°, as in Table 1. H(β୳) is illustrated in Figure 1. So, this actuation 
saturation function is integrated into the pitch actuator mechanism (9) as: βሷ = −ω୬ଶβ − 2ω୬ξβሶ + ω୬ଶH(β୳). (11) 

Obviously, this saturation function of the pitch angle is non-smooth with sharp saturation 
behavior, which may cause pitch actuator failure [28]. So, it is desirable to approximate this saturation 
behavior by a smooth function and to pass from each saturation period fluently. In this regard, the 
following smooth saturation function is proposed as: 
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Figure 1. Pitch actuator saturation, H(β୳) (blue line), and its smooth estimation, S(β୳) (red line). 

S(β୳) = யതஉିயஉషభஉାஉషభ , (12) 

where ϱ = 2 , ϱത = 30 , Ρ = exp(ϵ + ηβ୳) , ϵ = 0.5 ln ቀϱ/ϱതቁ , and η  is a positive constant to be 

selected. S(β୳) is always in ቀ−ϱ, ϱതቁ for all β୳ ∈ ℝ. S(β୳) is illustrated in Figure 1, for η = 0.1. Then, H(β୳) can be expressed as: H(β୳) = S(β୳) + D(β୳), (13) 

where D(β୳) is the difference between S(β୳) and H(β୳). The bounded property of the function, S(β୳), and saturation function, H(β୳), yields the function, D(β୳), to be bounded as, |D(β୳)| ≤ Dഥଵ, 
where Dഥଵ is a positive and unknown constant. For ease of pitch actuator controller design, the mean 
value theorem is employed on function S(β୳) to get: S(β୳) = S(β଴) + பୗபஒ౫ቚஒౣ (β୳ − β଴), (14) 

where β୫ = mβ୳ + (1 − m)β଴ and m ∈ (0, 1). By choosing β଴ = 0 and using the fact that S(0) = 0, 
Equation (14) becomes: S(β୳) = பୗபஒ౫ቚஒౣ β୳ = Sஒ౫β୳, (15) 

where Sஒ౫ = 2η(ϱത + ϱ)/(Ρ + Ρିଵ)ଶቚஒౣ . Sஒ౫ ∈ (0.2, 1.65)  for β୫ ∈ (−ϱ, ϱത) . Then, Sஒ౫  is a positive 

variable. Now, considering Equations (11), (13), and (15), the pitch actuator dynamic behavior with 
the smooth saturation function can be written as: βሷ = −ω୬ଶβ − 2ω୬ξβሶ + ω୬ଶ ቀSஒ౫β୳ + D(β୳)ቁ. (16) 

Wind turbine operation in harsh offshore sites may lead to pitch actuator dynamic change, bias, 
and effectiveness loss. The dynamic change is because of the pressure drop due to hydraulic oil 
leakage, high air content in the oil, and pump wear. These dynamic change cases cause a slow pitch 
actuator response [7]. Consequently, power regulation in full load operation is not satisfactorily 
achieved. The dynamic change is considered as the change of the natural frequency and damping 
ratio in the pitch actuator in Equation (16). The characteristics of these changes are summarized in 
Table 2 [4,7], where N, HL, PW, and HAC represent normal, hydraulic leaks, pump wear, and high 
air content situations, respectively. Also, ω୬,ଡ଼ and ξଡ଼ are the natural frequency and damping ratio, 
respectively, in the situation X. Also, α୤భ and α୤మ are fault indicators. 
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Table 2. Pitch actuator dynamic change ( Data from [4]). 
Situation Fault Indicator 𝛚𝐧 𝛏 

Normal Situation α୤భ = α୤మ = 0 ω୬,୒ = 11.11 (rad/s) ξ୒ = 0.6 
Pump Wear α୤భ = 0.6316, α୤మ = 0.29688 ω୬,୔୛ = 7.27 (rad/s) ξ୔୛ = 0.75 

Hydraulic Leak α୤భ = 1,α୤మ = 0.87853 ω୬,ୌ୐ = 3.42 (rad/s) ξୌ୐ = 0.9 
High Air Content α୤భ = 0.81083, α୤మ = 1 ω୬,ୌ୅େ = 5.73 (rad/s) ξୌ୅େ = 0.45 

The dynamic change case effects are illustrated in Figure 2, where the initial pitch angle is set to 5° and β୳ = 0°. It is obvious that the response for all dynamic change cases is slower than the normal 
one. 

 
Figure 2. Pitch actuator response in situations: normal (black line), hydraulic leak (red line), pump 
wear (blue line), and high air content (green line). 

The dynamic change is modelled as an uncertainty, which should be attenuated by the pitch 
angle controller. The dynamic changes are modelled as a convex function of the normal natural 
frequency and normal damping ratio [18]. So, the pitch actuator (Equation (16)) is rewritten, including 
the dynamic change effect, i.e., added as an uncertainty in the model, as: βሷ = −ω୬,୒ଶβ − 2ω୬,୒ξ୒βሶ + ω୬,୒ଶ ቀSஒ౫β୳ + D(β୳)ቁ + Δfሚ୔୅ୈ, (17) 

where Δfሚ୔୅ୈ = −α୤భΔ(ω෥୬ଶ)β − 2α୤మΔ൫ω෥୬ξ෨൯βሶ + α୤భΔ(ω෥୬ଶ)β୳, Δ(ω෥୬ଶ) = ω୬,ୌ୐ଶ − ω୬,୒ଶ, and Δ൫ω෥୬ξ෨൯ =ω୬,ୌ୅େξୌ୅େ − ω୬,୒ξ୒. 
The pitch actuator output can be corrupted by an unanticipated fault, modelled as an additive 

bias and/or effectiveness loss. These faults deviate the pitch angle from the desired one [16]. These 
faults are modelled as: β୳(t) = ρ(t)β୰ୣ୤(t) + Φ(t),  (18) 

where Φ(t) represents the unknown pitch actuator bias [29]. Also, ρ(t) is the unknown effectiveness 
of the actuator, which is 0 < ρ(t) ≤ 1 , where ρ(t) = 1  indicates full effectiveness of the pitch 
actuator and ρ(t) = 0  is total actuator loss [13,29]. β୰ୣ୤(t) is the reference pitch angle, which is 
designed by the pitch controller. It is obvious that in the case of full pitch actuator effectiveness and 
no pitch bias, β୳(t) = β୰ୣ୤(t). The pitch actuator dynamic behavior, Equation (17), associated with 
pitch actuator bias and effectiveness loss, can be rewritten as: βሷ = −ω୬,୒ଶβ − 2ω୬,୒ξ୒βሶ + ω୬,୒ଶ൫Sஒ౫ρ(t)β୰ୣ୤ + Sஒ౫Φ(t) + D(β୳) ൯ + Δfሚ୔୅ୈ. (19) 

The wind turbine operation in the presence of rain, snow, and dirt leads to blade erosion or 
debris build-up, which, in turn, leads to a blade aerodynamic efficiency reduction. Consequently, the 
captured aerodynamic power is decreased. On the other hand, the power regulation is not 
satisfactorily achieved due to the changed blade aerodynamic profile. The debris build-up effect is 
modelled as an aerodynamic change, ∆Tୟ,∆େ౦, due to a change in the power coefficient as C෨୮ = C୮ +
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ΔC୮. So, it is very important to foresee this potential change in the controller design. It is worth noting 
that debris build-up is challenging to detect, as it is hard to identify if the reason for the reduced 
power is the blade’s debris or simply that the wind speed has decreased. As debris build-up occurs 
slowly, this change is mostly assumed to lie within the annual maintenance/inspection, in which the 
blades are cleaned/replaced. So, this paper aims to design a pitch controller that is insensitive to 
debris build-up that guarantees graceful degradation up to the next planned maintenance of the 
blades. 

4. Desired Operational Mode and Control Objectives 

As mentioned earlier in Section 1, in the full load region, it is desirable to keep P୥ at the nominal 
value, P୥,୒ , to avoid overspeeding and consequent brake engagement. To this aim, by taking 
Equation (8) into account, (i) T୥ is to be kept at the nominal value, T୥,୒, and (ii) ω୥ is to be kept at 
the nominal value, ω୥,୒, to have nominal power generation as, P୥ = η୥T୥ω୥ = η୥T୥,୒ω୥,୒ = P୥,୒ [7]. 
Considering the fast response of the electrical generator, the objective (i) is achieved via tuning the 
generator reference torque at T୥,୒ , which leads T୥  to be set to T୥,୒  quickly. The objective (ii) is 
achieved by adjusting β of the pitch actuator. This leads to tuning the aerodynamic torque, and 
consequently, the rotor speed and the generator speed [4]. The wind speed is a highly stochastic 
variable. So, accurate nominal power generation is very challenging, and in the case of improper 
controller design, it may lead to overspeeding and braking. So, it is very beneficial to guarantee that 
the generated power and speed do not violate the given constraint, within which the mechanical 
brake is not engaged. It should be noted that for the power control purpose, the generator torque 
controller is not active. So, the faults in the generator are not considered in this paper and it is 
assumed that generator faults have already been accommodated for using the generator controller 
[4]. 

The controller is designed to adjust the reference pitch angle, β୰ୣ୤, and keep the rotor speed as 
close as possible to the nominal one, i.e., ω୰,୒, never violating the given constraint, in the presence of 
wind speed variation, disturbance, and pitch actuator faults and saturation. The primary objective of 
this paper consists of satisfying the above-mentioned requirements. 

By considering structurally safe operation of the wind turbine, it is desirable to keep the drive 
train torsion angle variation, θሶ ୼, as small as possible, which in turn leads to the drive train stress 
reduction. Accordingly, θሶ ୼ = 0 leads to N୥ω୰ = ω୥ [17]. So, it is beneficial to keep the ratio between 
the rotor and generator speeds at the drive train ratio [14]. As the generator speed has to follow the 
signal, ω୥,୒, then the rotor speed is kept at ω୰,୒ = ω୥,୒/N୥ [6]. Moreover, the condition, θሶ ୼ = 0, with 
zero initial drive train torsion angle, leads to θ୼ = 0, i.e., the reduced drive train stress trajectory [6]. 
Accordingly, considering Equation (7), the desirable operational mode of the wind turbine with 
reduced drive train stress is given by [6,14]: ωሶ ୰ = aଵω୰ + aଶω୥ + aଷTୟ, ωሶ ୥ = bଵω୰ + bଶω୥ + bଷT୥, (20) 

where, aଵ = −(Bୢ୲ + B୰)/J୰ , aଶ = Bୢ୲/N୥J୰ , aଷ = 1/J୰ , bଵ = ηୢ୲Bୢ୲/N୥J୥ , bଶ = ൫−ηୢ୲Bୢ୲/N୥ଶ − B୥൯/J୥, bଷ = −1/J୥. Consequently, (20) can be rewritten as, ωሷ ୰ = cଵω୰ + cଶω୥ + cଷTୟ + cସT୥ + aଷTሶ ୟ, (21) 

where cଵ = aଵଶ + aଶbଵ, cଶ = aଵaଶ + aଶbଶ, and cଷ = aଵaଷ, cସ = aଶbଷ. Considering Equations (1) and 
(21), it is obvious that the rotor speed is controlled by regulating the pitch angle and the consequent 
aerodynamic torque. In this paper, it is assumed that at any operational point of the wind turbine, Tୟ 
is not a singular function. Also, for any pair of (V୰,ω୰), there is a given pitch angle, i.e., β∗, leading 
to the nominal power generation [9]. So, in the presence of wind speed variations, β∗ will be set to 
the value that satisfies the control objective. For the considered benchmark model, the β∗ diagram is 
illustrated in Figure 3 [7]. Note that as the wind speed is considered an uncertain disturbance, then β∗ is an unknown variable. 
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Figure 3. Diagram of β∗ (blue line), and lower and upper pitch angle bounds (red dashed lines). 

It is obvious that the rotor dynamic behavior (Equation (21)) is a non-affine function of the pitch 
angle [9]. Linearization is one obvious solution. However, it would lead to high inaccuracy. So, the 
paper solved this problem by using the mean value theorem in this paper. As stated earlier, Tୟ is not 
a singular function for any triple pair (V୰,ω୰,β) in the operational range of the wind turbine. So, 
according to the mean value theorem, for any given pair of (V୰,ω୰), there exists Ξ ∈ (0, 1), such that 
[9]: Tୟ(V୰,ω୰,β) = Tୟ(V୰,ω୰,β∗) + ( β − β∗) ப୘౗பஒ ቚ(୚౨,ன౨,ஒౡ), (22) 

where β୩ = Ξβ + (1 − Ξ)β∗. Using Tୟ in Equation (1) and C୮ in Equation (4), for the considered wind 
turbine model, whose parameter values are given in Table 1, the diagram of ∂Tୟ/ ∂β in the full load 
region is shown in Figure 4. 

 
Figure 4. ∂Tୟ/ ∂β diagram in full load operation (blue line), and upper and lower bounds (red 
dashed lines). 

Remark 1. In Figure 4, it is evident that −𝐿 ≤ 𝜕𝑇௔/𝜕𝛽 ≤ −𝑈 < 0, with 0 < 𝑈 < 𝐿. This means that as the 
wind speed increases, by increasing the pitch angle, the aerodynamic torque decreases. 

Taking the time derivative of Equation (22) yields: Tሶ ୟ(V୵,ω୰,β) = ∆Tୟ,∆େ౦ + βሶ ப୘౗பஒ = ∆Tୟ,∆େ౦ + βሶTୟ,ஒ, (23) 

where ∆Tୟ,∆େ౦ = dTୟ(V୰,ω୰,β∗)/dt + ( β − β∗)d(∂Tୟ/ ∂β)/dt|(୚౨,ன౨,ஒౡ) − (dβ∗/dt)(∂Tୟ/ ∂β)|(୚౨,ன౨,ஒౡ) 
and ∂Tୟ/ ∂β = Tୟ,ஒ. ∆Tୟ,∆େ౦ is due to ΔC୮, which is the result of the changes in the blade aerodynamic 
characteristics. The debris build-up and erosion occur slower than the mean time to the maintenance 
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of the blades. So, all terms that are contributing to ∆Tୟ,∆େ౦ are assumed to be bounded, then ∆Tୟ,∆େ౦ 

is bounded as ቚ∆Tୟ,∆େ౦ቚ ≤ kതଵ, where kതଵ is an unknown positive constant. Also, it should be noted 
that as the wind speed is not accurately measurable, Tୟ,ஒ in Equation (23) is an unknown variable. 
Substituting Equation (23) into Equation (21) leads to: ωሷ ୰ = cଵω୰ + cଶω୥ + cଷTୟ + cସT୥ + aଷ ቀ∆Tୟ,∆େ౦ + βሶTୟ,ஒቁ. (24) 

Now, by considering Equation (19), the rotor dynamic behavior (Equation (24)) can be rewritten 
as: ωሷ ୰ = cଵω୰ + cଶω୥ + cଷTୟ + cସT୥ − ୟయன౤,ొஒ୘౗,ಊଶஞొ − ୟయஒሷ ୘౗,ಊଶன౤,ొஞొ + ୟయୗಊ౫ன౤,ొ஡୘౗,ಊଶஞొ β୰ୣ୤ +ୟయன౤,ొୈ୘౗,ಊଶஞొ + aଷ∆Tୟ,∆େ౦ + ୟయ୘౗,ಊଶஞొ ൬୼୤ሚౌఽీன౤,ొ + Sஒ౫ω୬,୒Φ൰. 

(25) 

This expression describes the wind turbine rotor dynamic behavior in the desired operational 
mode, which takes into account possible pitch actuator dynamic changes. Also, smooth pitch angle 
saturation is included. 

5. Constrained Fault-Tolerant Controller Design and Stability Analysis 

In this section, the constrained fault-tolerant pitch controller is designed to guarantee that the 
generated power is kept within given constraints, in the presence of wind speed variation, 
disturbance, faults, and saturation. The robust stability of the wind turbine closed-loop system with 
the proposed controller is proved. First, some technical preliminaries are provided, which will be 
used for the controller design. 

5.1. Technical Preliminaries 

The wind speed is uncertain as the wind speed is measured with an anemometer, usually placed 
at the back of the nacelle. Therefore, its measurement is affected by the turbulence generated by the 
rotor. So, the wind speed is considered as an uncertain disturbance. Accordingly, the aerodynamic 
torque, Tୟ, is not accurately available. On the other hand, Tୟ is contributing to the rotor dynamic 
response (Equation (25)). So, Tୟ should be estimated to be used in the proposed controller structure. 
In this paper, an RBF neural network is designed to estimate the aerodynamic torque [30]. To this 
end, Tୟ is approximated as [9,31]: Tୟ(𝐙) = 𝛉∗౐𝐡(𝐙) + ε, (26) 

where 𝛉∗  is the optimal weight vector, 𝐡(𝐙) = [hଵ(𝐙), hଶ(𝐙), … , hୱ(𝐙)]୘ ∈ ℝୱ  is the known basis 
function vector, s > 1 is the number of neural network nodes, 𝐙 = [T୥,ω୥,β]୘ ∈ Ω𝐙 , ε ∈ ℝ is the 
approximation error, and h୧(𝐙) is selected as a Gaussian function given by [9,21]: h୧(𝐙) = exp ൬ି(𝐙ି𝛝𝐢)౐(𝐙ି𝛝𝐢)ଶ஦౟మ ൰, (27) 

where 𝛝୧ = [ϑ୧,୘ౝ ,ϑ୧,னౝ ,ϑ୧,ஒ]୘ is the i୲୦ centre vector of the inputs, as i = 1, … , s. φୡ = [φଵ , . . . ,φୱ]୘ 
is the width vector of the Gaussian functions [32]. Tୟ,୒୒ is the approximation of Tୟ provided by the 
RBF, described as: Tୟ,୒୒(𝐙) = 𝛉୘𝐡(𝐙). (28) 

The optimal weight vector, i.e., 𝛉∗, is defined as 𝛉∗ = arg min𝛉∈ℝ౩[sup𝐙∈ஐ𝐙หTୟ(𝐙) − Tୟ,୒୒(𝐙)ห]. It should 

be noted that ε is bounded as |ε| ≤ εത, with an unknown bound, εത > 0. 
Now, the following definitions and lemmas are given, which will be used in the proposed 

controller design. 
As Tୟ,ஒ is an unknown variable, contributing to the gain of β୰ୣ୤ in Equation (25), this leads to 

the unknown control direction problem. To tackle this issue in the controller design, the Nussbaum-
type function is utilized, which is defined as follows. 
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Definition 1 [16]. A Nussbaum-type function, 𝑁൫𝜉(𝑡)൯, is a smooth continuous even function, such that it 
satisfies 𝑙𝑖𝑚௥→ஶ 𝑠𝑢𝑝 ଵ௥ ׬ 𝑁(𝜉)𝑑௥଴ 𝜉 = +∞ and 𝑙𝑖𝑚௥→ஶ 𝑖𝑛𝑓 ଵ௥ ׬ 𝑁(𝜉)𝑑௥଴ 𝜉 = −∞. 

The BLF function is defined as follows, which is used in the constrained control construction. 

Definition 2 [32]. If the scalar function, 𝑉(𝑥), is positive definite continuous with respect to the solution of 
the system,  𝑥ሶ = 𝑓(𝑥)  ,on an open region, 𝒟 , then 𝑉(𝑥)  is a BLF with continuous first-order partial 
derivatives within all 𝒟. As 𝑥 approaches the boundary of the region, 𝒟, then 𝑉(𝑥) approaches infinity. 
Finally, 𝑉(𝑥) satisfies 𝑉(𝑥) ≤ 𝓌, ∀𝑡 ≥ 0 along the solution of 𝑥ሶ = 𝑓(𝑥) for 𝑥(0) ∈ 𝒟, and some positive 
constant, 𝓌. 

The following definition is given for the boundedness of the closed-loop system. 

Definition 3 [32]. The solution of a system, 𝑥(𝑡), is uniformly ultimately bounded (UUB) if there exists a 
number, 𝑇൫𝐾, 𝑥(𝑡଴)൯, and a 𝐾 > 0 such that for any compact set, 𝒮, and all 𝑥(𝑡଴) ∈ 𝒮, ‖𝑥(𝑡)‖ ≤ 𝐾, for all 𝑡 ≥ 𝑡଴ + 𝑇. 

Lemma 1 [33]. Let us assume that 𝑉(𝑡) > 0  and 𝜉(𝑡)  are smooth functions for any 𝑡 ∈ [0 𝑡௙) . Also, 𝑁(𝜉(𝑡)) is a Nussbaum-type function. Then, if 𝑉(𝑡) < 𝑐଴ + 𝑒𝑥𝑝(−𝑐ଵ𝑡)׬ ൫𝑔(𝜏)𝑁൫𝜉(𝜏)൯ + 1൯௧଴ 𝜉ሶ𝑒௖భఛ𝑑𝜏 holds 
true, where 𝑐଴ and 𝑐ଵ are positive constants, and 𝑔(𝜏) takes values in unknown closed intervals, 𝐿 ∈ [𝑙ା, 𝑙ି] 
with 0 ∉ 𝐿, then 𝑉(𝑡), 𝜉(𝑡), and ׬ 𝑔(𝜏)𝑁൫𝜉(𝜏)൯௧଴ 𝜉ሶ𝑒𝑥𝑝(𝑐ଵ𝜏)𝑑𝜏 must be bounded on [0 𝑡௙). 

Lemma 2 [33]. If the Lyapunov function, 𝑉(𝑡) > 0, satisfies 𝑉ሶ < −𝑏ଵ𝑉 + 𝑏ଶ, where 𝑏ଵ and 𝑏ଶ are positive 
constants, then the solution of the closed-loop system is UUB for bounded initial conditions. 

Lemma 3 [34]. For variable, 𝜓, in |𝜓| < 1, 𝑡𝑎𝑛 (𝜋𝜓ଶ/2) < 𝜋𝜓ଶ𝑠𝑒𝑐ଶ(𝜋𝜓ଶ/2) holds true. 

Lemma 4 [34]. For any variable, 𝛹, and any positive constant, 𝛾, 0 < |𝛹| −𝛹𝑡𝑎𝑛ℎ(𝛹/𝛾) < 𝛫𝛾 holds true, 
where 𝛫 satisfies 𝛫 = 𝑒𝑥𝑝(−(𝛫 + 1)), accordingly, 𝛫 = 0.2785. Also, as 𝛹𝑡𝑎𝑛ℎ(𝛹/𝛾) > 0, then for any 
variable, 𝛧 < −1, 𝛧𝛹𝑡𝑎𝑛ℎ(𝛹/𝛾) < −𝛹𝑡𝑎𝑛ℎ(𝛹/𝛾) holds. 

Lemma 5 [25]. For any positive constant, 𝜎, and considering the definition, 𝑎෤ = 𝑎ො − 𝑎, −𝜎𝑎෤𝑎ො ≤ −𝜎𝑎෤ଶ/2 +𝜎𝑎ଶ/2 holds true for any variables, 𝑎 ∈ ℝ and 𝑎ො ∈ ℝ. This relation is modified for vectors as, −𝜎𝒃෩்𝒃෡ ≤−𝜎ฮ𝒃෩ฮଶ/2 + 𝜎‖𝒃‖ଶ/2, where, 𝒃෩ = 𝒃෡ − 𝒃 for any vectors, 𝒃 ∈ ℝ௡ and 𝒃෡ ∈ ℝ௡. 

5.2. Controller Design Procedure 

The main objective of the designed controller is to keep the rotor speed and acceleration within 
constraints, which in turn leads to bounded power generation around the nominal one. The proposed 
controller design requires the definition of the rotor speed tracking error and its time derivative as 
follows: eଵ = ω୰,ୱ − ω୰,ୢ, eଶ = ωሶ ୰,ୱ − zଶ, (29) 

where ω୰,ୢ is the desired rotor speed. As stated earlier, ω୰,ୢ in the full load region is ω୰,୒. zଶ is a 
virtual control. Here, to avoid repetitive differentiation of zଶ, which increases the implementation 
complexity, the DSC technique is utilized, which requires the filtering of zଶ by means of a stabilizing 
function, αଵ , to be determined. Let αଵ  pass through a first-order filter with a time constant, τଶ , 
defined as: τଶzሶ ଶ + zଶ = αଵ, zଶ(0) = αଵ(0). (30) 

The output error of the first-order filter is χଶ = zଶ − αଵ  with its first-time derivative, zሶ ଶ =−χଶ/τଶ. A Lyapunov function is chosen as: 
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Vଵ = ୩౛భమ஠ tanΛଵ + ଵଶ χଶଶ, (31) 

where Λଵ = πξଵଶ/2, ξଵ = eଵ/kୣభ, whilst kୣభ represents a constraint on eଵ. It should be noted that Vଵ 
is continuous in the set Ωୣభ = ൛eଵ:−kୣభ < eଵ < kୣభൟ. Vଵ is positive definite and its first term captures 
the BLF characteristics of the modified tracking error, ξଵ, according to Definition 2. The first-time 
derivative of ξଵ is obtained as: ξሶଵ = ሶୣ భ୩౛భ = ୣమା஧మା஑భ୩౛భ . (32) 

On the other hand, the first-time derivative of Equation (31) can be obtained as: Vሶ 1 = e1e2sec2Λ1 + e1χ2sec2Λ1 + e1α1sec2Λ1 − χ22τ2 − αሶ 1χ2. (33) 

The virtual control, αଵ, is designed as: αଵ = −γଵeଵ − eଵsecଶΛଵ, (34) 

where, γଵ is a positive design parameter. The substitution of Equation (34) into Equation (33) yields: Vሶଵ = eଵeଶsecଶΛଵ + eଵχଶsecଶΛଵ−γଵeଵଶsecଶΛଵ − eଵଶsecସΛଵ − ஧మమதమ − αሶ ଵχଶ. (35) 

Considering Young’s inequality: eଵeଶsecଶΛଵ ≤ ଵଶ eଵଶsecସΛଵ + ଵଶ eଶଶ, eଵχଶsecଶΛଵ ≤ ଵଶ eଵଶsecସΛଵ + ଵଶ χଶଶ. (36) 

Since αଵ is a function of ω୰, ω୰,ୢ, and ωሶ ୰,ୢ, it can be shown that: αሶ ଵ = ப஑భபன౨ ωሶ ୰ + ப஑భபன౨,ౚ ωሶ ୰,ୢ + ப஑భபனሶ ౨,ౚ ωሷ ୰,ୢ. (37) 

Considering Equation (37), αሶ ଵ  is a continuous function. Then, given δன౨,ౚ  and any positive 
number, δଵ, the set, Ωன౨,ౚ: = {ω୰,ୢ ∈ ℝ:ω୰,ୢଶ + ωሶ ୰,ୢଶ + ωሷ ୰,ୢଶ < δன౨,ౚ}, for all initial conditions satisfying Ωଵ: = {[eଵ, χଶ]୘: (kୣభଶ tanΛଵ)/π + χଶଶ/2 < δଵ} is compact [25]. Thus, αሶ ଵ has a maximum constant value, Mଵ, in the compact set, Ωன౨,ౚ × Ωଵ, for given initial conditions [28]. So, based on Young’s inequality: |αሶ ଵχଶ| ≤ ଵଶ χଶଶ + ଵଶMଵଶ. (38) 

According to Equations (36) and (38), Equation (35) can be rewritten as: Vሶଵ < −γଵeଵଶsecଶΛଵ − ଵଶ χଶଶ(2/τଶ − 2) + ଵଶ Mଵଶ + ଵଶ eଶଶ. (39) 

The parameter, τଶ, is selected as τଶ < 1 to satisfy (2/τଶ − 2) > 0. Also, considering Lemma 3, −γଵeଵଶsecଶΛଵ < −(γଵkୣభଶ tanΛଵ)/π holds true. Consequently, Equation (39) is rewritten as: Vሶଵ < −σଵ,ଵVଵ + σଵ,ଶ + ଵଶ eଶଶ, (40) 

where σଵ,ଵ = min {γଵ, (2/τଶ − 2)} and σଵ,ଶ = Mଵଶ/2.  
Considering the measurement noise and the RBF neural network estimation of aerodynamic 

torque (Equation (26)), the rotor dynamic response (Equation (25)) can be rewritten as: ωሷ ୰ = gଵ + cଷ𝛉∗୘𝐡 − ୟయன౤,ొஒ୘౗,ಊଶஞొ − ୟయஒሷ ୘౗,ಊଶன౤,ొஞొ + Gβ୰ୣ୤ + ୟయ୘౗,ಊଶஞొ f + d, (41) 

where gଵ = cଵω୰ + cଶω୥ + cସT୥ , d = cଵνன౨ + cଶνனౝ + cଷε + aଷω୬,୒Tୟ,ஒνஒ/2ξ୒ + aଷTୟ,ஒνஒሷ /2ω୬,୒ξ୒ +aଷω୬,୒DTୟ,ஒ/2ξ୒ + aଷ∆Tୟ,∆େ౦ , G = aଷSஒ౫ω୬,୒ρTୟ,ஒ/2ξ୒,  and f = Δfሚ୔୅ୈ/ω୬,୒ + Sஒ౫ω୬,୒Φ . Considering 
the bounded achievable, β, βሶ , and β୳, the boundedness of Δfሚ୔୅ୈ, Sஒ౫, and Φ are concluded. This, 
in turn, leads to the bondedness of the fault signal, f, in Equation (41), i.e., |f| ≤ f ̅, where f ̅ is an 
unknown positive constant. Also, the first time derivative of f is assumed to be bounded, i.e., หfሶห ≤ρ୤ሶ, where ρ୤ሶ is an unknown positive constant [4]. Indeed, it is assumed that the applied fault is a 
slowly varying function of time. Besides, the sensor noise contents are bounded, which is a reasonable 
assumption [2,17]. Accordingly, by considering Figure 4 and |ε| ≤ εത, the disturbance, d, is bounded 
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as |d| ≤ Dഥ, where Dഥ is a positive unknown constant [5]. Finally, it is easily seen that G is unknown 
but bounded, due to the presence of Tୟ,ஒ. 

Now, the proposed pitch angle controller is designed as: β୰ୣ୤ = N(ζଵ)υଵ, (42) 

with: ζሶଵ = eଶsecଶΛଶυଵ, υଵ = gଵ + ஧మதమ + cଷ𝛉෡୘𝐡 + ୟయன౤,ొஒ୐ଶஞొ tanh ቀୣమஒୱୣୡమஃమ஗భ ቁ + ୟయஒሷ ୐ଶன౤,ొஞొ tanh ቀୣమஒሷ ୱୣୡమஃమ஗మ ቁ +d෠ tanh ቀୣమୱୣୡమஃమ஗య ቁ + ୟయ୐୤መଶஞొ tanh ቀୣమୱୣୡమஃమ஗ర ቁ+γଶeଶ, 

(43) 

associated with the adaptive laws: fመሶ = ୣమୟయ୐ଶஞొ secଶΛଶ tanh ቀୣమୱୣୡమஃమ஗ర ቁ − σ୤fመ, 𝛉෡ሶ = Γ൫eଶcଷsecଶΛଶ𝐡 − σୡ𝛉෡൯, d෠ሶ = eଶsecଶΛଶ tanh ቀୣమୱୣୡమஃమ஗య ቁ − σୢd෠ , 

(44) 

to estimate the fault, the RBF neural network weights and disturbance, respectively, where, ηଵ, ηଶ, ηଷ, ηସ, γଶ, σ୤, σୡ, and σୢ are positive design parameters. Also, Γ ∈ ℝୱ is a design matrix such that Γ = Γ୘ > 0. Accordingly, the estimation errors are defined as: fሚ = fመ − f, d෨ = d෠ − Dഥ, 𝛉෩ = 𝛉෡ − 𝛉∗. (45) 

Considering the bounded applicable fault, it is practically reasonable to assume the estimation 
error is bounded as หfሚห ≤ ρ୤ሚ, where ρ୤ሚ is an unknown positive constant [4]. It should be noted that 
this bound is only used to analyze the stability of the closed-loop system. Nevertheless, this will not 
be used in the designed control structure, as it is assumed to be unknown. So, the actual estimation 
will not be required in setting up and implementing the control scheme. 

Now, a Lyapunov function is selected as: Vଶ = ୩౛మమ஠ tanΛଶ + ଵଶ fሚ ଶ + ଵଶd෨ଶ + ଵଶ 𝛉෩୘Γିଵ𝛉෩, (46) 

where Λଶ = πξଶଶ/2, ξଶ = eଶ/kୣమ and kୣమ is a considered constraint on eଶ. It is worth noting that Vଶ 
is continuous in Ωୣమ = ൛eଶ:−kୣమ < eଶ < kୣమൟ. Vଶ is positive definite and its first term captures the 
BLF characteristics of the modified tracking error, ξଶ, according to Definition 2. The time derivative 
of ξଶ is obtained as: ξሶଶ = னሷ ౨ାಟమಜమ୩౛మ . (47) 

The first-time derivative of Equation (46) can be obtained as: Vሶ ଶ = eଶ ൬gଵ + cଷ𝛉∗୘𝐡 − ୟయன౤,ొஒ୘౗,ಊଶஞొ − ୟయஒሷ ୘౗,ಊଶன౤,ొஞొ + Gβ୰ୣ୤ + ୟయ୘౗,ಊଶஞొ f + d + ஧మதమ൰ secଶΛଶ +fሚ ቀfመሶ − fሶቁ + d෨d෠ሶ + 𝛉෩୘Γିଵ𝛉෡ሶ . (48) 

Substituting Equations (42)–(44) into Equation (48) leads to: Vሶ ଶ = GN(ζଵ)ζሶଵ + ζሶଵ + ∑ Π୧଺୧ୀଵ , (49) 

where: Πଵ = −eଶ ୟయன౤,ొஒ୘౗,ಊଶஞొ secଶΛଶ − eଶ ୟయன౤,ొஒ୐ଶஞొ secଶΛଶ tanh ቀஒୣమୱୣୡమஃమ஗భ ቁ,  

Πଶ = −eଶ aଷβሷTୟ,ஒ2ω୬,୒ξ୒ secଶΛଶ − eଶ aଷβሷL2ω୬,୒ξ୒ secଶΛଶ tanhቆeଶβሷ secଶΛଶηଶ ቇ,  
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Πଷ = deଶsecଶΛଶ + d෨eଶsecଶΛଶ tanh ቀୣమୱୣୡమஃమ஗య ቁ − σୢd෠d෨ − d෠ tanh ቀୣమୱୣୡమஃమ஗య ቁ eଶsecଶΛଶ,  

Πସ = eଶ ୟయ୘౗,ಊଶஞొ fsecଶΛଶ − ୣమୟయ୐ଶஞొ fsecଶΛଶ tanh ቀୣమୱୣୡమஃమ஗ర ቁ − σ୤fመfሚ − fሚfሶ,  

Πହ = −σୡ𝛉෩୘𝛉෡, and Π଺ = −γଶeଶଶsecଶΛଶ.  

Considering Definition 1 and the inequality 0 ≤ |eଶ||β|secଶΛଶ, it leads to (หTୟ,ஒห|eଶ||β|secଶΛଶ)/L ≤ |eଶ||β|secଶΛଶ. Accordingly, based on Lemmas 4 and 5, the following relations can be written: Πଵ ≤ ୟయன౤,ొ୐ଶஞొ ቀ|eଶ||β|secଶΛଶ − eଶβsecଶΛଶ tanh ቀୣమஒୱୣୡమஃమ஗భ ቁቁ ≤ ୟయன౤,ొ୐ଶஞొ Kηଵ. (50) 

Similarly, considering (หTୟ,ஒห|eଶ|หβሷ หsecଶΛଶ)/L ≤ |eଶ|หβሷ หsecଶΛଶ, it leads to: Πଶ ≤ ୟయ୐ଶன౤,ొஞొ ቀ|eଶ|หβሷ หsecଶΛଶ − eଶβሷ secଶΛଶ tanh ቀୣమஒሷ ୱୣୡమஃమ஗మ ቁቁ ≤ ୟయ୐ଶன౤,ొஞొ Kηଶ. (51) 

Also, with the aid of Lemma 4, the following inequality is obtained: Πଷ ≤ Dഥ|eଶ|secଶΛଶ − DഥeଶsecଶΛଶ tanh ቀୣమୱୣୡమஃమ஗య ቁ − σୢd෠d෨ ≤ DഥKηଷ − ஢ౚଶ d෨ଶ + ஢ౚଶ Dഥଶ, Πସ ≤ ୟయ୐୤̅ଶஞొ ቀ|eଶ|secଶΛଶ − eଶsecଶΛଶ tanh ቀୣమୱୣୡమஃమ஗ర ቁቁ − ஢౜ଶ fሚ ଶ + ஢౜ଶ f ̅ ଶ + ρ୤ሶρ୤ሚ ≤ − ஢౜ଶ fሚ ଶ +ୟయ୐୤̅ଶஞొ Kηସ + ஢౜ଶ f ̅ ଶ + ρ୤ሶρ୤ሚ, Πହ ≤ ି஢ౙଶ ฮ𝛉෩ฮଶ + ஢ౙଶ ‖𝛉∗‖ଶ ≤ ି஢ౙଶ஛ౣ౗౮(୻షభ)𝛉෩୘Γିଵ𝛉෩ + ஢ౙଶ ‖𝛉∗‖ଶ, 

(52) 

where λ୫ୟ୶(Γିଵ) is the maximum eigenvalue of Γିଵ. Finally, considering Lemma 3, it leads to: Π଺ < −γଶ ୩౛మమ஠ tanΛଶ. (53) 

Using Equations (50)–(53) in Equation (49), the following inequality is obtained: Vሶ ଶ < GN(ζଵ)ζሶଵ + ζሶଵ − σଶ,ଵVଶ + σଶ,ଶ, (54) 

where σଶ,ଵ = min {γଶ,σ୤,σୢ,σୡ/λ୫ୟ୶(Γିଵ)} and σଶ,ଶ = aଷω୬,୒LKηଵ/2ξ୒ + aଷLKηଶ/2ω୬,୒ξ୒ + DഥKηଷ +σୢDഥଶ/2 + aଷLfK̅ηସ/2ξ୒ + σ୤f ̅ ଶ/2 + ρ୤ሶρ୤ሚ + σୡ‖𝛉∗‖ଶ/2. Now, the main property of the designed pitch 
controller is proven by Theorem 1. 

Theorem 1. Consider the wind turbine rotor dynamic model (Equation (25)), with non-smooth input 
saturation (Equation (10)) approximated with Equation (13), including pitch actuator bias, effectiveness loss, 
dynamic changes, and blade aerodynamic change. If the initial conditions 𝑒௜(0) ∈ {𝑒௜: |𝑒௜(0)| < 𝑘௘೔} for 𝑖 =1,2, by using the control inputs (Equations (42) and (43)), with the filter (Equation (30)), the virtual control 
(Equation (34)), the adaption laws (Equation (44)), then the following objectives are obtained: (i) All states of 
the closed-loop system are bounded; (ii) the constraint sets, 𝛺௘೔ = ൛𝑒௜: |𝑒௜| < 𝑘௘೔ൟ, are not violated for 𝑖 = 1,2; 
and (iii) the tracking error, 𝑒ଵ, can be made small by the proper choice of the design parameters. 

Proof. The multiplication of Equation (54) by exp(σଶ,ଵt) yields: 

d(Vଶ(t)e஢మ,భ୲)/dt < ൫GN(ζଵ)ζሶଵ + ζሶଵ + σଶ,ଶ൯e஢మ,భ୲. (55) 

Thus, the integration of Equation (55) over [0, t], becomes: Vଶ(t) < σଶ,ଶ/σଶ,ଵ + ൫Vଶ(0) − σଶ,ଶ/σଶ,ଵ൯ eି஢మ,భ୲ + eି஢మ,భ୲ ׬ (GN(ζଵ) + 1)ζሶଵe஢మ,భதdτ୲଴ . (56) 

Furthermore, considering σଶ,ଶ/σଶ,ଵ > 0 and lim୲→ஶ  exp(−σଶ,ଵt) = 0, Equation (56) is rewritten as: Vଶ(t) < cଵ,ଵ + eି஢మ,భ୲ ׬ (GN(ζଵ) + 1)ζሶଵe஢మ,భதdτ୲଴ , (57) 
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where cଵ,ଵ = σଶ,ଶ/σଶ,ଵ + Vଶ(0). Also, G satisfies the conditions in Lemma 1. Accordingly, considering 
Equation (57), it can be stated that Vଶ and ζଵ are bounded. Consequently, according to Equation (46), (kୣమଶ tanΛଶ)/π, fሚ, d෨  and 𝛉෩ are bounded, which implies eଶ belongs to set Ωୣమ = ൛eଶ: |eଶ| < kୣమൟ and 
accordingly is bounded. Then, one can obtain that: ଵଶ eଶଶ ≤ mଵ,ଵ, (58) 

where mଵ,ଵ = 0.5 maxத∈[଴,୲] eଶଶ(τ). Now, considering Equation (59), Equation (40) is rewritten as: Vሶଵ(t) < −σଵ,ଵVଵ(t) + cଵ,ଶ, (59) 

where cଵ,ଶ = σଵ,ଶ + mଵ,ଵ . According to Lemma 2, Vଵ  is bounded and considering Equation (31), (kୣభଶ tanΛଵ)/π and χଶ are bounded, which implies eଵ belongs to set Ωୣభ = ൛eଵ: |eଵ| < kୣభൟ. 
From the above-mentioned analysis, the objectives (i), (ii), and (iii) are achieved as follows: 

(i). Consider the boundedness of Vଵ , Vଶ, eଶ , and eଵ . Therefore ω୰  and ωሶ ୰  are bounded. Now, 
from the boundedness of fሚ, d෨ , and 𝛉෩, the boundedness of αଵ, ζଵ, υଵ, fመ, d෠, 𝛉෡, and consequently β୰ୣ୤ is proven. 

(ii). As part of the closed-loop system analysis, it is shown that the tracking errors, eଵ and eଶ, 
always stay in the sets, Ωୣభ = ൛eଵ: |eଵ| < kୣభൟ and Ωୣమ = ൛eଶ: |eଶ| < kୣమൟ, respectively. 

(iii). Multiplying both sides of Equation (59) by exp(σଵ,ଵt) yields: d(Vଵ(t)e஢భ,భ୲)/dt < cଵ,ଶe஢భ,భ୲. (60) 

Thus, the integration of Equation (60) over [0, t], becomes: Vଵ(t) < 𝔇, (61) 

where 𝔇 = ൫Vଵ(0) − cଵ,ଶ/σଵ,ଵ൯exp(−σଵ,ଵt) + cଵ,ଶ/σଵ,ଵ. From the definition of Vଵ, it can be shown that: |eଵ| < 𝒪, (62) 

where 𝒪 = kୣభට2tanିଵ൫π𝔇/kୣభଶ ൯/π . If Vଵ(0) = cଵ,ଶ/σଵ,ଵ , then it holds that |eଵ| <kୣభට2tanିଵ൫πcଵ,ଶ/kୣభଶ σଵ,ଵ൯/π . If Vଵ(0) ≠ cଵ,ଶ/σଵ,ଵ , it can be concluded that given any 𝒪 >kୣభට2tanିଵ൫πcଵ,ଶ/kୣభଶ σଵ,ଵ൯/π, there exists T, such that for any t > T, it has |eଵ| < 𝒪. As t → ∞, |eଵ| <kୣభට2tanିଵ൫πcଵ,ଶ/kୣభଶ σଵ,ଵ൯/π, which implies that eଵ can be made arbitrarily small by selecting the 

design parameters appropriately. 
Considering Definition 3, and the objectives (i), (ii), and (iii), it is guaranteed that the closed-loop 

system is UUB. This completes the proof. □ 

Remark 2. In Theorem 1, the objective (i) implies that the wind turbine equipped with the proposed pitch angle 
controller is stable. The objective (ii) states the constrained rotor speed and acceleration are guaranteed. 
Accordingly, the generator speed and generated power are retained in the given bounds. Considering Section 
3, then the efficient power regulation requirements are met, satisfying the power grid demand. In this manner, 
both rotor overspeeding and mechanical brake engagement are avoided. The objective (iii) represents the expert’s 
knowledge in the implementation stage of the proposed controller to satisfactorily make the tracking error small. 
These objectives are satisfied in the presence of pitch actuator faults, dynamic change, saturation, and blade 
aerodynamic characteristic change. 

6. Fault Identification Scheme 

In this section, a scheme is given to identify the pitch actuator fault, including the pitch bias, Φ, 
effectiveness loss, ρ, dynamic change, Δfሚ୔୅ୈ, and aerodynamic characteristic change, ∆Tୟ,∆େ౦. To this 
aim, the auxiliary signals are calculated and compared to the estimated fault, fመ, to identify the case 



Energies 2019, 12, 4712 16 of 31 

 

of the dynamic change. Considering Table 2 and the definition of Δfሚ୔୅ୈ  in Equation (17), the 
auxiliary signals are computed as follows: fୟ୳୶୧୪୧ୟ୰୷,୤ୟ୳୪୲ ୤୰ୣୣ = 0Δ(ω෥୬ଶ)βୱ − 0Δ൫ω෥୬ξ෨൯βሶ ୱ + 0Δ(ω෥୬ଶ)β୰ୣ୤ = 0, fୟ୳୶୧୪୧ୟ୰୷,୮୳୫୮ ୵ୣୟ୰ = −0.6316Δ(ω෥୬ଶ)βୱ − 0.59376Δ൫ω෥୬ξ෨൯βሶ ୱ + 0.6316Δ(ω෥୬ଶ)β୰ୣ୤, fୟ୳୶୧୪୧ୟ୰୷,୦୷ୢ୰ୟ୳୪୧ୡ ୪ୣୟ୩ = −Δ(ω෥୬ଶ)βୱ − 1.75706Δ൫ω෥୬ξ෨൯βሶ ୱ + Δ(ω෥୬ଶ)β୰ୣ୤, fୟ୳୶୧୪୧ୟ୰୷,୦୧୥୦ ୟ୧୰ = −0.81083Δ(ω෥୬ଶ)βୱ − 2Δ൫ω෥୬ξ෨൯βሶ ୱ + 0.81083Δ(ω෥୬ଶ)β୰ୣ୤, (63) 

where in fୟ୳୶୧୪୧ୟ୰୷,ଡ଼ , the auxiliary signal is calculated for the fault case, X, which includes fault free, pump wear, hydraulic leakage, or high air. In order to finalize the pitch actuator fault identification 
scheme, first, the dynamic change case is considered, assuming no pitch actuator bias. Considering f = Δfሚ୔୅ୈ/ω୬,୒ + Sஒ౫ω୬,୒Φ, in the absence of Φ, it can be obtained that f = Δfሚ୔୅ୈ/ω୬,୒. So, using the 
auxiliary signals, fୟ୳୶୧୪୧ୟ୰୷,ଡ଼ , reported in Equation (63), the most similar one to fመ is identified as the 
dynamic change case. Therefore, similarity indices are needed, which enhance the fault identification 
task. The indices adopted in this paper are the root mean squared error (RMSE) and variance 
accounted for (VAF), defined as follows: RMSEଡ଼ = ටଵ୘ ׬ ൫fୟ୳୶୧୪୧ୟ୰୷,ଡ଼ − fመ൯ଶdt୘౛౮౛଴ , VAFଡ଼ = ൬1 − ୴ୟ୰൫୤౗౫౮౟ౢ౟౗౨౯,౔ ି୤መ൯୴ୟ୰൫୤౗౫౮౟ౢ౟౗౨౯,౔൯ ൰ × 100%, (64) 

where Tୣ ୶ୣ is the given operation period of the wind turbine. In the ideal fault identification case, 
the RMSE and VAF indices are zero and 100%, respectively. Accordingly, the dynamic change of X 
with the RMSE and VAF indices close to zero and 100%, respectively, is selected as the corresponding 
dynamic change case, which is indicated as X෡. The pitch bias, Φ, is considered as an added constant 
on f. So, having pitch bias occur with the dynamic change, the RMSE index only deviates significantly 
from zero. However, the VAF index still indicates the correct dynamic change properly. Now, after 
the identification of X෡ , the pitch actuator bias is estimated. Considering f = fୟ୳୶୧୪୧ୟ୰୷,ଡ଼෡/ω୬,୒ +Sஒ౫ω୬,୒Φ, where fୟ୳୶୧୪୧ୟ୰୷,ଡ଼෡  is the calculated auxiliary signal using Equation (63) for the identified 
dynamic change, X෡, the estimation of pitch actuator bias, Φ෡ , is computed as follows: Φ෡ = ன౤,ొ୤መି୤౗౫౮౟ౢ౟౗౨౯,౔෡  ୗಊ౫ன౤,ొమ . (65) 

Finally, if neither the dynamic change case nor pitch actuator bias are identified, and meanwhile, 
the fault-free case is not identified, then it can be concluded that the faulty case is either pitch actuator 
effectiveness loss or aerodynamic characteristic change. Considering Equation (41), it is clear that the 
aerodynamic characteristic change is considered as an additive disturbance, and attenuated by the 
proposed controller. On the other hand, the effectiveness loss is contributing in the control gain, i.e., G. So, the estimated fault, fመ, is affected by the effectiveness loss and is insensitive to the aerodynamic 
characteristic change. Accordingly, the given period is considered, in which no pitch actuator 
dynamic change, bias, or fault-free cases are identified. Then, if fመ considerably deviates from zero, 
this leads to the identification of the effectiveness loss. Otherwise, the aerodynamic characteristic 
change is identified. Therefore, the fault isolation task is accomplished. It should be mentioned that 
this fault identification scheme is robust against the disturbance, d, in Equation (41), as its effect is 
guaranteed to be attenuated using the proposed controller. 

7. Numerical Evaluation and Comparison 

In this section, numerical simulations are conducted to evaluate the features of the controller 
(Equation (42)). Moreover, the available industrial PID controller is briefly introduced, for 
comparison with the proposed controller performance. Suitable numerical metrics are introduced to 
quantify and compare the performance of the proposed and PID controllers. 

7.1. Industrial Baseline PID Controller 

The most commonly adopted industrial controller for power regulation of wind turbines in full 
load operation is the PID controller, due to its simplified implementation and effectiveness [4]. The 
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PID controller is thus used to regulate the pitch angle based on the generator speed tracking error, e୥, defined as: e୥(t) = ω୥,ୱ(t) −ω୥,୒. (66) 

Accordingly, the PID controller, used for tracking the blade pitch angle given the reference pitch 
angle, has the form [4,7]: β୰ୣ୤(t) = K୔e୥(t) + K୍ ׬ e୥(τ)dτ୲଴ + Kୈeሶ ୥(t), (67) 

where K୔ , K୍ , and Kୈ  are the proportional, integral, and derivative gains of the controller, 
respectively, to be set via traditional methods, in order to guarantee system stability as well as 
satisfying performance. K୔ , K୍ , and Kୈ  are mostly chosen as constant gains for the whole 
operational region, although some works proposed the use of different gains for each operating 
condition of the plant [7]. The values of the PID gains here settled as K୔ = 1, K୍ = 4, and Kୈ = 0 
[4,26]. 

In the structure of the industrial controller (Equation (67)), the sensor noise, ω୥,ୱ , is not 
necessarily attenuated and may be amplified, even if a filter is used to remove noise content [7]. Also, 
any possible loss of effectiveness, ρ(t), and blade aerodynamic characteristic change, ∆Tୟ,∆େ౦, are not 
analytically attenuated with this solution. Moreover, this controller does not guarantee that any pitch 
actuator bias, Φ(t), and dynamic change, Δfሚ୔୅ୈ, is correctly managed. These remarks will help to 
highlight the advantages of the proposed controller compared to the PID controller, which are 
analyzed by means of a simulated example in the next section. 

7.2. Performance Metrics 

The comparative numerical performance metrics are defined in this section. The difference 
between the generator speed and the nominal one is considered as the first metric, defined as: C1 = ׬ ൫ω୥(τ) −ω୥,୒൯ଶdτ୘౛౮౛଴ , (68) 

where Tୣ ୶ୣ is the given operation period of the wind turbine. Similarly, the difference between the 
generated power and the nominal one is considered as the second metric, defined as: C2 = ׬ ൫P୥(τ) − P୥,୒൯ଶ୘౛౮౛଴ dτ. (69) 

Obviously, it is desirable to keep C1 and C2 as close to zero as possible. The maximum power 
deviation from nominal is calculated as: C3 = max൫หP୥(t) − P୥,୒ห൯. (70) C3 indicates the instantaneous power deviation from the nominal, which may cause a sudden 
break down. In contrast, C2 accumulates all power deviation, which may lead to gradual failure. So, 
it is expected that C3 never violates the settled constraint. Also, the drive train torsion angle is 
calculated as: C4 = ׬ θሶ ୼(τ)ଶdτ୘౛౮౛଴ , (71) 

Which represents the applied drive train torsion stress due to variation in aerodynamic torque, 
as a result of pitch angle variation. It is desirable that the proposed controller maintains the value of C4 near the one provided by the PID regulator, which is accepted in industrial practice. Finally, in 
order to evaluate limited variations of β, C5 and C6 are defined as: C5 = ma x(|β(t)|), C6 = ma x൫หβሶ (t)ห൯. (72) 

7.3. Simulation Results 

In this section, the numerical simulations are reported to evaluate the performance of the 
proposed controller (Equation (42)), both in fault-free and faulty situations. Also, a comparison is 
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made to the industrial PID controller (Equation (67)) to illustrate the effectiveness of the proposed 
controller, considering suitable numerical metrics. It should be noted that different fault scenarios, 
including single and simultaneous occurrences, and wind speed variations are introduced to 
investigate the robustness of the proposed controller. 

The parameter values of the proposed controller are summarized here. The constraints on the 
rotor speed and its time derivative are selected as: kୣభ =  0.02 rad/s, kୣమ = 0.04 rad/sଶ. With these 
values, the inequalities, หω୰ − ω୰,୒ห ≤ 0.02 rad/s  and |ωሶ ୰| ≤ 0.04 rad/sଶ , are satisfied. 
Consequently, considering the operational mode, the constraints on the generator shaft speed and 
generated power are หω୥ − ω୥,୒ห ≤ 1.9 rad/s and หP୥ − P୥,୒ห ≤ 0.056 MW. As it is clearly highlighted 
in Equation (42), a Nussbaum-type function is needed. In this paper, the Nussbaum-type function, N(ζଵ) = ζଵଶ cos(ζଵ), is used, which fulfils Definition 1. The RBF neural network structure has s = 10. 
Also, the centres and width of the RBF neural network are selected as: 

𝛝 = ൥30,907 31,207 31,507 31,807 32107 32,407 32,707 33,007 33,307 33,60790 110 120 140 162.5 180 190 210 220 230−2 1.5 5.11 8.66 12.22 15.77 19.33 22.88 26.44 30 ൩,  

and φୡ = 10ones(10,1), respectively. The other control parameters values are selected as: τଶ = 0.1, γଵ = 10 , γଶ = 5 , ηଵ = 1 , ηଶ = 1 , ηଷ = 1 , ηସ = 1 ,  σ୤ = 1 , σୡ = 1 , σୢ = 5 , L = 700000 , and Γ =Iଵ଴×ଵ଴. 

7.3.1. Fault-Free Situation 

Firstly, the performance of the proposed controller is analyzed for a simulation time of 1500 (s). 
Fault-free conditions are also considered, with wind speed with mean of 19.84 (m/s) and standard 
deviation of 1.94 (m/s), as shown in Figure 5. The design should lead to the following properties: (i) 
The considered constraints are not violated, (ii) the pitch angle saturation is smoothly avoided, and 
iii) the performance is improved compared to the conventional PID controller. 

 
Figure 5. Free wind speed profile. 

The corresponding rotor speed, rotor acceleration, generator speed, and generated power, using 
the proposed controller, are shown in Figures 6–9, respectively. It can be verified that the considered 
constraints are not violated. On the other hand, with the same wind sequence, the PID controller 
results are given in Figures 6–9. The PID controller is not able to keep the corresponding outputs 
within the considered constraints, in the presence of the wind speed variation. Moreover, the 
obtained reference pitch angle using both controllers are compared in Figure 10, in which it is shown 
that the PID controller leads to pitch actuator saturation. In contrast, the proposed controller has 
smoothly avoided saturation. It should be noted that as the proposed controller maintains the rotor 
speed within the constraints, despite the high wind speed variation, faster pitch angle variations are 
generated. As mentioned in Section 3, the proposed controller is designed on the desired trajectory 
of the wind turbine, for which the drive train torsion angle is reduced. In order to analyze this issue, 
the induced drive train torsion angle using the proposed and PID controllers is depicted in Figure 11. 
It is shown that the induced drive train torsion angle using the proposed controller has values close 
to the ones achieved via the PID controller. This implies that the proposed controller has not 
considerably increased drive train torsion and, consequently, stress, despite the wind speed variation 
and more accurate nominal power tracking. The uncertain aerodynamic torque estimation is shown 
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in Figure 12, in which the actual aerodynamic torque is reported to evaluate the estimation efficiency. 
It is highlighted that the aerodynamic torque is estimated quite accurately, and has been kept around 
the nominal one, the same as the actual aerodynamic torque. Finally, to accurately compare the 
results, the performance metrics using both controllers are summarized in Table 3. It can be noted 
that the performance metrics, C1 , C2 , and C3 , have been considerably reduced by using the 
proposed controller. These results correspond to Figures 6,8, and 9. Also, the metric C4 shows the 
same induced drive train torsion angle rate, as illustrated in Figure 11. The metric C5 shows the 
advantage of using the smooth pitch angle saturation, as depicted in Figure 10. As remarked above, 
the accurate nominal power tracking needs higher pitch angle change, in the presence of high wind 
speed variation. This aspect can be verified considering the index C6. So, it can be concluded that the 
proposed controller improves the wind turbine performance in the fault-free case compared to the 
industrial PID controller. 

 
Figure 6. Rotor speed using the proposed controller (dark blue line), PID controller (red line), nominal 
rotor speed (light blue line), and constraints (green line), in the fault-free situation. 

 

Figure 7. Rotor acceleration using the proposed controller (dark blue line), PID controller (red line), 
and constraints (green line), in the fault-free situation. 

 

Figure 8. Generator speed using the proposed controller (dark blue line), PID controller (red line), 
nominal generator speed (light blue line), and constraints (green line), in the fault-free situation. 
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Figure 9. Generated power using the proposed controller (dark blue line), PID controller (red line), 
nominal power (light blue line), and constraints (green line), in the fault-free situation. 

 

Figure 10. Reference pitch angle using the proposed controller (dark blue line) and PID controller (red 
line), in the fault-free situation. 

 

Figure 11. Induced drive train torsion angle rate using the proposed controller (dark blue line) and 
PID controller (red line), in the fault-free situation. 

 

Figure 12. Actual aerodynamic torque (red line), estimated one (dark blue line), and nominal one 
(light blue line). 
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Table 3. Performance metrics in the fault-free situation. 

Performance Metrics Proposed Controller PID Controller Unit C1 138.9 2266 radଶ/s C2 400.7 2256 GWଶs C3 0.056 0.2937 MW C4 0.001331 0.001416 radଶ/s C5 29.37 30 ° C6 10 9.79 °/s 

7.3.2. Faulty Situation 

The section evaluates the fault tolerance capabilities of the proposed controller in the presence 
of faults. It is expected that the mentioned constraints are not violated, whilst the fault effects are 
attenuated. Also, the estimated faults are analyzed with respect to the indices described in Equation 
(64). The results using the PID controller are also reported to study the effect of each fault as well as 
to highlight the benefit of the proposed controller. The considered fault scenario is defined in Table 
4. The occurrence of single faults is considered, in order to accurately study their individual effects, 
as highlighted in Table 4. The same wind speed sequence shown in Figure 5 is considered here. 
Figures 13–16 illustrate the rotor speed, rotor acceleration, generator speed, and generated power 
with respect to the corresponding constraints, respectively, using both the proposed and PID 
controllers. Compared to Figures 6–9, it is obvious that the PID controller performances are degraded, 
while the proposed controller is able the attenuate the fault effects and maintain the considered 
outputs within the corresponding constraints. The designed reference pitch angle values using both 
controllers are compared in Figure 17. It highlights that the simple PID controller has led to pitch 
actuator saturation while saturation is smoothly avoided using the proposed controller. Moreover, it 
is worth noting that as the proposed controller is trying to counteract the pitch actuator dynamic 
change, the dynamic change has reduced the speed of the pitch actuator. Accordingly, it has led to 
slightly higher pitch angle variations compared to the fault-free case, during the dynamic change 
periods. Consequently, the drive train torsion angle induced by the proposed controller was 
increased, as illustrated in Figure 18. In order to analyze the changes of all variables, X, due to the 
fault effect with respect to the fault-free case, the following relation is defined: δX = X୤୤ − X୤ୟ, (73) 

where δX is the change in the considered variable X, X୤୤ is its fault-free value, and X୤ୟ represents 
the corresponding value in the faulty situation. In Figures 19–21, δP୥, δω୥, and δω୰, are illustrated, 
respectively, for the proposed and PID controllers. It is shown that the pitch actuator bias and the 
effectiveness loss have led to considerable limitations of the achievable PID controller performance. 
However, these performance degradations are significantly attenuated using the proposed controller. 
Also, the effect of the considered blade aerodynamic change, i.e., ∆Tୟ,∆େ౦ = 5%, has led to smaller 
variations. It should be noted that the hydraulic leak has notable effects in the performance 
degradation. To accurately study the effect of faults on the pitch actuator response, δβ is depicted in 
Figure 22. Evidently, changes in the pitch actuator dynamic have been considerably attenuated using 
the proposed controller while the slower pitch actuator leads to worse performance with the PID 
controller. Also, the effect of pitch actuator bias is completely removed, since its effect is compensated 
by using the estimation of the bias itself. The situation is even worse when the PID controller is 
exploited. The same result is obtained considering the effectiveness loss fault. In the case of blade 
aerodynamic change, both controllers have led to the same trend in δβ while the variation using the 
PID controller is significantly higher. However, the fault is removed after 1300 (s), whilst its effect 
reduces the PID controller performance. Finally, to quantitatively compare the performance of the 
controllers, the values of the performance indices are summarized in Table 5. It is worth noting that 
the achieved performance of the proposed controller in the presence of faults are similar to the fault-
free conditions. This represents the main point of the fault-tolerant control design. 
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Figure 13. Rotor speed using the proposed controller (dark blue line), PID controller (red line), 
nominal rotor speed (light blue line), and constraints (green line), with the first fault scenario. 

 

Figure 14. Rotor acceleration using the proposed controller (dark blue line), PID controller (red line), 
and constraints (green line), with the first fault scenario. 

 

Figure 15. Generator speed using the proposed controller (dark blue line), PID controller (red line), 
nominal generator speed (light blue line), and constraints (green line), with the first fault scenario. 

 

Figure 16. Generated power using the proposed controller (dark blue line), PID controller (red line), 
nominal power (light blue line), and constraints (green line), with the first fault scenario. 
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Figure 17. Reference pitch angle using the proposed controller (dark blue line) and PID controller (red 
line), with the first fault scenario. 

 

Figure 18. Induced drive train torsion angle rate using the proposed controller (dark blue line) and 
PID controller (red line), with the first fault scenario. 

 

Figure 19. δP୥ using the proposed controller (dark blue line) and PID controller (red line), with the 
first fault scenario. 

 

Figure 20. δω୥ using the proposed controller (dark blue line) and PID controller (red line), with the 
first fault scenario. 
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Figure 21. δω୰ using the proposed controller (dark blue line) and PID controller (red line), with the 
first fault scenario. 

 

Figure 22. δβ using the proposed controller (dark blue line) and PID controller (red line), with the 
first fault scenario. 

Table 4. First fault scenario. 

Fault Type Fault Effect Fault Period 
Pitch actuator pump wear α୤భ = 0.6316, α୤మ = 0.29688 200(s) ≤ t ≤ 300(s) 

Pitch actuator hydraulic leak α୤భ = 1,α୤మ = 0.87853 400(s) ≤ t ≤ 500(s) 
Pitch angle bias Φ = 5° 600(s) ≤ t ≤ 700(s) 

Pitch actuator high air α୤భ = 0.81083, α୤మ = 1 800(s) ≤ t ≤ 900(s) 
Pitch actuator effectiveness loss ρ = 0.7 1000(s) ≤ t ≤ 1100(s) 

Aerodynamic characteristic change ∆Tୟ,∆େ౦ = 5% 1200(s) ≤ t ≤ 1300(s) 

Table 5. Performance metrics with the first fault scenario. 

Performance Metrics Proposed Controller PID Controller Unit C1 155 2552 radଶ/s C2 414.8 2506 GWଶs C3 0.056 0.2941 MW C4 0.001349 0.001438 radଶ/s C5 29.26 30 ° C6 10 10 °/s 

7.3.3. Fault Identification Analysis 

In this section, with the aid of the estimated fault, fመ, and the calculated auxiliary signals of 
Equation (63), the fault identification performance is analyzed using the indices in Equation (64). The 
identification task includes fault detection, isolation, and its reconstruction (i.e., its shape). 
Consequently, the estimated pitch actuator bias, Φ෡ , is obtained using Equation (65), in which Sஒ౫ is 
calculated using Sஒ౫ = 2η(ϱത + ϱ)/(Ρ + Ρିଵ)ଶቚஒ౩. It should be noted that the indices in Equation (64) 

and the estimated fault, fመ, should be computed and compared in every time step of simulation in 
order to accurately identify the fault. However, since the overall performance of the proposed fault 
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identification technique is analyzed, the comparisons are performed in each fault period of Table 4. 
Also, as the calculated auxiliary signal for the fault-free case, i.e., fୟ୳୶୧୪୧ୟ୰୷,୤ୟ୳୪୲ ୤୰ୣୣ , is always zero, then 
the VAF ୤ୟ୳୪୲ ୤୰ୣୣ  in Equation (64) is calculated as var൫fመ൯ × 100% . Now, to investigate the fault 
identification capability of the proposed controller, the estimated fመ signal is shown in Figure 23. Also, 
the auxiliary signals computed from Equation (63) are depicted in Figure 24. Moreover, by means of 
the fault identification indices in Equation (64), summarized in Table 6, the estimated pitch actuator 
bias is shown in Figure 25. As remarked above, to fulfil the fault identification task, the values of the 
RMSE and the VAF indices closer to zero and 100%, respectively, determine the fault case. 
Considering Table 6, it is clear that in each fault-free period, the indices are indicating the fault-free 
case. Also, the estimated pitch actuator bias is zero. It is worth noting that in the fault-free periods, 
the VAF indices calculated for the dynamic change cases, are negative. Indeed, this result is justified 
considering the form of Equation (64). Comparing Figures 23 and 24, it can be pointed out that in the 
fault-free periods, var൫fୟ୳୶୧୪୧ୟ୰୷,ଡ଼ − fመ൯ is greater than var൫fୟ୳୶୧୪୧ୟ୰୷,ଡ଼൯, which leads to negative VAF. 
Obviously, this is not the case considering the calculated VAF, using the fault-free auxiliary signal. 

 
Figure 23. Estimated fault. 

 

Figure 24. Auxiliary signal in the case of fault-free (red line), pump wear (dark blue line), high air 
content (green line), and hydraulic leak (light blue line). 
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Figure 25. Estimated pitch actuator bias. 

Table 6. Fault identification indices. 

Time (s) 
Fault 
Type 

High Air Content Hydraulic Leak Pump Wear Fault-Free 𝐦𝐞𝐚𝐧(𝚽෡ ) 
RMSE VAF RMSE VAF RMSE VAF RMSE VAF 

0–200 Fault-Free 0.37 −788 0.36 −842 0.39 −5916 0.43 99.98 0 

200–300 
Pump 
Wear 

3.25 50.94 1.94 66.65 0.15 98.91 1.46 215.1 0 

300–400 Fault-Free 0.31 −890 0.31 −932 0.33 −6291 0.37 97.65 0 

400–500 
Hydraulic 

Leak 
2.40 75.01 0.19 99.26 67.99 2.4 2.54 575.7 0 

500–600 Fault-Free 0.35 −921 0.34 −963 0.37 −6420 0.41 99.86 0 
600–700 Pitch Bias 27.82 −41.85 21.99 −32.33 18.67 −24.33 87.62 4.05 5 
700–800 Fault-Free 6.24 −93370 6.20 −68300 6.24 −182000 6.35 97.85 0 

800–900 
High Air 
Content 

0.42 97.50 1.81 76.41 1.64 79.01 1.95 383.5 0 

900–1000 Fault-Free 0.53 −866 0.41 −923 0.44 −6309 0.05 99.89 0 

1000–1100 
Effectiven

ess loss 
19.14 −903 18.7 −5800 19.56 −16700 21.05 1100 0 

1100–1200 Fault-Free 1.71 −8870 1.67 −5990 1.75 −17300 1.88 99.17 0 

1200–1300 
Aerodyna

mic 
change 

0.29 −751.6 0.28 −807.9 0.31 −5770 0.34 11.89 0 

1300–1500 Fault-Free 0.46 −755 0.46 −811 0.49 −5790 0.54 98.38 0 

For the case of the pitch actuator dynamic changes, it can be verified that the selected indices 
lead to accurate identification of the corresponding actual dynamic change case. In all dynamic 
change cases, the estimated pitch actuator bias is zero. So, the dynamic change cases are clearly 
distinguishable from the pitch actuator bias. Evidently, during the pitch actuator bias period, none 
of the indices satisfying the considered conditions can be selected. On the other hand, the pitch 
actuator bias is precisely estimated. The situation is different for the cases of the pitch actuator 
effectiveness loss and the aerodynamic characteristic change. Obviously, neither the dynamic change 
case nor the fault-free case is selected, as the corresponding indices do not satisfy the given 
conditions. On the other hand, the pitch actuator bias is estimated as zero. Therefore, it can be 
concluded that these two periods correspond to the pitch actuator effectiveness loss and/or 
aerodynamic characteristic change. However, in order to correctly identify these two cases, the 
estimated fault is first considered, i.e., Figure 23. From Equation (41), it can be noted that the 
aerodynamic characteristic change is described as an additive disturbance while the effectiveness loss 
affects the control gain, i.e., G  in Equation (41). The proposed controller has shown robustness 
features with respect to the considered disturbances. Accordingly, the estimated fault is affected by 
the effectiveness loss and it is insensitive to the aerodynamic characteristic change. Therefore, 
between 1000 and 1100 (s), as the estimated fault is different from zero, the effectiveness loss case is 
identified. Also, between 1200 and 1300 (s), as the estimated fault is zero, the aerodynamic 
characteristic change case is identified. 
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7.4. Robustness Evaluation 

In this section, the proposed controller is further evaluated in terms of robustness to different 
wind speed sequences and fault scenarios. The wind speed is shown in Figure 26, with a mean of 20.41 (m/s) and standard deviation of 3.01 (m/s) for 1100 (s). Compared to the former wind speed 
reported in Figure 5, the signal considered in Figure 26 presents more fluctuations. So, it is more 
challenging for the controller to satisfy the objectives. Also, for the different fault scenario reported 
in Table 7, the faults occur simultaneously for a longer period. Also, the pitch actuator bias and the 
aerodynamic characteristic change values are increased. On the other hand, the pitch actuator 
effectiveness is decreased. For the sake of brevity, only the generated power in the fault-free and fault 
cases are considered for both the controllers. Considering these conditions, the performance metrics 
are compared. The generated power is illustrated in Figures 27 and 28, in both the fault-free and 
faulty situations, respectively. It is obvious that in both situations, the generated power is maintained 
within the prescribed constraints. The performance metrics are summarized in Tables 8 and 9, which 
further confirm that the proposed controller can successfully maintain reliable performance under 
faulty conditions. Its performances are clearly better than the ones achievable with the PID controller. 

 
Figure 26. Second free wind speed profile. 

 

Figure 27. Generated power using the proposed controller (dark blue line), PID controller (red line), 
nominal power (light blue line), and constraints (green line), in the fault-free situation, with the 
second wind speed sequence. 

 

Figure 28. Generated power using the proposed controller (dark blue line), PID controller (red line), 
nominal power (light blue line), and constraints (green line), under the second fault scenario, with the 
second wind speed sequence. 
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Table 7. Second fault scenario. 

Fault Type Fault Effect Fault Period 
Pitch actuator pump wear α୤భ = 0.6316, α୤మ = 0.29688 100(s) ≤ t ≤ 300(s) 

Pitch actuator effectiveness loss ρ = 0.5 100(s) ≤ t ≤ 300(s) 
Pitch actuator hydraulic leak α୤భ = 1,α୤మ = 0.87853 400(s) ≤ t ≤ 600(s) 

Pitch angle bias Φ = 10° 400(s) ≤ t ≤ 600(s) 
Pitch actuator high air α୤భ = 0.81083, α୤మ = 1 800(s) ≤ t ≤ 1000(s) 

Aerodynamic characteristic change ∆Tୟ,∆େ౦ = 10% 800(s) ≤ t ≤ 1000(s) 

Table 8. Performance metrics in the fault-free situation, with the second wind speed sequence. 

Performance Metrics Proposed Controller PID Controller Unit C1 212.5 1762 radଶ/s C2 465 1817 GWଶs C3 0.056 0.2094 MW C4 0.001299 0.001371 radଶ/s C5 29.12 30 ° C6 10 7.46 °/s 

 

Table 9. Performance metrics under the second fault scenario, with the second wind speed sequence. 

Performance Metrics Proposed Controller PID Controller Unit C1 304.2 3747 radଶ/s C2 544.9 3549 GWଶs C3 0.056 0.2214 MW C4 0.001421 0.001376 radଶ/s C5 29.40 30 ° C6 10 10 °/s 

Considering the simulation results in the fault-free and first fault scenario of Table 4 using the 
wind profile of Figure 5, it can be pointed out that the proposed controller is able to reduce the 
degradation of the wind turbine performances. Firstly, it is shown that the generated power never 
violates the given bound. It should be noted that this bound is appropriately selected by the wind 
turbine manufacturer. Indeed, this bound represents the safe-to-operate bound in full load operation 
without mechanical brake engagement. On the other hand, mechanical braking increases the induced 
fatigue load on the drive train. Also, the rotor acceleration is constrained, thus leading to reduce the 
torque stress on the rotor shaft. So, it can be concluded that the proposed controller leads to induce 
lower fatigue load and stress to the drive train. One obvious benefit of the proposed controller is that 
harsh long-lasting pitch actuator saturation is avoided. In fact, using the smooth pitch actuator 
saturation function, the speed of the pitch actuator response increases before the saturation, as 
highlighted in Figure 1. This characteristic leads to improved power regulation. It illustrates that the 
induced drive train torsion angle rate was kept at the same level as the baseline controller one. So, if 
the behavior of the baseline PID regulator is universally accepted in industrial control, the proposed 
controller can be used by industries to reduce the applied torsional stress. It is evident that the 
estimated aerodynamic torque fluctuates around the nominal one due to the inherent features of the 
RBF neural network and the Gaussian basis functions. However, as mentioned in the controller 
design procedure, the estimation error is bounded. This is obvious when comparing the actual 
aerodynamic torque and the estimated one. As remarked earlier, the pitch actuator dynamic change 
leads to a slower response of the pitch actuator and consequently poor power regulation. This 
phenomenon is highlighted in Figures 19 and 22. Nevertheless, the proposed controller was able to 
attenuate this effect, which is the same as the pitch actuator bias, using the properly designed fault 
estimator. On the other hand, the effects of the pitch actuator effectiveness loss and debris build-up 
are mitigated appropriately, satisfying the performance objectives. Also, using the fault estimator 
information alongside the proposed fault identification scheme, different faults are identified. Similar 
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results can be obtained for even more severe instantaneous faults and higher wind speed variation, 
as illustrated in Figures 27 and 28. 

8. Conclusions and Open Problems 

This paper proposed a novel adaptive constrained control methodology for wind turbine power 
regulation subject to actuation failures as well as unknown system dynamics. In contrast to previous 
works where an unknown wind speed observer/estimator was needed, using the Nussbaum-type 
function, the proposed method was able to handle the unpredictable wind speed variation effects in 
the control design without requiring accurate wind speed measurement. The constrained rotor speed 
and generated power were guaranteed while the pitch actuator remained within the desired bounds. 
Using the barrier Lyapunov function in conjunction with the concept of dynamic surface control, a 
constrained stable control structure with cheap computational cost was developed. In addition, 
utilizing a radial basis functions neural network together with a proper fault-tolerant scheme, a 
robust and adaptive scheme was developed without the need for precise information about either 
the wind turbine model or the pitch actuator faults. Numerical simulations were finally performed 
to validate the effectiveness of the reported theoretical developments, and comparisons with the 
available industrial controller performance were shown. 

Finally, by considering the proposed controller in this paper and the investigated results, the 
future research direction of this paper can be outlined as the validation of the proposed controller by 
means of data acquired from real or experimental-scale wind turbines for the whole operational 
region, achieving the Industry 4.0 requirements. 

Author Contributions: Conceptualization, H.H. and H.R.N.; methodology, H.H. and H.R.N.; software, H.H.; 
validation, H.H., S.S. and I.H.; formal analysis, H.H., I.H. and S.S.; investigation H.H. and S.S.; writing—original 
draft preparation, H.H.; writing—review and editing, H.H., H.R.N., I.H. and S.S.; visualization, H.H.; 
supervision, I.H. and S.S. 

Funding: This research received no external funding. 

Conflicts of Interest: The authors declare no conflict of interest. 

Nomenclature 𝐁𝐝𝐭 Drive train torsion damping 𝐗𝐍 Nominal value of 𝐗 B୥ Generator viscous friction Xୱ Measurement of X B୰ Rotor viscous friction X෩ Estimation error of X B୲ Tower damping ratio X෡ Estimation of X C୮ Power coefficient x୲ Nacelle displacement C୯ Torque coefficient α୤భ, α୤మ Fault indicators C୲ Thrust coefficient αଵ Virtual control C1, …, C6 Performance metrics β Pitch angle ΔC୮ Power coefficient change β୰ୣ୤ Reference pitch angle Dഥ, Dഥଵ Unknown positive constants β୳ Pitch actuator effort F୲ Aerodynamic thrust Γ Design matrix fୟ୳୶୧୪୧ୟ୰୷,ଡ଼  Auxiliary signal for fault case X γଵ, γଶ Positive design parameters f ̅ Unknown positive constant ε Approximation error H Pitch actuator saturation εത Unknown positive constant h୧ Gaussian function η Positive design parameter J୥ Generator inertia η୥ Generator efficiency J୰ Rotor inertia ηଵ, ηଶ, ηଷ,ηସ Positive design parameters Kୢ୲ Drive train torsion stiffness θ୥ Generator rotation angle Kୈ Derivative gain θ୰ Rotor rotation angle K୍ Integral gain θ୼ Drive train twist angle K୔ Proportional gain 𝛉∗ Optimal weight vector K୲ Tower elasticity coefficient 𝛝୧ i୲୦ centre vector of the inputs 



Energies 2019, 12, 4712 30 of 31 

 

kୣ౟ Constraint on e୧ λ Tip speed ratio kതଵ Unknown positive constant νଡ଼ Noise content of variable X M୲ Nacelle mass ξ Pitch actuator damping ratio N Nussbaum-type function ξଡ଼ Damping ratio in the situation X P୥ Generated electrical power ρ Unknown actuator effectiveness R Blade length ρୟ Air density S Saturation smooth estimation ρ୤ሶ, ρ୤ሚ Unknown positive constants s Number of nodes σ୤, σୡ, σୢ Positive design parameters Tୟ Aerodynamic torque τଶ Time constant Tୟ,୒୒ Approximation of Tୟ Φ Unknown pitch actuator bias T୥ Generator torque φୡ Gaussian functions width vector V୰ Effective wind speed ω୥ Generator speed V୵ Free wind speed ω୬ Pitch actuator natural frequency Vଵ, Vଶ Lyapunov functions ω୬,ଡ଼ Natural frequency in situation X 
  ω୰ Rotor speed 
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