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Background. Pheochromocytomas (PCCs) show the highest degree of heritability in human neoplasms. However, despite the wide
number of alterations until now reported in PCCs, it is likely that other susceptibility genes remain still unknown, especially for
those PCCs not clearly syndromic. Methods. Whole exome sequencing of tumor DNA was performed on a set of twelve PCCs
clinically defined as sporadic. Results. About 50% of PCCs examined had somatic mutations on the known susceptibility VHL,
NF1, and RET genes. In addition to these driver events, mutations on SYNE1, ABCC10, and RAD54B genes were also detected.
Moreover, extremely rare germline variants were present in half of the sporadic PCC samples analyzed, in particular variants of
MAX and SAMD9L were detected in the germline of cases wild-type for mutations in the known susceptibility genes.
Conclusions. Additional somatic passenger mutations can be associated with known susceptibility VHL, NF1, and RET genes in
PCCs, and a wide number of germline variants with still unknown clinical significance can be detected in these patients.
Therefore, many efforts should be aimed to better define the pathogenetic role of all these germline variants for discovering
novel potential therapeutic targets for this disease still orphan of effective treatments.

1. Introduction

Pheochromocytomas (PCCs) are rare tumors of the auto-
nomic nervous system that arise from the chromaffin tissue
of the adrenalmedulla [1].Most of PCCs are benign; however,
approximately 10% of cases are malignant and can develop
metastases either at the time of diagnosis or even later after
several years, with a highly variable clinical course and a
5-year overall survival rate of 50% [2]. PCCs show the highest
degree of heritability in human neoplasms and almost 40% of
cases occur within heritable syndromes, including multiple
endocrine neoplasia type 2 (MEN2), neurofibromatosis

type 1 (NF1), von Hippel Lindau (VHL) disease, and hered-
itary paraganglioma and familial pheochromocytoma [3].
Germline mutations have been identified in more than 15
well-characterized genes, such as VHL, SDHB, SDHD, NF1,
and RET [4].

Despite this well-known inherited basis of PCCs and
paragangliomas (PGLs), during the past decades somatic
mutations with variable frequency in many genes, including
EPAS1 (HIF2α), RET, VHL, RAS, NF1, ATRX, and CSDE1
recurrent somatic copy number alterations and several fusion
genes, involvingMAML3, BRAF, NGFR, and NF1, have been
progressively identified [5–16]. Recently a multiplatform
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integrated analysis classified PCCs/PGLs into four clinically
relevant molecular subtypes: a kinase signaling subtype, a
pseudohypoxia subtype, a Wnt-altered subtype driven by
MAML3 and CSDE1, and a cortical admixture subtype [16].

Therefore, given this molecular complexity of PCCs, it is
likely that other alterations remain still unknown, especially
for those PCCs not clearly syndromic. For this purpose, in
the present study, we performed whole exome sequencing
on a set of 12 clinically sporadic PCCs, with a family history
negative for PCCs/PGLs.

2. Materials and Methods

2.1. Patients and Tumor Samples. Fresh tissue specimens of
PCC from 12 patients with a family history negative for
PCCs/PGLs were collected during the surgical operation,
snap-frozen in liquid nitrogen, and stored at −80°C until
analysis. Patient characteristics are listed in Table 1. Whole
exome sequencing was performed on biological tumor sam-
ples on matched peripheral blood samples obtained from
all patients. This study was approved by the local institutional
ethical committee of S. Orsola-Malpighi hospital (approval
number 95/2013/U/Tess). All patients provided written
informed consent.

2.2. Whole Exome Sequencing. DNA was extracted from
peripheral blood and fresh frozen tissue with DNA mini kit
(Qiagen, Milan, Italy) following manufacturer’s instructions.
Whole exome sequencing of tumor DNA was performed on
HiScanSQ platform in accordance with Nextera Rapid
Exome Enrichment protocol (Illumina, SanDiego, California,
USA). Briefly, 100 ng of genomic DNA was tagged and
fragmented by the Nextera transposome. The Nextera

transposome simultaneously fragments the genomic DNA
and adds adapter sequences to the ends. The products were
then amplified and exome regions were enriched. The
enriched libraries were amplified by PCR and quantified using
PicoGreen assay (Life Technologies, Milan, Italy).

Paired-end libraries were sequenced at 2× 100 bp
read length using Illumina Sequencing by synthesis (SBS)
technology.

2.3. Bioinformatic Analysis. After demultiplexing and
FASTQ generation performed with bcltofastq function
developed by Illumina, the paired-end reads were trimmed
using AdapterRemoval (https://github.com/MikkelSchubert/
adapterremoval) with the aim of removing stretches of low-
quality bases (<Q10) and Truseq/Nextera rapid capture
adapters present in the sequences. The paired-end reads were
then aligned on human reference genome hg38 (http://www.
genome.ucsc.edu). Data from WES were mapped with
Burrows-Wheeler Aligner with the default setting; the
PCR and optical duplicates were removed, and Genome
Analysis Toolkit (https://software.broadinstitute.org/gatk)
was used to locally realign, recalibrate, and call the Ins/del
variants, while point mutations were identified with the
algorithm MuTect (https://www.broadinstitute.org/cancer/
cga/mutect). Single nucleotide variants (SNV) and ins/del
were annotated with gene and protein alteration using
Annovar (http://annovar.openbioinformatics.org); nonsy-
nonymous and nonsense SNV, frameshift/nonframeshift
Indels, and splice site mutations were selected with a
threshold read depth≥ 10x and a variant allele fre-
quency≥ 0.2. All the variants were filtered to select novel
or rare events basing on database of human variability

Table 1: Patient characteristics.

ID Sex Age Tumor size (cm) HIC characteristics PASS score

N47 F 63 5.0 Ki-67 2.4% n.a.

N49 M 65 4.0 Positive staining for synaptophysin. Ki-67 3.2% 3

N50 M 36 4.0
Positive staining for synaptophysin. S100 protein-positive sustentacular cells.

Ki-67 2.2%
3

N51 M 46 1.5
Positive staining for chromogranin A and synaptophysin. S100 protein-

positive sustentacular cells. Negative staining for c-kit, EGFr, p53. Ki-67 0.5%
2

N52 M 47 3.5
Positive staining for chromogranin A and synaptophysin. S100 protein-
positive sustentacular cells. Negative staining for CD10. Ki-67 0.1%

4

N53 F 58 5.4 Ki-67 1.8% 5

N54 F 46 6.0
Positive staining for chromogranin A and synaptophysin. S100 protein-
positive sustentacular cells. Focal positive staining for CD10. Ki-67 0.4%

6

N55 F 30 6.0
Positive staining for chromogranin A and synaptophysin. S100 protein-

positive sustentacular cells. Ki-67 0.1%
4

N56 M 41 1.7
Positive staining for synaptophysin. S100 protein-positive sustentacular cells.

Negative staining for calretinin. Ki-67 2.2%
2

N57 M 35 8.0
Positive staining for chromogranin A and synaptophysin. Few S100 protein-
positive sustentacular cells. Negative staining for calretinin and α-inhibin.

Ki-67 5.7%
4

N62 M 59 3.0 Ki-67 1.4%. 5

N63 M 26 7.0
Positive staining for synaptophysin. S100 protein-positive sustentacular cells.

Negative staining for calretinin, MEL-A, and α-inhibin. Ki-67 4%
14
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dbSNP (http://www.ncbi.nlm.nih.gov/SNP), 1000Genomes
(http://www.1000genomes.org), ExAC (http://exac.broad
institute.org), and EVS (http://evs.gs.washington.edu/EVS).
In-depth evaluation of high confidence somatic variants was
performed by verifying the presence of alternate allele on the
normal counterpart and manually visualizing each variation
with the tview function of SAMmtools. Both somatic muta-
tions and germline variants were searched in COSMIC
(Catalog of Somatic Mutations in Cancer; http://cancer.
sanger.ac.uk/cosmic), ClinVar (https://www.ncbi.nlm.nih.
gov/clinvar), and HGMD (http://www.hgmd.org), and their
effect on protein structure and function was predicted with
SNPeff, a software that uses three different prediction algo-
rithms (SIFT, Polyphen2, and LRT).

Moreover, based on WES data, the analysis of amplifica-
tions and large deletions were performedmaking a consensus
between Control FREEC (http://boevalab.com/FREEC) and
ADTEX (http://adtex.sourceforge.net) with paired tumour/
matched normal samples. A filtering procedure was applied
taking into account the uncertainty value given by Control
FREEC (<80%) and the polymorphic copy number variants
from the Database of human Genomic Variants (http://dgv.
tcag.ca/dgv/app/home).

For germline variants prioritization, all rare (MAF< 0.01)
alterations occurring on the known susceptibility genes of
PCC and PGL were considered. Moreover, variants with an
evident effect on the protein (nonsense and splicingmutations
or frameshift ins/del) were prioritized and manually anno-
tated using HGMD and ClinVar database and with literature.

2.4. Sanger Sequencing. Sequencing of the DNA extracted
from tumors and matched peripheral blood samples was per-
formed to validate candidate mutations. Specific PCR assay
for the amplification and sequencing of selected genes was
designed with Primer Express 3.0 Software (Applied Biosys-
tems,Monza, Italy). PCRproducts were purifiedwith theQia-
quick PCR purification kit (Qiagen) and sequenced on both
strands using the Big Dye Terminator v1.1Cycle Sequencing
kit (Applied Biosystems). Sanger Sequencing was performed
on ABI 3730 Genetic Analyzer (Applied Biosystems).

2.5. Real-Time PCR. Total RNA was extracted from fresh fro-
zen tissues using the RNeasy spin-column method (Qiagen).
RNA was reverse transcribed to cDNA using the Transcrip-
tor First-Strand cDNA Synthesis Kit (Life Technologies) with
oligo dT primers. qPCR amplification of genes of interest was
performed with real-time LightCycler 480 instrument
(Roche). Fold-change was estimated by DDCt method, using
ATPS, HPRT, and HMBS genes as housekeeping controls.
Primers used were: MAX_FW 5′- GCGATAACGATGAC
ATCGAGGT-3′ and MAX_RV 5′-CCCGCAAACTGTGA
AAGCTGT-3′, SAMD9L_FW 5′-AAAGTGAGTGAGTG
AGCCCAG-3′ and SAMD9L_RV 5′-CATGCTCTTTGGTC
CAGTCT-3′, ATPS_FW 5′-GTCTTCACAGGTCATATGG
GGA-3′ and ATPS_RV 5′-ATGGGTCCCACCATATAGA
AGG-3′, HMBS_FW 5′-GGCAATGCGGCTGCAA-3′ and
HMBS_RV 5′-GGGTACCCACGGAATCAC-3′, HPRT_FW
5′-TGACACTGGCAAAACAATGCA-3′ and HPRT_RV

5′-GGTCCTTTTCACCAGCAAGCT-3′. For detection of
cortical admixture profile, expression levels of STAR,
CYP2W1, CYP11B2, CYP21A2, and CLND2, genes were eval-
uated using the following primers: STAR_Fw 5′-TGGGCA
TCCTTAGCAACCAA-3′ and STAR_Rev 5′-GCCCACATC
TGGGACCACTT-3′; CYP2W1_Fw 5′-GTCATGGTCCT
CTTGGGGTC-3′ and CYP2W1_Rev 5′-CTCCAGGAGGG
TCCTCAGAA-3′; CYP11B2_Fw 5′-TGCATCCCTGCAGG
ATGAT-3′ and CYP11B2_Rev 5′-GCGACAGCACATCT
GGGT-3′; CYP21A2_Fw 5′-AGCCCGACCTCCCCAT-3′
and CYP21A2_Rev 5′-CACCACCACATCTTGCAGCC-3′;
CLND2_Fw 5′-CCCCTTGTACTTCGCTCCCC-3′ and
CLND2_Rev 5′-AAGCAGCCTCAAGAAGGCATC-3′.

3. Results

Exome sequencing generated a minimum of 45.5 million
reads/sample with a mean coverage of RefSeq regions of
44x. Few somatic mutations were identified (an average of 7
mutations per sample) while several copy number alterations
were detected, with losses of chr1, chr3, and chr17 being the
most recurrent.

3.1. Analysis of Somatic Mutations. The biological effect of
somatic mutations was predicted with three bioinformatic
tools (Suppl. Table 1). Mutations on susceptibility genes were
detected in 6 out of 12 cases and were annotated in COSMIC
and HGMD databases. VHLmissense mutations were identi-
fied in two cases: a p.S65A identified in N51, a mutation
already reported in PCC (COSM144970), and a p.Y98H in
N56, a mutation reported in ClinVar and HMGD as patho-
genic in association with Von Hippel-Lindau syndrome.
Two novel somatic alterations were detected in NF1: N62
carried a splicing mutation c.480-1G>C in exon 5 and N55
had a frameshift deletion (p.W784fs) in exon 20. Interest-
ingly, the abovementioned mutations on NF1 and VHL were
in regions affected by loss of the wild-type allele (Figure 1).
Heterozygous loss of the chromosomal region covering NF1
was detected also in N54; however, no additional mutational
event was detected on this gene. RET was found mutated in
heterozygosis in two other tumors: a novel exon 11 nonfra-
meshift INDEL (p.L633delinsLCR) was detected in N57
and the hotspot mutation p.M918T (COSM965) in N53.

In addition to these driver mutations on known sus-
ceptibility genes, other somatic passenger mutations were
detected in these 6 tumors. In particular, SYNE1 and
ABCC10 were mutated, respectively, in the two RET-mutated
cases (N53 and N57), while a missense p.G460S mutation
of RAD54B, a gene involved in DNA repair process, affected
a NF1 mutated case (N55). On the other side, few somatic
mutations were identified in the 6 remaining PCC cases
and none was recurrent between samples. N63 carried a
p.L114X nonsense mutation in CDC14B, a protein phos-
phatase involved in DNA damage response. N52 carried two
heterozygous missense mutations (SMARCC2 p.P1092R
and PRKG1 p.F387) both predicted as pathogenic by
bioinformatic predictors.
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chr3
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CCGCGCGTCGTGCTGCCCGTATGGCTCAACTTCGACGGCGAGCCGCAGCCC C ACCCCAACGTGCCGCCTGGCACGG

CGCGTCGTGCTGCCCGTATGGCTCAACTTCGACGGCGAGCCGCAGCCC C ACCCCAACGTGCCGCCTGGCACGGGC

GTGCTGCCCGTATGGCTCAACTTCGACGGCGAGCCGCAGCCC C ACCCAACGCTGCCGCCTGGCACGGGCCGCCGCA
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Figure 1: Continued.
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3.2. Analysis of Germline Rare Variants. In addition to the
abovementioned somatic alterations, rare (ExAc< 0.01)
germline variants were identified in five sporadic PCC
samples (Suppl. Table 2), among which those occurring in
MAX and SAMD9L seem to play an important role in PCC
pathogenesis, completing the picture of relevant alterations
identified in our cohort (Table 2). In N63, a novel germline
variant ofMAX (c.397-2A>G), affecting splice site and path-
ogenic for the protein function, was detected. Noticeably, this
patient is a young adult (age 26) and showed the loss of the
wild-type allele in the tumor, thus following the Knudson
two-hit model (Figure 2(a)), and mRNA level of MAX was
found downregulated with respect to the other PCC samples
(Figure 2(b)). According to the findings of Fishbein et al.
[16], we evaluated the expression level of STAR, CYP11B2,
CYP2W1, CYP21A2, and CLND2 with the aim to assess
whether a cortical admixture profile was present in this
MAX mutated sample. However, a general low expression
level of these genes was found in our cohort and no difference
between the MAX mutated case and the other PCC samples
was detected (data not shown). Conversely, 2 germline
variants of SAMD9L were found in other 2 PCC, both wild-
type for mutations in known susceptibility genes: a novel
p.N769fs frameshift deletion in N47 and a rare (ExAc=0.2%)
nonsense p.R406X in N50 (Figure 2(c)). Evaluation of
mRNA level of SAMD9L showed a significant downre-
gulation of the transcript in this two PCC samples
(Figure 2(d)). Interestingly, the same gene was found somat-
ically mutated in N54 (p.L1016S), increasing to 3 the number
of PCC wild-type cases of our cohort that carried alterations
on SAMD9L (Table 2).

On the contrary, the role of the remaining germline
variants (suppl. Table 2) is not clear. In N50, in addition to
SAMD9L alteration, a heterozygous stop gain of BRCA2
(p.K3326X) was detected as constitutive. This variant is
recorded in ClinVar as “benign”; however, it is found

at low frequency in healthy individuals (ExAc allele fre-
quency=0.7%). BRCA2 mRNA expression level was evalu-
ated, but it was found not altered in this case with respect to
the other PCC cases (data not shown). Finally, the rare germ-
line variants of ATRX and KTM2D, identified in N56, and of
MDH2, in N53, are missense variants occurring in associa-
tion with a well-defined somatic mutation on a susceptibility
gene (VHL in N56 and RET in N53) and then it is not
clear whether they could have a role on the tumor onset.

4. Discussion

In this study, we performed whole exome sequencing on a set
of twelve PCCs, clinically defined as sporadic, and we found
that 50% of PCCs examined had somatic mutations on the
known susceptibility VHL, NF1, and RET genes. In addition
to these driver mutations, other somatic passenger mutations
were detected. In particular, SYNE1 and ABCC10 were
mutated, respectively, in the two RET-mutated cases, while
a missense p.G460S mutation of RAD54B affected a NF1
mutated case, suggesting these other events may play a
potential role on PCCs pathogenesis and development.
Nuclear envelope 1 (SYNE1) gene encodes several different
isoforms involved in a variety of cellular processes including
cytokinesis, Golgi function, and nuclear organization and
structural integrity and positioning of the nucleus [17, 18].
Mutations of SYNE1 have been found in colorectal cancer,
glioblastoma, and ovarian cancer, and methylation of the
gene was also frequently found in lung adenocarcinoma
and colorectal cancer [19–23]. On the other side, RAD54B
is a telomere-related gene involved in DNA repair process,
and coding-missense changes of this gene have been found
in familial breast cancer cases not explained by mutations
in the best-known high susceptibility genes BRCA1 and
BRCA2 [24]. These findings may be even more relevant in
PCCs, given the highest degree of heritability of this disease.

p13.3 p13.2 p12 p11.2 p11.1 q11.2 q21.1 q21.31 q22 q23.2 q24.2 q25.2

NF1
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TTGCTTTCAAGTGATAATTGCCTTCATTTTAGGCTTGGGAAGATACACATGCAAAAT – GGAACA

TTGCTTTCAAGTGATAATTGCCTTCATTTTAGGCTTGGGAAGATACACATGCAAAAT – GGAACA

TTGCTTTCAAGTGATAATTGCCTTCATTTTAGGCTTGGGAAGATACACATGCAAAAT – GGAACAAGCAA

TTGCTTTCAAGTGATAATTGCCTTCATTTTAGGCTTGGGAAGATACACATGCAAAAT – GGAACAAGCAA

TTGCTTTCAAGTGATAATTGCCTTCATTTTAGGCTTGGGAAGATACACATGCAAAAT – GGAACAAGCAA

GCTTTCAAGTGATAATTGCCTTCATTTTAGGCTTGGGAAGATACACATGCAAAAT – GGAACAAGCAACAAAGCTAAT

TTGCTTTCAAGTGATAATTGCCTTCATTTTAGGCTTGGGAAGATACACATGCAAAAT GGGAACA

GCCTTCATTTTAGGCTTGGGAAGATACACATGCAAAAT GGGAACAAGCAACAAAGCTAATCCTTAACTATCCAAAA

ATTTTAGGCTTGGGAAGATACACATGCAAAAT – GGAACAAGCAACAAAGCTAATCCTTAACTATCCAAAAGCCAAAA

TTTTAGGCTTGGGAAGATACACATGCAAAAT GGGAACAAGCAACAAAGCTAATCCTTAACTATCCAAAAGCCAAAA

GGCTTGGGAAGATACACATGCAAAAT – GGAACAAGCAACAAAGCTAATCCTTAACTATCCAAAAGCCAAAATGGAAG

GGAAGATACACATGCAAAAT – GGAACAAGCAACAAAGCTAATCCTTAACTATCCAAAAGCCAAAATGGAAGATGGC

GAAGATACACATGCAAAAT – GGAACAAGCAACAAAGCTAATCCTTAACTATCCAAAAGCCAAAATGGAAGATGGCCA

GATACACATGCAAAAT GGGAACAAGCAACAAAGCTAATCCTTAACTATCCAAAAGCCAAAATGGAAGATGGCCAGG

AAAT – GGAACAAGCAACAAAGCTAATCCTTAACTATCCAAAAGCCAAAATGGAAGATGGCCAGGTAAGTCTGTAAAG

AAAT – GGAACAAGCAACAAAGCTAATCCTTAACTATCCAAAAGCCAAAATGGAAGATGGCCAGGTAAGTCTGTAAAG

(d)

Figure 1: Deletion of the wild-type allele occurred in PCC samples that carryNF1 orVHL somatic mutations. Alignments of sequencing reads
located onNF1 orVHLmutated bases are shown. Green bars represent deleted regions of chr3 forVHL (a, b) and chr17 forNF1 (c, d) detected
by copy number analysis. A black arrow indicates the chromosome position of NF1 or VHL and the mutated base on the sequencing reads.
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Of note on this topic, the identification of germline
variants in half of the sporadic PCC samples was analyzed,
among which those occurring in MAX and SAMD9L genes
may be extremely interesting. Indeed, some reports disclose
the importance of screening for germline variants also in
sporadic cases, especially on susceptibility genes [25, 26],
and besides the potential role played in PCCs pathogenesis,
the detection of these germline variants in patients clinically
defined as sporadic may suggest the existence of unknown
multineoplasia hereditary diseases.

In our study, we have identified a variant ofMAX (c.397-
2A>G), affecting splice site and pathogenic for the protein
function, with the loss of the wild-type allele in the tumor
as second hit. Of note, this patient is a young adult of 26 years
old, and the presence of a germline variant in a known cancer
susceptibility gene may suggest that the PCC in this patient
could be the first clinical expression of a hereditary disease
still undefined. It is already known that around 1% of PCC
patients were negative for mutations in the other known
susceptibility genes carried a germline mutation affecting
MAX [26, 27]. About 20 variants affecting MAX have been
already described distributed along the gene, but more fre-
quently involving exons 3 and 4, matching some of the most
important residues within the conserved bHLH-Zip domain
of MAX. Most mutations lead to truncated proteins, with

the expected LOH affecting the remaining wild-type allele
of the MAX tumor suppressor gene [26, 27]. Two truncat-
ing MAX mutations affecting exon 3 (c.97C>T) and 4
(c.185_186delA) and three missense variants (c.67G>A,
c.281T>C, and c.425C>T) located in exons 3, 4, and 5,
respectively, have been identified [27]. Furthermore, other
mutations affecting the initial methionine (c.2T>A), creat-
ing a premature stop codon (c.25del, c.97C>T, c.223C>T,
and c.244C>T) or affecting a donor/acceptor splice site
(c.171 +1G>A and c.295+ 1G>T), have been subsequently
reported [26]. In addition, 2 deletions were identified: the
first caused an inframe loss of 6 highly conserved amino
acids within the first helix of the protein (c.140_157del),
and the second, spanned the whole gene (c.1-?_483+?del)
[26]. The MAX mutant case of our cohort showed a marked
downregulation of MAX at mRNA level; however, it did not
show a significant modulation of the genes involved in
cortical admixture phenotype. Conversely to this finding,
two cases ofMAXmutant PCC were described to overexpress
adrenal cortex markers (including CYP11B2, CYP21A2, and
STAR) supporting an association between MAX mutation
and the cortical admixture PCC subtype [16]. Further studies
on larger cohort will be needed to assess this association.

Moreover, we have found three germline variants in
BRCA2 and SAMD9L in other two PCC patients wild-type

Tum
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Figure 2: (a) Loss of heterozygosity of germline MAX mutation detected on N63 tumor. Chromatograms showing homozygous status of
c.397-2A>G mutation in the tumor of N63 (upper panel), while in the germline it is heterozygous (lower panel). (b) MAX mRNA relative
expression of MAX mutant case (N63) in comparison to the other PCC cases. P value was estimated with unpaired t-test (∗∗P < 0 01).
(c) Validation of SNV detected on SAMD9L gene in 2 PCC samples. Germline c.2307delC and c.1216C>T heterozygous mutations
detected in both tumor and peripheral blood of N47 and N50, respectively. (d) SAMD9L mRNA relative expression of the 2 SAMD9L
mutant cases (N47 and N50) in comparison to the other PCC cases. P value was estimated with unpaired t-test (∗∗P < 0 01).
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for mutations in susceptibility genes. Specifically, even if it is
a rare variant (ExAc allele frequency=0.7%) recently
described as associated with an increased risk of developing
breast and ovarian cancers [28], the heterozygous stop gain
of BRCA2 (p.K3326X) is considered as “benign” in ClinVar.
In support of this consideration, we did not detect any varia-
tion of BRCA2 mRNA expression level. Thus, we cannot
draw any conclusion on the role of this variant and PCC
onset. On the contrary, the 2 rare germline variants of
SAMD9L detected in two sporadic PCC cases were both
producing a premature STOP of the protein (a p.N769fs
frameshift deletion and a nonsense p.R406X) and were
associated with significant downregulation of SAMD9L
mRNA, supporting the pathogenicity of these alterations.
The function of this gene is not well characterized; however,
evidence has accumulated supporting the role of SAMD9L in
cell proliferation and tumor suppression. In particular,
somatic mutations have been found in hepatitis B-related
hepatocellular carcinomas [29] and inactivation of SAMD9L
has been recently correlated with myeloid transformation
[30]. Interestingly, a somatic p.L1016S mutation of SAMD9L
was detected in another PCC sample of our cohort, and
additionally a p. P636S (COSM3412478) was reported in
one case of TCGA PCC/PGL dataset (http://cancergenome.
nih.gov/). Taken together, these data could support a possible
role of SAMD9L in PCC biology; however, functional studies
will be needed to further assess this hypothesis.

5. Conclusions

Taken together, the discovery of novel germline variants of
known cancer-related genes in sporadic PCC patients,
wild-type for mutations in susceptibility genes, may suggest
that the likely existence of other multineoplasia syndrome.
On the contrary, the role of the other rare germline variants
ATRX, KTM2D, and MDH2 genes identified in two cases
having a well-defined somatic mutation on a susceptibility
gene (RET or VHL) remains still unclear.

Although the pathogenetic role of all these variants is still
not known, due to the large number of susceptibility genes
implicated in the diagnosis of inherited PCCs and PGLs, we
confirm also what other authors stated that the next-
generation sequencing technology is ideally suited for carry-
ing out genetic screening of these individuals [31]. Moreover,
the high degree of heritability of PCCs and the wide number
of germline variants described suggest the likely need of a
more extended genetic counselling and the type and duration
of the surveillance program of patients affected by PCCs with
variants of unknown significance. Finally, these findings may
underlie the possible occurrence of novel hereditary diseases
that remain still undefined.

In conclusion, additional somatic passenger mutations
can be associated to known susceptibility VHL, NF1, and
RET genes in PCCs and a wide number of germline variants
with still unknown clinical significance can be detected in
these patients. Therefore, many efforts should be aimed to
better define the pathogenetic role of all these germline
variants for discovering novel potential therapeutic targets
for this disease still orphan of effective treatments.
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